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Chapter 1

Curvature on Riemannian manifolds

1.1 Vector bundles and affine connections

Def 1.1 (tensor). V, W are vector spaces, tensor V*®@ W is a set of all linear maps f: V — W.
Assume {e;}, {w,} are basis of V, W resp., then linear map f can be represented by

f(el) = a?waa

So ‘
V*®@ W = span{e' ® wy},

where {e'} are dual basis of {e;}, €'(e;) = (55

Def 1.2. Symmetric tensor: Sym®2V C V ® V contains all linear maps whose representation
matrix is symmetric.

Skew-Symmetric tensor: A2V C V ®V contains all linear maps whose representation matrix
is skew-symmetric.

Def 1.3. Let M be a C*° manifold, a real vector bundle of rank r over M is a C**° manifold
E =5 M, where 7 is a submersion, and there exist an open cover {Ui}ies of M, such that

(1) for each j, there is a diffeomorphism

Pj - W_I(Uj) — Uj X RT,

such that the restriction

is an isomorphism.
(2) for each i,j € J, the map
pij = wiop;  (UinUj) xR" = (U;NU;) x R
is an isomorphism on each fiber and it can written as
pij(x,v) = (, gij(x)v),
where g;; € C°(U; N U, GL(r)) satisfy

gijogikogri=1d onU;NU;NU;

1



CHAPTER 1. CURVATURE ON RIEMANNIAN MANIFOLDS

Exam 1.1. (a) E = M x R"(trivial bundle)

(b) TM (transition: (gyi;))
(¢) T*M

Def 1.4 (homomorphisms between vector bundles).

E]_L)EQ

]

M — M

h is a homomorphism if for each point p, h‘p : El‘p — Eg‘p is linear.

h is an endomorphism if the image is F1, and h is isomorphism if h‘p are isomorphism.
Def 1.5 (sections of a vector bundle). s: M — E is a smooth map s.t.

M —— FE
&iﬂ
M

And s(x) € E‘x for every point z € M.

Remark 1.1. Let s be a section, consider the its local expression over a chart U of M.
Consider the local trivialization ¢ : 7= 3(U) — U x R", and let R" = span{F},--- , E,}.
Then

ealr) == 7 (2, Ea)

is a local basis and
s(x) = s%(x)eq(x),x € U.

The space of C™ section of E —— M is denoted by T'(M, E).

Def 1.6 (Affine connection). Connection is a rule of taking derivative.
An affine connection V of E — M is a map

V : (M, TM) x (M, E) — T(M, E), (X, s) — Vs
such that for every s,t e (M, E), X, Y €e (M, TM), f € C*(M), we have:

(1) Linearly:
Vixyys= fVxs+ Vys.

(2) Leibniz rule:
Vx(fs+t)=X(f)s+ fVxs+ Vxt.

Remark 1.2. Over a chart U, let X = X* 62,. , S = s%q.
We then have

« % asa «
Vxs=Vyio s%ea=X ea+ 5"V o eq .
ox?

al‘i Oz

The only unknown term in the expression is

Viea = Fiﬁaeg
oxt
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where Ffa are called the Christoffel symbols.
For two different bases,

Voo ea=T0esV oia=T0¢g
a7t

ozt

with

we have:

- 0gl R
— | piToe J JEA
So the Christoffel symbols do not transform as tensors under coordinates transformation

co B
since there is an extra term hf gg‘;.

Prop 1.1. If Vi and V4 are two affine connections over £ — M, V1 — Vs is a tensor.

Proof.
(Vi)x (fs) = (V2)x (fs) = f(Vi)xs = (Va)x ).

Hence
Vi—-Vy € F(M,T*M(X) E* ®E), (V1 — VQ)XS e'(M,E).

Def 1.7 (curvature of an affine connection).
R(X, Y)S = vays — Vyvxs — V[X,Y]S
is a well-defined map from I'(M,TM) x I'(M,TM) x T'(M, E) to I'(M, E).

You may think it is strange why we prefer to define the curvature by this rather than simply
VxVy, this is because we want the curvature to be a tensor(this idea is very important) :

Prop 1.2.
R € I'(M,\*T*M ® End(E)).
Proof.

R(fX, gY)hS :fovgyhs - vgnyth - V[thqy}hs
=fghVxVys+ fgX(h)Vys+ fgY (h)Vxs+ fgX (Y (h))s
+fX(9)Vyhs — fghVyVxs — fgY (h)Vxs — fgX(h)Vys
—f9Y (X (h))s — gY (f)Vxhs — fghVxy)s — fg[X,Y](h)s
— X (9)Vyhs + gY (f)Vxhs
=fgh(VxVys —VyVxs — V[X,Y]S)

Hence R is a tensor, i.e. R € T'(M, A2T*M ® End(E)). O

Remark 1.3. Consider the local expression, let

_RpB
R_Rija

dz' @ do? ® e* ® e, R <88331’ ;Z]) [ 2 Rfjaeﬁ.

Then we have 5
B
s _ e _ 0Ly,
K oz? oxJ

8
+ L - T T
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Def 1.8. Given s* € I'(M, E*), we can define a connection V% s* of E*, such that
X(s,8") = (Vxs,s") + (s, Vis™)

for every s € I'(M, E'), which is called the Leibniz rule.

1.2 Levi-Civita connection

Def 1.9 (Riemannian metric). g € T'(M,Sym®?T*M) and g, is a positive definite for each
pe M.

Thm 1.1. There exists a C° Riemannian metrics on every C* manifold.

Proof. Let {(Ua, ¢a)} be an open cover of M and {p,} be a partition of unity subordinate to
it.

Then Let go be the canonical metric on R™ and g, = ¢},90-

S0 g =), Paga is a Riemannian metric on M. O

Thm 1.2 (Existence of Levi-Civita Connection). Let (M,g) be a C* Riemannian manifold,
there exists an unique affine connection V. on TM — M, such that:

(1) V is compatible with g:

(2) torsion free(symmetry):
VY - VyX = [X,Y].

