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Chapter 1

Local Theory

1.1 Holomorphic Functions of Several Variables
Exer 1.1.1. Show that every holomorphic map f : C → H := {z| Im(z) > 0} is constant.

Consider g : H → D, z 7→ z−1
z+1 .

Then g is biholomorphic, i.e. g ◦ f is holomorphic.
And since |(g ◦ f)(z)| < 1.
So by maximum principle, g ◦ f is constant, i.e. f is constant.

Exer 1.1.2. Show that real and imaginary part u respectively v of a holomorphic function
f = u+ iv are harmonic, i.e.

∑
i

∂2u
∂x2

i
+
∑
i

∂2u
∂y2i

= 0 and similarly for v.

∂2u

∂x2i
+

∂2u

∂y2i
=

∂

∂xi

∂v

∂yi
− ∂

∂yi

∂v

∂xi
= 0.

Exer 1.1.3. Deduce the maximum principle and the identity theorem for holomorphic functions
of several variables from the corresponding one-dimensional results.

Identity theorem:
Let h = f − g.
Then = 0 for all z ∈ V .
For any w ∈ U , restrict h to the “line” connecting z and w, denote it by h0.
Then h0 is an one variable holomorphic map and h0 = 0 in a open neighborhood of z.
So h0 ≡ 0, i.e.h(w) = 0.
Hence f ≡ g.
Maximum principle:
Suppose |f | has local maximum at z and |f(z)| is maximal in polydisc V .
Then for any w ∈ V , restrict f to the “line” connecting z and w, denote it by g.
Then g is an one variable holomorphic map and |g| has local maximum at z.
So g is constant, i.e. f(w) = f(z).
Hence f is constant in V , contradiction!

Exer 1.1.4. Prove the chain rule ∂(f◦g)
∂z = ∂f

∂w
∂g
∂z + ∂f

∂w̄
∂ḡ
∂z and its analogue for ∂

∂z̄ . Use this to
show that the composition of two holomorphic functions is holomorphic.

Let g = gx + igy, w = u+ iv

1
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∂(f ◦ g)
∂z

=
1

2

(
∂(f ◦ g)

∂x
− i

∂(f ◦ g)
∂y

)
=

1

2

(
∂f

∂u

∂gx
∂x

+
∂f

∂v

∂gy
∂x

− i
∂f

∂u

∂gx
∂y

− i
∂f

∂v

∂gy
∂y

)
=

1

4

(
∂f

∂u
− i

∂f

∂v

)(
∂gx
∂x

+ i
∂gy
∂x

− i
∂gx
∂y

+
∂gy
∂y

)
+

1

4

(
∂f

∂u
+ i

∂f

∂v

)(
∂gx
∂x

− i
∂gy
∂x

− i
∂gx
∂y

− ∂gy
∂y

)
When f, g are holomorphic, ∂f◦g

∂z̄
∂f
∂w

∂g
∂z̄ + ∂f

∂w̄
∂ḡ
∂z̄ = 0.

So f ◦ g is holomorphic.

Exer 1.1.5. Deduce the implicit function theorem for holomorphic functions f : U → C from
the Weierstrass preparation theorem.

WLOG, assume z0 = 0.
Then ∂f

∂z1
6= 0, i.e.f0(z1) 6≡ 0 and f0(0) is of order 1.

So by WPT, there exists g(z1, w) = z1+α1(w) and holomorphic h such that f = g ·h around
0 and h(0) 6= 0.

Therefore around 0, f = 0 iff g = 0, i.e. z1 = −α1(w).

Exer 1.1.6. Consider the function f : C2 → C, (z1, z2) 7→ z31z2 + z1z2 + z21z
2
2 + z22 + z1z

3
2 and

find an explicit decomposition f = h · gw as claimed by the WPT.

Let

g = z2

(
z2 +

z21 + 1−
√

1− 2z21 − 3z41
2z1

)
, h = z1z2 +

z21 + 1 +
√
1− 2z21 − 3z41
2

.

Then f = z2(z1z
2
2 + (z21 + 1)z2 + z31 + z1) = g · h, h(0) = 0 and

z21 + 1−
√

1− 2z21 − 3z41
2z1

=
z1
2

+
3z31 + 2z1

2
(
1 +

√
1− 2z21 − 3z41

) → 0

as z1 → 0.
So g is the Weierstrass polynomial.

