non-positive sectional curvature Riemannian manifold has no conjugate points

Proposition: If a Riemannian manifold $(M,g)$ has non-positive sectional curvature, then $\forall p\in M,\mathrm{conj}(p)=\emptyset$.

Proof: Suppose $q\in\mathrm{conj}(p)$ is conjugate to $p$ along geodesic $\gamma:[0,1]\to M$ by Jacobi field $J$ such that $J(0)=J(1)=0$.

Consider $\varphi(t)=||J(t)||^2$.

$\begin{aligned}\text{Then }\varphi^{\prime\prime}(t)=&\left\langle\hat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}}\hat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}}J,J\right\rangle+\left\langle\hat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}} J,\hat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}} J\right\rangle\\=&\langle-R(J,\gamma^\prime)\gamma^\prime,J\rangle+\left|\left|\hat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}}J\right|\right|^2\\=&-R(J,\gamma^\prime,\gamma^\prime,J)+\left|\left|\hat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}}J\right|\right|^2\\\geqslant&0\end{aligned}$

And since $\varphi(t)\geqslant 0,\varphi(0)=\varphi(1)=0$.

So $\varphi\equiv 0$, i.e. $J$ is constant, contradiction!

Corollary: If a complete Riemannian manifold $(M,g)$ has non-positive sectional curvature, then exponential map $\mathrm{exp}_p:T_pM\to M$ is local diffeomorphic for any $p\in M$.

Remark: the exponential map $\mathrm{exp}_p$ is actually a covering map for any $p\in M$.

版权声明:本文为Jacky567原创,依据CC BY-SA 4.0许可证进行授权,转载请附上出处链接及本声明。
暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