Proof. Consider three equations

Xg(Y,Z) = g(VxY, Z) + g(Y,VxZ)

Adding them up we can get

Xg(Y,2)+Yy(X,Z) - Zg(X,Y)
:g(VXK Z) +9(K [X7 Z]) —I—Q(X, D/a Z]) +9(VXY+ [X>Y]7Z)
ZQQ(VXK Z) —|—g(Y, [Xa Z]) +9(Xa [K Z]) —|—g([X,Y],Z)
Hence ]

9(VxY,2) =5(Xg(Y, Z) + Y9(X, Z) = Zg(X,Y)

- Q(K [Xv Z]) - g(X, [Y’ Z]) —g([X, Y]’Z))

Remark 1.4. Since we have 5 5
_ Tl
g (Vazi 9z’ 3:1:’“) = rijgklu

9915  Oga _ 9gij
ki j _ 994
g (Gaci w0t )

we can obtain that

1
k
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Def 1.10. Curvature tensor of Levi-Civita connection V is

R(X,Y)Z =VxVyZ - VyVxZ - VixyZ.

And we define R(X,Y, Z, W) == g(R(X,Y)Z, W).
Remark 1.5. Torsion free tells us that

0 0
Vo—=V

T o B
227 O 227 Ozt

this is very useful.
We have »
D
81“,{.]. B ark‘i
ot oxJ
1 6293‘1 D gi g aQij P g P g
Rijht = 2 <0xiaxk 023020 0xIdxk  Oxidx! + 9pq <Fikrﬂ B Filrjk)

There are some tricks that can help you prove this equation:

o P pp P a P 1°q
Riji = gipRijp Rigp = Lol + Lol

g”gik = 6%792] (91:1 = _Wgzk

And it needs a lot of patience for you to write down the complete proof (:
Prop 1.3. (1) Skew-symmetry:

R(X,Y,Z,W)=-R(Y,X,Z,W)=—-R(X,Y,W,Z) =R(Z, W, X,Y).

(2) The first Bianchi identity:

R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W) =0

Proof. (2)Let X =2, v =2 7= 9

oxt’ oz oxk

R(X, Y)Z+ R(Y, Z)X =VxVyvZ -VyVxZ+VyVzX —VzVy X
=VxVzY —-V;VxY
ZR(X,Z)Y

So
R(X,Y)Z+R(Y,2)X +R(Z,X)Y =0.

1.3 Sectional curvature and Ricci curvature

Def 1.11 (section curvature).

A RX, VY, X)
O XPYPR - g(X,Y)?

K(X,Y)

where X, Y are linearly independent.
We say that sectional curvature K > k if for any linearly independent X,Y € I'(M, T M),

K(X,Y) >k

Similarly, we can define K < k, K = k.
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Remark 1.6.
Ro(X, Y, Z, W)= (X, W)Y, Z) — (X, Z){(Y, W)
also satisfy the skew-symmetry and first Bianchi identity properties, and
Ro(X,Y,Y, X) = [XP|Y]* - [(X,Y)].
Lemma 1.1. Ifspan{X,Y} = span{Z, W} = X is a plane, then
K(X,Y)=K(Z, W) =XK(X%).
Proof. Let Z =aX +bY,W = cX +dY.

R(Z,W,W,Z) = R(aX +bY,cX +dY,cX +dY,aX + bY)
= (ad — be)’R(X,Y,Y, X)

So
2Pl = [(z,w)” = (ad = be)? (|2l’lyl® = (@,9) )

Thm 1.3. The sectional curvature X determines the full curvature tensor.

Proof. Given X,Y,Z, W € TI'(M,TM), define

F:R? = C®(M),(s,t) — R(z + sz,y + tw,y + tw, = + 52)

s=t=0

— 55 (RSWHZ, Y, X) + R(sW, Y, 12, X) + R(X,12,Y, sW) + R(X, Y. 12, 5sW)

s=t=0
=R(Z,W,Y,X) + R(ZY,W,X) + R(X,W,Y, Z) + R(X,Y, W, Z)

—R(W, Z,Y,X)—R(W,Y, Z,X) = R(X, Z,Y,W) = R(X,Y, Z,W)

= —R(X,Y,Z,W)+R(Y,Z,X,W) +R(Y, Z,X,W) —R(X,Y, Z,W)
~R(X,Y,Z,W)+R(Z,X,Y,W)+R(Z X,Y,W) - R(X,Y, Z,W)

= —6R(X,Y,Z,W)

Prop 1.4. Let (M, g) be a Riemannian manifold and p € M, TFAE:
(1) For a plane ¥ C T,M, K,(X) is independent of X
(2) dsome constant ky,, such that

Riji = kp(gagrj — 9irgji)

(3) dsome constant ky, such that

RV
XPIYP =P~

for every X, Y € TyM and span{X,Y} is a plane.
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Proof. (2) = (3): -
R(X,Y,Y, X) = Ryjua'a'y'y*

(XY= (X, Y) P = (gugrs — gimgi)z’a'y’y"*

(3) = (2): Consider

F(s,t) =R(X + 5Z,Y +tW,Y +tW, X + s2)
Fy(s,t) = R(X + $Z,Y +tW,Y +tW, X + sZ)

Then
o L = ORX,Y.ZW)
To = —6R(X,Y,Z,W)
O

Hence R(X,Y, Z, W) = kpyRo(X,Y, Z, W).

Def 1.12 (Ricci curvature). ‘ ‘
Ric = Rijdﬂiz ® dz?

where
Kl Kl k
Rij = 6" Rikij = 9" Reiji = Rij-

We say that Ricci curvature Ric(g) > C if for any X € I'(M,TM),
Ric(X, X) > C.
Similarly, we can define Ric(g) < C.

Def 1.13 (scalar curvature). -
s = g”R;; = try Ric.