Exer 1.1.7. State and prove the product formula for ∂
∂z and ∂

∂z̄ . Show that the product f · g of
two holomorphic functions f and g is holomorphic and that 1

f is holomorphic on the complement
of the zero set Z(f).

∂fg

∂z
=

1

2

(
∂fg

∂x
− i

∂fg

∂y

)
=

1

2

(
f
∂g

∂x
+

∂f

∂x
g − if

∂g

∂y
− i

∂f

∂y
g

)
= f

∂g

∂z
+

∂f

∂z
g.

Similarly, we have ∂fg
∂z̄ = f ∂g

∂z̄ + ∂f
∂z̄ g.

When f, g are holomorphic, ∂fg
∂z̄ = f ∂g

∂z̄ + ∂f
∂z̄ g = 0.

So fg is holomorphic.
And on the complement of Z(f), ∂

∂z̄
1
f = − 1

f2 · ∂f
∂z̄ = 0.

Hence 1
f is holomorphic on the complement of Z(f).
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Exer 1.1.8. Let U ⊂ Cn be open and connected. Show that for any non-trivial holomorphic
function f : U → C the complement U\Z(f) of the zero set of f is connected and dense in U .

Since Z(f) is closed.
So by identity theorem, Z(f) has no interior point, i.e. U\Z(f) is dense.
For z, w ∈ U\Z(f), restrict f to the “line” connecting z and w, denote it by g.
Then g is an one variable holomorphic map, i.e. Z(g) is discrete.
So there exists a path in C\Z(g) that connects z, w.
Hence U\Z(f) is connected.

Exer 1.1.9. Let U ⊂ Cn be open and connected. Show that the set K(U) of meromorphic
functions on U is a field. What is the relation between K(U) and the quotient field of OCn,z for
z ∈ U?

For
(

gi
hi
, Ui

)
,
(
pj
qj
, Vj

)
∈ K(U), let Wij = Ui ∩ Vj .

Then hiqj ·
(

gi
hi

+
pj
qj

)
= giqj + pjhi, hiqj ·

(
gi
hi

pj
qj

)
= gipj in Wij .

And in Ui, hi ·
(
− gi

hi

)
= −gi, gi · hi

gi
= hi on the complement of Z(gi).

So these are all meromorphic functions, i.e. K(U) is a field.
And since f ∈ K(U) is given by g

h with g, h ∈ OCn,z in a neighborhood of z.
Hence the quotient field of OCn,z is the stalk of presheaf K(U).

Exer 1.1.10. Let U := Bε(0) ⊂ Cn and consider the ring O(U) of holomorphic functions on U .
Show that O(U) is naturally contained in OCn,0. What is the relation between the localization of
O(U) at the prime ideal of all functions vanishing at the origin and OCn,0? Is this prime ideal
maximal?

The map O(U) → OCn,0, f 7→ (f, U) is an inclusion.
Moreover, O(U)p → OCn,0,

f
g 7→

(
f
g , U\Z(g)

)
is injective.

But it may not be surjective, when n = 1, exp
(

1
z− ε

2

)
∈ OCn,0 has an essential singular point

at z = ε
2 , while f

g ∈ O(U)p can only have poles.
And since O(U)/p ∼= C.
So p is maximal in O(U).

Exer 1.1.11. The notion of irreduciblility for analytic germs generalizes in a straightforward
way to the corresponding notion for analytic sets X ⊂ Cn. Given an example of an irreducible
analytic set that does not define irreducible analytic germs at every point and of an analytic set
whose induced germs are all irreducible, but the set is not.

Consider f(z1, z2) = z21 − z22(z2 + 1), X = Z(f).
Then X is reducible near 0 since

√
z2 + 1 is well-defined around 0.

And X is irreducible analytic set(hard to prove here).
On the other hand, C × {±1} ⊂ C2 induces irreducible germs at every point, but is not

irreducible set.

Exer 1.1.12. Let U ⊂ Cn be an open subset and let f : U → C be holomorphic. Show that
for n ⩾ 2 the zero set Z(f) cannot consist of a single point. Analogously, show that for a
holomorphic function f : Cn → C, n ⩾ 2 and w ∈ Im(f) there exists z ∈ f−1(w) such that
‖z‖ >> 0.

WLOG, assume Z(f) = {0}.
Then by WPT, f = gw · h with gw(z1) = zd1 + a1(w)z

d−1
1 + · · ·+ ad(w).