Def 1.14 (curvature operator).
R:T(M, N>TM) = (M, N>TM),

satisfying
G(R(X AY),Z AW) = R(X,Y, W, Z).
Exam 1.2.
I Sn(K) — (Rn+1,gcan)7gK = f*gcan-
Ty, )=12, - z y 9ij = Oij —.
i—1 K2 =3 (at)?
Then . . ( )
n— n(n —
Rijk:l = ﬁ(gilgkj - gikgjl)7Rij = ngps = T
Prop 1.5. Let (M, g) be a Riemannian manifold, prove that the scalar curvature s(p) at p € M
is given by
s(p) = 1 / Ric,(x, x)dS.
Wn—1 Jgn-1

, &™) is an orthogonal coordinate of T, M.

n / Ricy(z,z)dS = n / R;jz'z’dS
S§n—1 S§n—1

Proof. Assume (zt,---

Wnp—1 Wn—1
n 0Ywn—1
Wn—1 n

=tr (Ric,) = s(p)
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Prop 1.6. Let (M, g) be a Riemannian n-manifold and p € M. For each unit vector v € T, M,
prove that

n—1
- dv,
vol(S"—2) /wGSvL sectv w)dvy

where Sf; denotes the set of unit vectors in T,M that are orthogonal to v and g denotes the
Riemannian metric on S~ induced from the flat metric gp on Tp,M.

Ricy(v,v) =

Proof. Let {e1,--- ,e,_1} be an orthogonal basis of S;-, e, = v.
Then {ey,--- , ey} is an orthogonal basis of T,M, so
3 n—1
Ric,(v,v) = 6Y Ripnj = Zsec(ei,v).
i=1

So we can obtain

n—1 n—1 -
AV, = il dV;
) /S# sec(v,w)dVj oIS /S%R jww!dVy
n—1

B Z n—1 vol(S"—2)

N — vol(Sn=2) "™

=Ricy (v, v)
O
Prop 1.7. Let (M, g) be a Riemannian n-manifold with sectional curvature K > k, then
Ric(g) = (n — 1)k.
Proof. Follows by proposition 1.6. O

Remark 1.7. In general, we can not get any information about sectional curvature from Ricci
curvature, but in 3-dimensional case, we have the following theorem:

Thm 1.4. Let (M,g) be a connected FEinstein manifold, i.e. Ric(g) = cg for some ¢ € R,
suppose dim M = 3, then (M, g) has constant sectional curvature 5.

Proof. Consider the orthogonal frame {e1, e2, e3} such that (g;;) = I, then
Ri11 = —Ri212 — Ri313, R22 = —Ra323 — R2121, R33 = —R3131 — Ra232,
Ri2 = —R3132, Ro3 = —Ri1213, R31 = —Rago1.

So we deduce

Ri1+ Ros + R, 1 . 1
Ris12 = Ris13 = Rosps = Ry — —2 222 3 56 i.e. K = 3¢

O]

Remark 1.8. This theorem allow us to research 3-dimensional manifold more easily. The struc-
ture of most of manifolds with dimension bigger than 3 are unclear, e.g. whether there is a
Ricci-flat metric on S* or not. We will discuss these question in the last chapter.

Here are some big theorem and conjugate in Riemannian geometry:

Thm 1.5 (Hamilton 1982). Let (M, g) be a simply connected compact 3-dim Riemannian man-
ifold, if Ric > 0, then M is diffeomorphic to S>.

Thm 1.6 (Bohm-Wilking 2008). Let (M, g) be a simply connected compact Riemannian mani-
fold for n > 4, and curvature operator> 0 = M is diffeomorphic to S™.

Conj 1.1. dimg M = 4, sectional curvature > 0 and Einstein R;; = kg;;, then it is S* or CP2.



Chapter 2

Basic concepts in Riemannian
geometry

2.1 Pullback vector bundles & connections

Def 2.1. For a smooth map M L> N and a vector bundle E —— N, f*E is called the pullback
vector bundle, defined as

f'E={(p,v) € M x E|n(v) = f(p)}-
So the following diagram commutes.
(f"E)p =77 ({p}) = By =7 ({f(0)}).
L

M1 N

Remark 2.1. If {ea} — E is a local basis, then define

(fTea)(p) = eal(f(p)),
so {f*ea} is a local basis of f*(E).
Def 2.2. The pullback connection VonkE = f*E is a map
I'(M,TM) x T(M,E) — T'(M, E),

satisfying the following commutative diagram:

(f*E,V) — (E,V)

Remark 2.2. If we have

then
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Def 2.3. define the pullback metric

g(éa,ep)(p) = glea,er)(f(p),d = f*y.

It satisfy the commutative diagram below:

(f*E,9) — (E,9)

Lok
M — N

Remark 2.3. For g = gape? ® P, we have
frg = f*(g9ap)f*e* @ frep
= gap(f)f*e’ @ frep
Prop 2.1. suppose V is a metric compatible affine connection on (E,g), i.e.
Xg(s,t) = g(Vxs,t)+ g(s, Vxt).

Then V is a compatible with (E,g), so the diagram below commutes.

(f*Eaﬁmg) E— (E7V7g>

/ lﬁ

M —F N

=1

Def 2.4. For
RE = RfﬁAdya ® dyﬁ Red ®ep,

we define the pullback curvature:
R = R o' © da’ @ e ® ¢,
where

~ ofe o B
Rija(p) = Rpalf (p))%%-

2.2 Parallel transport

Prop 2.2. Ifv:[a,b] = (M,g) is a C* curve, v € T, (q)M, then there exists a unique vector
field V € T'([a,b],v*T M) such that

VV =0

Via)=v

Remark 2.4. VV is actually V 5 V since [a,b] is a 1-dimensional manifold.
ot

Proof. Choosing basis {e;(t)} in Ty M for t € [a,b].
For V € I'([a,b],v*TM), let '
V =V"(t)e;(t)

and we write

Vei(t) = o] (t)ej(t).

dvi o ~
( +w}v3> e; = VV =0.

So

dt
Hence V is unique by the uniqueness of solution of ODE. O
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Def 2.5. For v : [a,b] — (M, g), define
Pto,t,’y : T’y(to)M — T’y(t)Ma V= V(t)
called the parallel transport along .
Thm 2.1. v: I — (M, g), then

(1)
Paty - Ty)M = Ty M

s linear

(2)

Prytsy © Prytoy = Pty Pty = 1d

(3) Psytr is a linear isometry

(4)
F:Ix~y"TM —~"TM,F(t,(s,v)) = (t, Pst,v)

(5) For any V € I'(Ja,b],y*TM),t, to € I,
d

3 Leton V(1)) = Pmm(@%‘/(t))

Proof. (1) Let Vi, Vo be the unique parallel vector field along 7 such that Vi (s) = vg, Va(s) = wyp.
Then

~

V(cVi+Va) =0, (cVi + Va2)(s) = cvg + wp.