For any w and sufficiently small ε, |ai(εw)| can be arbitrary small.
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So gεw(z1) = 0 for some z1 near 0, i.e. (z1, εw) ∈ Z(f), contradiction!
Suppose Z(f) is bounded.
Then there exists a polydisc Br(0) containing Z(f) and ∂Br(0) ∩ Z(f) 6= ∅.
For (z1, w) ∈ ∂Br(0) ∩ Z(f), there exists some (z′1, w + εw) ∈ Z(f), contradiction!

Exer 1.1.13. Show that the product of two analytic germs is in a natural way an analytic germ

Consider germs Z(f1, . . . , fk), Z(g1, . . . , gl) where fi ∈ OCm,0, gi ∈ OCn,0.
Let pi(z1, . . . , zm+n) = fi(z1, . . . , zm), qj(z1, . . . , zm+n) = gj(zm+1, . . . , zm+n).
Then Z(p1, . . . , pk, q1, . . . , ql) = Z(f1, . . . , fk)× Z(g1, . . . , gl).

Exer 1.1.14. Let X ⊂ Cn be an irreducible analytic set of dimension d. A point x ∈ X
is called singular if X cannot be defined by n − d holomorphic functions locally around x for
which x is regular. Then the set of singular points Xsing ⊂ X is empty or an analytic subset
of dimension < d. Although the basic idea behind this result is very simple, its complete proof
is rather technical. Try to prove the fact in easy cases, e.g. when X is defined by a single
holomorphic function.

If x is a regular point, i.e. x ∈ Xreg := X\Xsing, the n − d holomorphic functions defining
X near x can be completed to a local coordinate system.

Let X = Z(f).
Then for z ∈ Xsing, ∂f

∂zi
= 0 for any i = 1, . . . , n.

So Xsing = Z
(
f, ∂f

∂x1
, . . . , ∂f

∂xn

)
is analytic subset with dimension < d.

Exer 1.1.15. Consider the holomorphic map f : C → C2, z 7→ (z2 − 1, z3 − z). Is the image an
analytic set?

Let g(z1, z2) = z22 − z21(z1 + 1).
Then g ◦ f(z) = (z3 − z)2 − (z2 − 1)2z2 = 0 and for z ∈ Z(g), f

(
z2
z1

)
= z.

So Im f = Z(g) is an analytic set.

Exer 1.1.16. The aim of this exercise is to establish the theorem of Poincaré stating that the
polydisc B(1,1)(0) ⊂ C2 and the unit disc D := {z ∈ C2|‖z‖ < 1} are not biholomorphic. (Thus
the Riemann mapping theorem does not generalize to higher dimensions.)

(a) Recall the description of the group of automorphisms of the unit disc in the complex plane.
Show that the group of unitary matrices of rank two is a subgroup of the group of biholo-
morphic maps of D which leave the origin fixed.

(b) Show that for any z ∈ B(1,1)(0) there exists a biholomorphic map f : B(1,1)(0) → B(1,1)(0)
with f(z) = 0.

(c) Show that group of biholomorphic maps of B(1,1)(0) which leave invariant the origin is
abelian.

(d) Show that D and B(1,1)(0) are not biholomorphic.

(a) Since ‖Uz‖ = z∗U∗Uz = z∗z = ‖z‖.
So D 7→ D, z 7→ Uz is a biholomorphic map, which leave the origin fixed.

(b) Let z = (z1, z2) and f : B(1,1)(0) → B(1,1)(0), (w1, w2) 7→
(

z1−w1
1−z̄1w1

, z2−w2
1−z̄2w2

)
.

Then f(z) = 0 and f is biholomorphic.
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(c) This statement is wrong.
Consider f(z1, z2) = (z2, z1), g(z1, z2) = (−z1, z2).
Then f ◦ g(z1, z2) = (z2,−z1), g ◦ f(z1, z2) = (−z2, z1) are not the same.

(d) I have no idea how to prove this since (c) is wrong.

Exer 1.1.17. Let X ⊂ Cn be an analytic subset. Show that locally around any point x ∈ X
the regular part Xsing has zero volume. This will be needed later when we integrate differential
forms over singular subvarieties.

Remark 1.1.1. The origin statement of the exercise in the book is rediculous, according to page
142 where the exercise is needed, I think this statement is what author want us to show.