So
Pyt (cvg +wo) = (Vi + Va)(t) = cPs 1 yv0 + Ps i ywo.
(2) Let V' be the unique parallel vector field along ~ such that Vi(t;) = vo.
Then
Pii sy (v0) = V(t2), P 57 (V (£2)) = V (t3).
(3) Let V4, V4 be the unique parallel vector field along v such that Vi (s) = v, Va(s) = wo.

Then

<€VI,€V2> - %(vl,x@ —0,

i.e. (V1,V3) is constant.
Therefore
d(Ps t,(v0), Ps,ty(wo)) = d(vo, wo).
(4) Since Py : (v*T)sM — (v*T)¢M is a linear isometry.
So F : I x~*T'M — ~v*T'M is smooth, because v*T'M is vector bundle over I.
(5) Let V(t) = Vi(t)e;(t), where {e;()} is a basis of parallel vector fields along the curve.
Then

Py sy (@V(t)) =P s~ <d‘/;t(t) ei(t)) = d‘gt(t)ei(S).
VPLan (VD) = T (Dei(s)) = Do
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2.3 Hessian of smooth functions
Def 2.6. By the definition 1.8, for w € I'(M,T*M), we define
A
(Vyw)(X) =Y (w(X)) —w(VyX).
Remark 2.5. Assume

0 w0 VRV
VBZ@ Flja k,V%dﬂf _Flldx

Then we have the relation
Ny , o . , .
_ t _ . _ l
I, =0—da’ <Fil6xt> =T, z.e.V%da}] = I dz".
Def 2.7. For a smooth function f: M — R, the Hessian of f is
Hess (f) = V2f =Vdf e T(M,T*M @ T*M).

Lemma 2.1. )
Hess (f) = <836fxi - Ffﬂaajﬂ) dzt @ da’
Hess (f)(X,Y) =g(VxV . Y) =X (f)) — (VxY)(f)

So Hess (f) € T(M,Sym®>T*M).

Proof.
! Hess (f)(X,Y) = X(df(Y)) —df(VxY)
= XY (/) — (VxY)(f)
=Xg(VfY)—-g(V[f,VxY)
=g(VxVLY)
So
Hess (f)(aX,bY) = aX (bY (f ( axbY)(f)

) =

= abX (Y (f)) +

= abHess (f)(X Y)
+

=ab(Y(X(f)) + [X,Y]f = (Vy X)(f) — [X.Y]S)
= abHess (f)(Y, X)

XY (f) = ab(VxY)(f) = aX (b)Y (f)

Therefore Hess is a symmetric tensor.

And 9 9 9 9 9
Hess (f) (W’ M) O axﬂf < 2 8m3> (f)

Py 0f
Oxt0xJ Y Ok

Hess (f) ( O )

2 — 8f F‘dex ) ® da’

Another method:

wl(?:vﬂ

=V
<8:1:Z8a:3

R >d ® da?
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Def 2.8. Laplace of function is defined as

i of
B _ij —Tk
Agf =trgHess (f) =g (axiaxa‘ * 8a:’f> '
Prop 2.3.
10 [ of
= —— * ..
Aol det(g) O’ <g det(g)f)ﬂ)
Proof.

Agf —gij( o —r* (9f>
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Thm 2.2. Let f: M — R be a C™ function on a Riemannian manifold (M,g).

(1) If p € M is a local mazimum or local minimum, then (V f)(p) =0

N

(2) If p € M is a local maximum, then (Hess (f))(p) < 0,(Af)(p) <0

(8) If p € M is a local minimum, then (Hess (f))(p) = 0, (Af)(p)

WV

0

Proof. Consider a local chart (U, ¢, z%),z° = riop,h = oL
Sofor F=fop l:pU)—R,

of OF

ot ort 0-

And

- ort

origri  ori \ ord Oxk Ori

Since % = 0 at the extreme point.

So Hess F' = d¢ - Hess f - (d¢))? = dyp o Hess f o (dep) L.

Hence Hess (f) > 0 < Hess (F') > 0 and Hess (f) < 0 < Hess (F) < 0.
2.4 The second fundamental form
Def 2.9. For f: (M,g) — (N,h) and given X,Y € I'(M,TM), we define

is the second fundamental form.

PF _ 0 (OF\_ 0 (0f ogt\ _ &f outoyl  of ot
— 9zkdxl 9rt Ord T Oxk Oriori
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CHAPTER 2. BASIC CONCEPTS IN RIEMANNIAN GEOMETRY 14

Exam 2.1. If (N,h) = (R, gean), then B(X,Y) is the Hessian.
Remark 2.6. For X = X*

9 —yi o ;
5570 Y = Y757, we can obtain that

2 ra B oFY a o
af a af af —Fkaf >X’LY] 9

Ox'OxI BY 9at O 9 Dk Ay

B(X,Y) = <

Prop 2.4. B(X,Y) = B(Y,X),i.e.B € T(M,Sym®*T*M ® f*TN)
Coro 2.1.
VLY - Vy X = fu(VxY) — fu(VyX) = fu([X,Y]),
Remark 2.7. Define )
V=VY9@V,
which is the connection on T"M ® f*T'N

Then B = VdJf, where
df e (M, T*M ® f*TN)

is the induced map of f.