By exercise 1.1.14, Xsing is an analytic subset of dimension < dimX.
So Xsing has zero volume.

Exer 1.1.18. Let f : U → V be holomorphic and let X ⊂ V be an analytic set. Show that
f−1(X) ⊂ V is analytic. What is the relation between the irreducibility of X and f−1(X)?

For z ∈ f−1(X), let w = f(z) and W be an open neighborhood of w such that W ∩ X =
{w|f1(w) = · · · = fk(w) = 0}.

Then f−1(W ) is an open neighborhood of z and f−1(W ) ∩ f−1(X) = {z|f1 ◦ f(z) = · · · =
fk ◦ f(z) = 0}.

So f−1(X) is analytic.
Consider X = C× {0, 1}, f : C× {0} ↪→ C2.
Then X is reducible but f−1(X) is irreducible.
Consider X = Z(z22 − z21(z1 + 1)), f : C× {0} ↪→ C2.
Then X is irreducible but f−1(X) is reducible.

Exer 1.1.19. Let I ⊂ OC2,0 be the ideal generated by z21 − z32 + z1 and z41 − 2z1z
3
2 + z21. Describe√

I

(z41 − 2z1z
3
2 + z21)− 2z1(z

2
1 − z32 + z1) = z21(z

2
1 − 2z1 − 1) ∈ I.

And notice that 1
z21−2z1−1

∈ OC2,0.
So z1 ∈

√
I.

Therefore z32 ∈
√
I, i.e.z2 ∈

√
I.

Hence
√
I = (z1, z2).

Exer 1.1.20. Let U ⊂ Cn be an open subset and f : U\Cn−2 → C a holomorphic map. Show
that there exists a unique holomorphic extension f̃ : U → C of f .

WLOG, assume the Cn−2 is {(0, 0)} × Cn−2 ⊂ Cn.
Then using the proof of Hartogs’ theorem, we can extend fw to a holomorphic map on

U ∩ {(z, w)|z ∈ C2}.
Hence we extend f to a holomorphic map on U , which is unique.

1.2 Complex and Hermitian Structures
Exer 1.2.1. Let (V, 〈 , 〉) be a four-dimensional euclidian vector space. Show that the set of all
compatible almost complex structures consist of two copies of S2.
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WLOG, assume 〈 , 〉 is the standard inner product.
Since I2 = −id and IT I = id.
So IT I2 = −IT = I, i.e. I is skew-symmetric, take

I =


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0


Then a2 + b2 + c2 = 1, bd+ ce = 0, ad = cf, ae+ bf = 0, a2 + d2 + e2 = 1, ab+ ef = 0, ac =

df, b2 + d2 + f2 = 1, bc+ de = 0, c2 + e2 + f2 = 1.
So a2 = f2, b2 = e2, c2 = d2, ae = −bf, bd = −ce, ad = cf .
Let a = cosϕ, b = sinϕ cos θ, c = sinϕ sin θ.
Then d = ± sinϕ sin θ, e = ∓ sinϕ cos θ, a = ± cosϕ.
Hence I must be one of the following two forms:

0 cosϕ sinϕ cos θ sinϕ sin θ
− cosϕ 0 sinϕ sin θ − sinϕ cos θ

− sinϕ cos θ − sinϕ sin θ 0 cosϕ
− sinϕ sin θ sinϕ cos θ − cosϕ 0


or 

0 cosϕ sinϕ cos θ sinϕ sin θ
− cosϕ 0 − sinϕ sin θ sinϕ cos θ

− sinϕ cos θ sinϕ sin θ 0 − cosϕ
− sinϕ sin θ − sinϕ cos θ cosϕ 0


Each form of I forms a S2.

Exer 1.2.2. Show that the two decompositions
k∧
V ∗ =

⊕
i⩾0

LiP k−2i, LiP k−2i =
⊕

p+q=k−2i

LiP p,q

are orthogonal with respect to the Hodge-Riemann pairing.

Consider α ∈ P k−2i, β ∈ P k−2j with i < j.
Then Q(Liα,Ljβ) = ωi ∧ α ∧ ωj ∧ β ∧ ωn−k = ωn−k+2i+1 ∧ α ∧ ωj−i−1 ∧ β = 0
Consider α ∈ P p,q, β ∈ P p′,q′ .
Then Q(Liα,Liβ) = ωi ∧ α ∧ ωi ∧ β ∧ ωn−k = Q(α, β) = 0.

Exer 1.2.3. Prove the following identities: ∗Πp,q = Πn−q,n−p∗ and [L, I] = [Λ, I] = 0.

By definition, for α ∈
∧p,q V ∗, ∗α ∈

∧n−q,n−p V ∗.
So ∗Πp,q = Πn−q,n−p∗.
And [L, I](α) = i(p+1)−(q+1)L(α)− L (ip−qα) = 0, [Λ, I] = i(p−1)−(q−1)Λ(α)− Λ (ip−qα) = 0.

Exer 1.2.4. Is the product of two primitive forms again primitive?

No, take α ∈ P i, β ∈ P j with i, j < n, i+ j > n.
Then α ∧ β ∈

∧i+j V ∗, while P i+j = 0.

Exer 1.2.5. Let (V, 〈 , 〉) be an euclidian vector space and let I, J , and K be compatible almost
complex structures where K = I ◦ J = −J ◦ I. Show that V becomes in a natural way a vector
space over the quaternions. The associated fundamental forms are denoted by ωI , ωJ , and ωK .
Show that ωJ + iωK with respect to I is a form of type (2, 0). How many natural almost complex
structures do you see in this context?



CHAPTER 1. LOCAL THEORY 7

(a+ bi+ cj + dk) · v = a · v + b · I(v) + c · J(v) + d ·K(v).
Since I2 = J2 = K2 = −Id and K = IJ = −JI.
So the quaternions structure is well-defined.
And (ωJ + iωK)(v, w) = 〈J(v), w〉+ i〈J ◦ I(v), w〉 = 〈J(v), w〉 − i〈I ◦ J(v), w〉.
Therefore (ωJ + iωK)(I(v), w) = 〈I ◦ J(v), w〉+ i〈J(v), w〉 = i(ωJ + iωK)(v, w),
(ωJ + iωK)(v, I(w)) = −〈J ◦ I(v), w〉+ i〈J(v), w〉 = i(ωJ + iωK)(v, w).
Hence ωJ + iωK is of type (2, 0).
Moreover, every aI + bJ + cK with a2 + b2 + c2 = 1 is an almost complex structure.

Exer 1.2.6. Let ω ∈
∧2 V ∗ be non-degenerate, i.e. the induced homomorphism ω̃ : V → V ∗

is bijective. Study the relation between the two isomorphisms Ln−k :
∧k V ∗ →

∧2n−k V ∗ and∧k V ∗ ∼=
∧2n−k V ∼=

∧2n−k V ∗, where the latter is given by
∧2n−k ω̃. Here, 2n = dimR(V ).

Let {xi, yi = I(xi)} be a basis of V such that ω =
n∑

i=1
xi ∧ yi.

Then
∧k V ∗ ∼=

∧2n−k V ∼=
∧2n−k V ∗ is given by

xI ∧ yJ 7→ (−1)sgn(I,J,I
c,Jc)xIc ∧ yJc 7→ (−1)sgn(I,J,I

c,Jc)+|Jc|yI
c ∧ xJ

c

Remark 1.2.1. Since this isomorphism is definitely different from Ln−k, so I don’t know what
author what us to study.

Exer 1.2.7. Let V be a vector space endowed with a scalar product and a compatible almost
complex structure. What is the signature of the pairing (α, β) 7→ α∧β∧ωn−2

vol on
∧2 V ∗?

Let {xi, yi = I(xi)} be a basis of V such that ω =
n∑

i=1
xi ∧ yi.

Consider the basis {x1 ∧ y1, . . . , xn ∧ yn} ∪ {xi ∧ xj , yi ∧ yj} ∪ {xi ∧ yj} of
∧2 V ∗.

Then the pairing is a blocked diagonal matrix with n2 − n + 1 parts, corresponding to
n2 − n+ 1 parts of basis resp.

First part is given by {1− δij}, i.e. signature is (1, n− 1).
For other n2 − n parts, each of them has signature (1, 1).
Hence signature of the pairing is (n2 − n+ 1, n2 − 1).

Exer 1.2.8. Let α ∈ P k and s ⩽ r. Prove the following formula ΛsLrα = r(r − 1) · · · (r − s+
1)(n− k − r + 1) · · · (n− k − r + s)Lr−sα.

∗Lrα = (−1)
k(k+1)

2
r!