Lemma 2.2. Consider an immersion f : M — (M, §), there is an induced metric g on TM,
9=179
Then there are two system over M :

(f*TM,V,§) — (TM,V,9) (TM,V,g) — (T'M,V,3)
| | | |
M f s M— L w

Show that f.(TM) is a subbundle of f*T M.
Moreover, there exists a subbundle T+M, s.t.

f*TM = f.(TM) & T+M.
Prop 2.5. f is an immersion, then
B e T(M,Sym®?T*M @ T+M),i.e.g(B(X,Y), f.(Z)) =0

Proof. R
J(B(X,Y), f2) =4(Vx }.Y — [.(VxY), f(Z))
=§(Vx .Y, f(2)) = §(f(VXY), f.Z)
=§(Vx[Y, f.Z) — g(VxY, Z)

X (e Of* 9 9fF 9 z
B(X,Y), f.2) = = — T

_Of° ([ Pfr  Off of of*
= - . 3 — =TI
Jod Gk <8m26x3 Ozt Oxd 5 )

By rank theorem, F is the representation of f such that

So
G(BOX,Y), £1Z) = 05,5050, 8]0} = gl = 0
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Remark 2.8. We can also compute this without using rank theorem, but the equation is a little
bit long. It is a very good exercise (:

Def 2.10. Given n € T'(M, T+ M), define
B,(X,Y) = §(B(X,Y),n) € (M, Sym®*T* M),
called the second fundamental form along 7.
Def 2.11 (Weingarten map). W, : I'(M,TM) — I'(M,T M) such that
gWy(X),Y) = By(X,Y),i.e.(By)i; = (Wn)fgkj-
Thm 2.3 (Gauss). For X,Y,Z,W € T(M,TM),
R(X.Y,Z,W) = R(X.Y, .Z, f.W) = §(B(Y, Z), B(X,W)) - §(B(X, Z), B(Y, W)
In particular,
R(X,Y,Y,X) - R(X,Y, },Y, f.X) = §(B(Y,Y),B(X,X)) — §(B(X,Y),B(X,Y)).
Proof.
3 (VxVy .z LW
=4(Vx(B(Y, Z) + (Vv Z)), £.W)
=X(9(B(Y, 2), fW)) = §(B(Y, 2),Vx f W) + X (§(fo(Vy Z), [ W) = §(fVy Z, Vx f W)

—  4(B(Y. 2), B(X, W) + Xg(Vy Z,W) — g(Vy 2,V W)
= (VXVYZ W) ( (Y>Z)7B( ) ))

N———

And )
I(Vixy)feZ, W) =4(f«(Vix y12), [ W)

=9(Vixy1Z, W)
So
R(X,Y,Z, W) — R(X,Y, f.Z, f;W)
—R(X,Y,Z,W) — § (vay F 7, f W )
=§(B(Y,Z),B(X,W)) — §(B(X,Z),B

+ 3 (VW VXLZ W) + (Vi foZ, £ W)
(Y, W)

Coro 2.2 (Gauss’ Theorema Egregium). sectional curvature equals to Gauss curvature.



Chapter 3

Completeness and the Hopf-Rinow
theorem

3.1 Geodesics and exponential maps

Def 3.1. Consider a C* curve 7 : [a,b] — (M, g), define

b (ci) = 7/(8) € ([0, b,y TM), V a7/ (8) == 7" (2).

Remark 3.1.

. (dy' D A e dyidyd 9 gy
) = kL) 9 e B =V
Vs ( dt 8x1> < a2 "Viarar ) aer e =V0

Def 3.2. 7 : [a,b] — (M, g) is called a geodesic if

dQ’yk . d’yi dvj
a TN g T

@'y’ =0,1.e.

Prop 3.1. If v is a geodesic, then |v'| is a constant.

Proof.
d

A v 1o _
&<7’7>9_2<V%7’7>g_0
O

Thm 3.1. Let (M, g) be a Riemannian manifold. For any p € M,v € T,M and ty € R, there
exist an open interval I C R with t € I, and a geodesic v : I — M, such that

v(to) = p, 7' (to) = v.

Proof. Let (U, p,x") be a local chart around p € M and T% = T-.
So we have the ODE

AT i k k
Hence using the theory of ODE, we can prove the existence an uniquene of solutiaon. ]

Def 3.3. A geodesic v : I — (M,g) is said to be maximal, if it can not be extended to a
geodesic on a larger interval.

16



CHAPTER 3. COMPLETENESS AND THE HOPF-RINOW THEOREM 17

Remark 3.2. On a Riemann manifold (M, g), given p € M,v € T, M.
The maximal interval is

I U {I C R|0 € I and there exist a geodesic}
e vl — (M,g),7(0) =p,7(0) =v

We denote ~,(t) : I, = (M, g) is the maximal geodesic.
Prop 3.2. v, (t) = yw(ct).

Proof. Let F(t) = yy(ct).

dt

F"=V4F, (d> =Vacy(et) = y(ct) =0, F, <>
dt di

Hence F(t) = ey (t). O

Def 3.4. Vp € M, define the set
& ={veT,M|lel,,}

Def 3.5 (Exponential map).
exp,, : &p — M, v 7, (1).

And for
g=|]%c||M=1M,

peEM peEM

we can define exp : & — M.
Thm 3.2. (1) & C TM s open and exp : & — M is C™

(2) If pe M and v € &, C T,M, then

I,,={teRltve &}

(3) Each set &, C T,M s star-shaped w.r.t. 0 € T,M

(4) For each p € M,
d(exp,), : To(T,M) = T,M — T,M

is identity.
Proof. (1) Consider a local vector field on T'M around (p,v):

g O
ovt

9 o
G= vzw o
x

The integral curve of G passing through (p,v) satisfying that

dt Todt

o
= —Th "t th,

where ¢ € [1,n] N Z.
Solet vy =mo¢p : R — M be a curve passing through p, where 7 is the projection TM — M.
Then ) S
' Ayt dy
3 T —0
az P g g =9
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i.e.y(t) = exp,(tv) is the geodesic.

By Theorem 9.12 of J.Lee’s Introduction to smooth manifolds, there is a neighborhood
Vpw C T'M around (p,v) such that 1 € I, for every (q,w) € TM.

Hence & = |J V), is open.
veEE)

And exp(p,v) = exp,(v) = 7, (1) = 7(¢(p,)(1)) is smooth.

(2) Let ¢ satisfying that tv € &,
Then 1 € I 1y, i.e. t € I, ,.

So we have
I,, ={t e Rltv € &,}.

(3) By (2), Vt € I, tv € &, and [0,1] C I,,.
So &, is star-shaped w.r.t. 0.

(4) Given v € T,M, we also regard v € Ty(T,M).