(n− k − r)!
Ln−k−rI(α)

∗Lr−sα = (−1)
k(k+1)

2
(r − s)!

(n− k − r + s)!
Ln−k−r+sI(α)

So we have

ΛsLrα = ∗−1Ls ∗ Lrα =
(n− k − r + s)!

(r − s)!
· r!

(n− k − r)!
Lr−sα

Exer 1.2.9 (Wirtinger inequality). Let (V, 〈 , 〉) be an euclidian vector space endowed with a
compatible almost complex structure I and the associated fundamental form ω. Let W ⊂ V
be an oriented subspace of dimension 2m. The induced scalar product on W together with the
chosen orientation define a natural volume form volW ∈

∧2mW ∗. Shot that

ωm
∣∣
W

⩽ m! · volW

and that equality holds if and only if W ⊂ V is a complex subspace, i.e. I(W ) = W
and the orientation is the one induced by the almost complex structure. (The inequality is
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meant with respect to the isomorphism
∧2mW ∗ ∼= R, volW 7→ 1. Hint: Use that there exists an

oriented orthonormal base e1, . . . , e2m such that ω
∣∣
W

=
m∑
i=1

λie
2i∧e2i−1 and the Cauchy-Schwarz

inequality.)

Since ω
∣∣
W

is anti-symmetric.

So there exists orthonormal base e1, · · · , e2m such that ω
∣∣
W

=
m∑
i=1

λie
2i ∧ e2i−1.

Notice that |λi| =
∣∣ω(e2i, e2i−1)

∣∣ ⩽ ‖e2i‖ · ‖e2i−1‖ = 1.

Hence ωm|
W

volW
⩽

∑
i1⩽···⩽im

m∏
j=1

∣∣λij

∣∣ ⩽ m!

Exer 1.2.10. Choose an orthonormal basis x1, y1 = I(x1), . . . , xn, yn = I(xn) of an euclidian
vector space V endowed with a compatible almost complex structure I. Show that the dual
Lefschetz operator applied to a two-form α is explicitly given by Λα =

∑
α(xi, yi).

Since x1, y1, . . . , xn, yn is orthonormal basis.
So ω =

n∑
i=1

xi ∧ yi.

For α = xi ∧ yj , Λα = (−1)n+i+j ∗−1 L
(
x{i}

c ∧ y{j}
c)

= δij ∗−1 (vol) = δij .
Similarly, for α = xi ∧ xj , yi ∧ yj , Λα = 0.
Hence Λα =

∑
α(xi, yi).

1.3 Differential Forms
Exer 1.3.1. Let f : U → V be a holomorphic map. Show that the natural pull-back f∗ :
Ak(V ) → Ak(U) induces maps Ap,q(V ) → Ap,q(U).

Since f is holomorphic.
So f∗A1,0(V ) ⊂ A1,0(U), f∗A0,1(V ) ⊂ A0,1(V ).
Hence f∗ (Ap,q(V )) ⊂ Ap,q(U).

Exer 1.3.2. Show that ∂α = ∂̄ᾱ. In particular, this implies that a real (p, p)-form α ∈
Ap,p(U)∩A2p(U) is ∂-closed(exact) if and only if α is ∂̄-closed(exact). Formulate the ∂-version
of the three Poincaré lemmas.

For α ∈ Ap,q(U), ∂α = Πp+1,q(dα) = Πq,p+1
(
dα
)
= ∂̄ᾱ.

Now let α be an real (p, p)-form.
α is ∂-closed⇔ ∂α = 0 ⇔ ∂̄α = ∂̄ᾱ = 0 ⇔ α is ∂̄-closed.
α is ∂-exact⇔ α = ∂β ⇔ α = ᾱ = ∂̄β̄ ⇔ α is ∂̄-exact.
∂-Poincaré lemma in one variable:
Consider an open neighborhood of the closure of a bounded one-dimensional disc Bε ⊂ B̄ε ⊂

U ⊂ C. For α = fdz ∈ A1,0(U) the function

g(z) =
1

2πi

f̄(w)

w − z
dw ∧ dw̄

on Bε satisfies α = ∂ḡ.
∂-Poincaré lemma in several variables:
Let U be an open neighborhood of the closure of a bounded polydisc Bε ⊂ B̄ε ⊂ U ⊂ Cn. If