We choose a curve 7 in T),M such that

T(t) =tv C T,M,i.e.7'(0) = v € To(T,M) =2 T,M

And let v = exp,, o

Then d(expp)o (v) =+/(0) = %‘t:o (exp, o7(t)) = %‘t:o exp,,(tv) = %’t:o () =v
O

Def 3.6. Let p € M, for v > 0, denote
B, (0) = {v e T,M|lv| < r}.
If r << 1, then B,(0) C &, define
By (p) = exp,(Br(0))

is an open subset of M, and exp,, : B,(0) — B,(p) is a diffeomorphism.
The supremum of such r is called the injective radius at p € M, denoted by inj,(M, g).

Def 3.7. Let {e;} be any orthonormal basis of (7,M, g,), there exists an isomorphism
n .
B:R" = T,M,(r',-- ") Zrzei.
i=1

By using diffeomorphsim exp,, : V' — U on small neighborhoods, we obtain a C*® coordinate
map ¢ : U — R" given by
exp, ! B~ on
U——1T,M — R".

Remark 3.3. (1) By : T(T,M) — TR", B;*(0,¢;) = -2

B
0 _ 0
(2) ox (78:1:1' p) = a7 lo

(3) d(expp)O cTo(TyM) =2 TyM — T,M,v—v

a9
So P

0

p

Coro 3.1. (U, p,x) given by the previous setting
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(1) <,0(p) = (07 70) eR"

(2) 9i5(0) = 9 (5%

i 0
(8) For every v ="' 5

» € T,M, we have

ri(t) = x' oy, (t) = to',t € Iy,

v

(4) % )

=0, in particular, Fi-“j(p) =0.

Proof. (1) ¢(p) = B~} (exp, '(p)) = B71(0) =0

(2) Since e; =

% » is orthonormal basis of (T,M, gp).
So gij(p) = 6y
3) ‘ .
V() =2 0 (t)
=" 0 g o exp,(tv)
=10 B 1o exp;1 o exp,(tv)
=~ o B(tv'e;)
:fyi o (tvl, cee ™)

="

(4) For any v € T,,M, consider the geodesic equivalent for ~,(t).

d2'yk' k dn? drf;
UL T (v, (E v =
a2 T li®) g

So F?j (TU<0))Uin =0, i.e.rfj (p)vivj =0.
Hence Ffj (p) =0, and

0 o 0 o 0 0 0
= 8a:k<(‘3x8:r> = <v8x8x>+<8xv8x> =0

Thm 3.3. Let (M, g) be a Riemannian manifold and (U, ¢,x) be any normal coordinate chart
centered at p € M.
Then we can obtain that

39z‘j
ok

p
g

1
gij(x) = 65 — gRiklj(p)xkal +O(|z?)

1
det(gij) =1 — ngl(P)-Tkﬂfl +O(|z?)

Proof. For any v € T;,M, since ~,(t) = exp,(vt) is geodesic.
So Ffj(expp(vt))vivj =0.
Take a derivative of this equation at p, we obtain

k
ark
ozt

(p) v'viv! = 0.
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Therefore

ory ork 8F§l L P g

% gri 9%gij %gi %gji

ozt + oI + oxt T Oxiox! +28xiaxl

Sum the similar cyclic equations:

g, O%g, % gr 0

0zi0oxd  0xk0r!  Oxidxk  Oxidxk

ij %gi %g;1

OxI Oxt + Oxtox! + Oxt0xI + Ox

koxl T 0xidxk | 0xioLk 0

Moreover, by some simple calculation, we have

329@']'

D% gii

oxkox!  Orioxk’

And notice that I‘fj (p) = 0 and remark 1.5,

9%gi; 1
oxkoxl ~ 3 (R

itk + Rikij)

Hence the proof is complete by Taylor’s expansion.

Coro 3.2. When r is small enough, show that

Vol(B(p,r)) = wpr™ <1 -

and

s(p)
60n + 2)r2 + O(r3)>

Area(S(p,7)) = nw,r™ ! (1 - @7’2 + O(r3)> .

Proof. Consider a normal coordinate chart (U, ¢,

Vol(B /\/det dxy A -

6

2%) that is centered at p.

/\/ p)xixd + O(|z|?)dzy A~ Ada”
/ <1 - ER”( p)zia? + O(|z| )) dzg A+ Ada™

=Vol(By(r)) — M /xz

6

wdzy A Ada" 4 O(r™T3)

o™ ‘”Z) / le2day A--- A dz" + O(™H)
n_ 5P) < 2Vol(B / 2tVol(Bg(t))dt> + O
6n 0
=™ — Gi ( — 2w, t"“dt) +0(r%)
0

<(<>) ror)

Area(S(p,r)) = iVol(B(p,r)) = nwpr" ! (1 - @1"2 + O(r3)>

dr

6n

=0.

20
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3.2 Completeness and the Hopf-Rinow theorem

Def 3.8. Let (M, g) be a connected Riemannian manifold, we define the distance function
dg: M x M —R,(p,q) — inf /!'y'|dt,
ve&

where £ is the set of piecewise smooth curves connecting p and g.
Remark 3.4. Actually, piecewise is not necessary, since we are considering the inf.

Lemma 3.1 (Gauss). Let (M, g) is a Riemannian manifold, and fix p € M,r < inj,(M, g).
Let I C R be an open interval and suppose:

(1) w:I—=T,M,w(s)=r

(2) alt,s) = exp,(tw(s)) for (t,s) € R x I and tw(s) € &,.

() (3)) =0

Proof. Let V be the induced connection on a*T'M.
Fixed any s € I, then «a(t, s) is a geodesic.
And we deduce

Then

- 0
So
a| (o\[_o 9 9
at| " \ae )|, "o \"\at) o
N 0 0
(e (1) (1))
=0
Therefore ) )
0 0
Quy <8t) (t,S) = | (i?t) (073)
—fu(s)? =

Moreover, we have

2 (o (2) 0 (2)) - 2 (2.

Hence
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Remark 3.5. The geometric intuition behind this lemma is that the meridian and the parallel
are perpendicular.

Thm 3.4. Let M, g be a Riemannian manifold, and fir p € M,r < inj,(M, g).
Then for every v € B, (0) C T,M, we have

dy(p, exp,(v)) = |v].

Moreover, for any q € By(p) C M, a C*®-curve v : [0,1] — M has minimal length L(r) =
dy(p,q) iff there is a C* function f : [0,1] — [0,1] satisfying f(0) = 0, f(1) =1,f > 0 and
(t) = exp,(f(t)v).

Proof. Let q = exp,(v),e = |v|.
Suppose 7 : [0,1] — B:(p) C M be a curve connecting p and q.
We claim that L(vy) > |v|.

Indeed, since exp,, : B:(0) — B:(p) is a diffeomorphism.

So there exists an unique function v(t) : [0, 1] = B:(0), s.t.7(t) = exp,(v(t)).
Consider

I={te[0,}r(t) #p} = {t € [0, ]o(t) # 0} < (0, 1]
and let

B:[0,1] — [0,1],t+—>|”im,w:1—>TpM,tHUE’i))

Then for t € I,
w(t)]y = &,7(t) = exp,(B(t)w(t)).

Consider a(s,t) = exp,(sw(t)) : [0,1] x [ — M.
Then ~(t) = a(B(t),t) and

, , P P
V() = (1) o, ( o |
9s /) \((t).0) ) (st

o (2)] 1ot -

By Gauss Lemma,

of = 1gof e ()] +|e- (3)] 2 rore
Hence
1
1) = [l [l o [ ol [ g
And L(3) = [o] iff #(2) > 0, 3(t) = o(8), 8(¢) = 0. =

Lemma 3.2. (M,dy) is a metric space, i.e.

(1) dg(p,q) = dy(q,p)
(2) dg(p,q) =0 p=gq
(3) dy(p1,p2) < dg(p1,p3) + dg(p3,p2)-

Proof. (1) Vv € Zp,q)?’yil € Lyw)-
So dy(p,q) = dy(q,p).
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(2) If p=q, then d4(p,q) = 0.
If p # q, then 3r, s.t.q ¢ B,(p).

By theorem 3.4, for every v € ﬁp,q),

,
/Mdt 2 dy(p; expy(v)) = 3,
where [v[, = 5 and exp,(v) € Im~.

So d(p,q) > §.

Hence d(p,q) =0 < p=gq.
]

Remark 3.6. theorem 3.4 is also true for piecewise smooth curve, so the identity of triangle
inequality holds iff py is on the minimal geodesic from p; to ps.
In other word, the minimal curve has no corner.

Remark 3.7. The topology determined by local charts is the same as the topology determined
by the metric.

Def 3.9. A Riemannian manifold (1, g) is called geodesically complete, if for all p € M, exp,
is defined for all v € T,M, i.e. every geodesic y(t) starting from p is defined for t € R.

Lemma 3.3. Let (M, g) be a Riemannian manifold, if exp, : T,M — M is well-defined, then
Vg € M,3da C* minimal geodesic connecting p and q, such that

V(1) = exp,(v) = ¢,dg(p, q) = [v] = L(7).

Proof. For any ¢ € M, let r = dy(p,q) and € < 7.

Then if ¢ € B.(p), then this is trivial.

If ¢ ¢ B-(p), then consider py € OB:(p) such that d(po,q) = d(0B:(p),q) and a unit-speed
geodesic v passing through p and pyg.

We claim that v(r) = gq.

Indeed, let

A={te[er]ldg(v(t), ) =7 =},

which is closed.
And for t € A, let p1 = 7(t),p2 € 9B:(p1) such that d(p2,q) = d(0B:(p1), q).
Then

d(p1,p2) +d(p2,q) = d(p1,q) = — d(p, p1),
d(p,p2) =1 — d(pa,q) = d(p,p1) + d(p1, p2)-

So Jtg, s.t.p2 = y(to), i-e.ty € A.
Hence A is also open, i.e. A =[e,r| and v(r) = q. O

Thm 3.5 (Hopf-Rinow). TFAE:

(1) (M, g) is geodesically complete

(2) 3p € M,s.t.exp, : T,M — M is well-defined
(8) The closed and bounded sets of M are compact

(4) (M,dy) is metrically complete
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Proof. (1) = (2),(3) = (4) are trivial.

(2) = (3): Let K be a closed and bounded set and r = Sglg dg(p,q).
q

Then by lemma 3.3, K C B,.(p), i.e. exp;l(K) is closed and bounded in R™.

So exp, L(K) is compact,i.e. K is compact since exp,, is smooth.

(4) = (1): Let ~y : [0,e] — M be a C*° unit-speed geodesic starting at p, y(0) = p.

By ODE theory, the maximal defining interval of v is an open interval (a,b).

We claim that a = —o00,b = +00.

Indeed, if b < 400, then there exists Cauchy sequence {b;} — b.

So Ve > 0,3N,, s.t.VYk > 1 > N¢, |b, — bj| < e.

On the other hand, dy(v(by),v(br)) < L (’Y‘[bl,bk]) = |by — by < <.

Therefore {(b;)} is Cauchy sequence in (M, dy), i.e.y(by) converges to a point ¢ € M.

By the basic proposition of the exponential map, there exists small § € (0, ¢), such that any

two points in Bs(q) can be connected by a unique smooth geodesic.
Choose N such that if & > N, we have

NGRS

1)
|bk - b| < deg(’Y(bk)7Q) <
So in Bg(r(by)), there is a geodesic 7 : [bk, by, + g] — M such that

F(br) = v(br), 7' (br) =~ (br).-

Gluing 7|[a’bk] and ﬂ[ together, we extend ~ to by + % > b, contradiction!

br,be+3]
Similarly, we have a = —o0. O

Coro 3.3. If (M, g) is complete, ¥p,q € M, there exists a minimal geodesic vy, such that

V() = exp,(tv), dg(p, @) = |v],q = exp,(v).
Proof. Directly by Hopf-Rinow theorem and lemma 3.3. O
Coro 3.4. If (M, g) is compact, then (M, g) is complete.