α ∈ Ap,q(U) is ∂-closed and q > 0, then there exists a form β ∈ Ap−1,q(Bε) with α = ∂β on Bε.
∂-Poincaré lemma on the open disc:
If α ∈ Ap,q(B) is ∂-closed and q > 0, then there exists β ∈ Ap−1,q(B) with α = ∂β.
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Exer 1.3.3. Let B ⊂ Cn be a polydisc and let α ∈ Ap,q(B) be a d-closed form with p, q ⩾ 1.
Show that there exists a form γ ∈ Ap−1,q−1(B) such that ∂∂̄γ = α. (This is a local version of
the ∂∂̄-lemma for compact Kähler manifolds Corollary 3.2.10)

By Poincaré lemma, there exists β ∈ Ap+q−1(B) such that dβ = α.
Let β = β1 + β2 with β1 ∈ Ap−1,q(B), β2 ∈ Ap,q−1(B).
Then ∂̄β1 = 0, ∂β2 = 0.
So By ∂, ∂̄-Poincaré lemma, β1 = ∂̄γ1, β2 = ∂γ2.
Hence α = ∂β1 + ∂̄β2 = ∂∂̄(γ1 − γ2).

Exer 1.3.4. Show that for a polydisc B ⊂ Cn the sequence

Ap−1,q−1(B) Ap,q(B) A
p+q+1
C (B)∂∂̄ d

is exact. (For more general open subsets or complex manifolds the sequence is no longer
exact. This gives rise to the so called Bott-Chern cohomology which shall be introduced in
Exercise 2.6.7.)

For α ∈ ker d, dα = 0.
So by exercise 1.3.3, ∂∂̄γ = α for some γ ∈ Ap−1,q−1(B).
Hence ker d ⊂ im(∂∂̄), i.e. the sequence exact.

Exer 1.3.5. Show that ω = i
2π∂∂̄ log

(
|z|2 + 1

)
∈ A1,1(C) is the fundamental form of a compati-

ble metric g that osculates to order two in any point. (This is the local shape of the Fubini-Study
Kähler form on P1, cf. Section 3.1.)

ω = i
2π∂

(
zdz̄

1+|z|2

)
= i

2π
dz∧dz̄

(1+|z|2)
2 .

So ω is the fundamental form of metric g = 1

π(1+|z|2)
2dz ⊗ dz̄.

Moreover, dω = 0, i.e. g osculates to order two in any point.

Exer 1.3.6. Analogously to Exercise 1.3.5, study the form ω = 1
2πi∂∂̄ log

(
1− |z|2

)
on B1 ⊂ C.

(This is the local example of a negatively curved Kähler structure. See Section 3.1.)

Remark 1.3.1. The original statement is wrong (including the statement in section 3.1), it seems
that author forget a sign while differentiating.

ω = 1
2πi∂

(
−zdz̄
1−|z|2

)
= i

2π
dz∧dz̄

(1−|z|2)
2 .

So ω is the fundamental form of metric g = 1

π(1−|z|2)
2dz ⊗ dz̄, which is also osculates to

order two in any point.

Exer 1.3.7. Let ω = i
2π

∑
dzi ∧ dz̄i be the standard fundamental form on Cn. Show that one

can write ω = i
2π∂∂̄ϕ for some positive function ϕ and determine ϕ. The function ϕ is called

the Kähler potential.

Let ϕ =
∑

|zi|2.
Then ω = i

2π∂∂̄ϕ.

Exer 1.3.8. Let ω ∈ A1,1(B) be the fundamental form associated to a compatible metric on a
polydisc B ⊂ Cn which osculates in every point z ∈ B to order two. Show that ω = i

2π∂∂̄ϕ for
some real function ϕ ∈ A0(B).
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Since dω = 0.
So by exercise 1.3.3, there exists γ ∈ A0,0(Cn) such that i

2π∂∂̄γ = ω.
And notice that ω is real.
Therefore i

2π∂∂̄γ = i
2π∂∂̄γ̄.

Let ϕ = 1
2 (γ + γ̄).

Then ϕ is real and ω = i
2π∂∂̄ϕ.

Exer 1.3.9. Let g be a compatible metric on U ⊂ Cn that osculates to order two in any point
z ∈ U . For which real function f has the conformally equivalent metric ef ·g the same property?

Let ω0 be the fundamental form of metricef · g.
Then ω0 = ef · g(I(), ()) = ef · ω.
So dω0 = def · ω = df · ω0.
Hence f must be constant.
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