Proof. When (M, g) is compact, every closed subset of M is compact.
So by Hopf-Rinow theorem, (M, g) is complete. O
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The Hodge decomposition

Lemma 4.1. ¢ € QF(M) = D(M, A\* T*M) and write ¢ as

> fieida A A da,

11,00

We define

Then @i, ...i, is skew-symmetric, and

: v 1 )
Z iy ipgdzt A Ada't = o Z iy i dT ™t A -

i< <iig RRE

Proof.
dzie@ Ao Adale® = (=1)lelda? A A dats,

So we can obtain that

o= T fuada® nondet

= Z Z Jioy- Zv(k)dxz WA A dat

11 <<l OESK

= Z goil...ikdxil A Adat

i1 <<

= > 2. ”%1 z’“d o) A-ee Adalo®)

11 < <@ cESE

1 . )
TR Z Gip i da™ A A dat

Remark 4.1. We simply denote

ZfIdx = > figda™ A Adat

i1 1, 77'k

Def 4.1. There is a local inner product on QF(M) such that

(o, 1) = %g(sa,w)-

25

',
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Lemma 4.2. Let o, € Q¥(M) and o = > prdal o =>4 da’.
T J

Then
<90777Z}> = gIJQOI'(Z)Ja
where o .
911]1 Ce glljk
1
1 _ L I 3.0y
g —k!g(dx,dx)— ’
glkjl . glkjk

In particular, if p = % S ordal ¢ = % S vpydx? and @195 are skew-symmetric.
Then

E AL gikdk
= 2.9 *Piy i, Yy

Proof.
(o, 9) = k:'g <Z prda’, Z%Jdﬂ? ) k'g(dx da”) by = 9" eriby.
1 . .
k'g(dx dz”) =11 Z (=Dlldzie0) @ - .. @ dzlor Z D)Mdzd- 0 @ - @ dadro
’ €Sy, TESE
l ‘U|+|T| O'(l)jT(l) e glo'(k)jT(k)
k!
’ O’TESk
l |TOU l‘gllj'roa 1y . gileoa_l(l)
k
TES,
Z \UI Zl]o‘(l) gikjg(k) — det((giqu)lgp,qgk>
€Sk

In particular, when ¢ = H > orda! = % > Yyda’ and ¢r,1; are skew-symmetric,

Q) = B Z 1)lolgiioq) ... gikdow) Piy iy V1
0€ESy
11.70 Zk]a k) (p- . . .
kl DD ALE ©Pir-isWVio 1y +dor
o€Sk

i1j iKJ
k|29““ G* i iy i

O
Def 4.2. dvol, = /det(g;j)dz! A -+ Adz" is a volume form.
Prop 4.1. (dvolg,dvol,) = 1.
Proof. -
(dvoly, dvoly) = det(g*) det(g;;) = 1.
O

Def 4.3. Let (M, g) be an oriented Riemannian manifold.
The global inner product on QF(M) is

1
(o) = [ tovtavol, = [ gtp.0)vol,
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Def 4.4. Let (V, g) be a vector space with an inner product and {ey, - -- ,e,} be an orthonormal
basis of V.
The Hodge-* star operator is a linear map

% APV S5 ATTRV e sign(I, I)eje,
where I = (i1, i) with 1 <ip < -+ < <7

Def 4.5. Let (M, g) be an oriented Riemannian manifold and dimg M = n.
Let {&1,-- - ,&,} be an orthonormal frame of TM over an open patch U.
The Hodge-* operator on Q' (M) is defined as

st QF (M) — QM) 0= Y sign(1, %)™,
|I|=k

where v = Y vl
\[|=k

Prop 4.2. (1) *1 = dvolg, *(dvol), = 1.

(2) xxv = (=1)k=Ry for v € QF(M)

(3) If u € QF(M),v € Q" F(M), then *(u Av) = (—1)F0=F) (4, %)

(4) u,v € QF(M), then u A xv = v A xu = (u, v)dvoly and (xu,*v) = (u,v).
(5) If u € QF(M),v € Q" F(M), then (u,*v) = (—1)F=F) (3, v).

Proof. (1) *1 =& Ao A€M
And since g¥ = g(&%,&7) = §9.
So #1 = dvoly and (dvol,) = *(§' A+ AEY) = 1.

(2)
XKV = % Z sign([, IC)Ulglc
1=k
=3 sign(I, I%v; - sign(I°, 1)¢’
=
= 3 ()Pl = (1)
1=k
(3)

*(u A v) =x* Z Z urv€ N7

\I|=k | J|=n—k

=% Z wpvpesign(I, I€) | €L A~ A E"
[I|=k

= Z sign(I, I€)ujvre
\I|=k

\T|=k 1=k
=(=1)* "0 (u, )
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(4) uAxv = (=1)F=R) (4 % x v)dvol, = (u,v)dvol,

So v A xu = (v, u)dvoly = (u,v)dvol,.

And (xu, %v) = (=1)FOF) x (su A v) = *(v A su) = (=1)FCOF) (4 x5 u) = (u,v).

(5) (u,*v) = (=1)F=F) (x 5 4, xv) = (=1)F0=F) (51, v).

Coro 4.1. Let (M, g) be a compact oriented Riemannian manifold, then

(u,v) = /Mu/\ .

(u, v) = /M<u,v>dvolg: /Mu/\*v.

Proof.

Def 4.6. Let (M, g) be a compact oriented Riemannian manifold.
The formal adjoint operator of d is, denoted by d*, defined as

(dp, ¥) = (p,d"Y)
where p € QF (M), € QFFL(M).
Thm 4.1. d* = (—1)"++1 5 dx.
Proof. If u € QF=Y(M),v € QF(M), then
d(u A *v) =du A v+ (1) tuAdxo.

So by Stokes’ theorem,

O:/ d(u/\*v):/ du/\*v—i—(—l)k_l/ uAdx*ow.
M M M

Therefore
(du,v) :/ (du, v)dvol,
M

:/ du A *v
M

=(-1)* /Mu A (d *v)

:(u’ (_l)nk-i-k-i-l s d % U)

Coro 4.2. For w = w;dz’ € Q1 (M),
6wi

d*w = —g" (8953' - F?Mk) = —g" (Vjw); = = (V'w), .

Proof. WLOG, let { aii} be an normal frame.
We then have

d*w=—xd*w = — % <<Zng> da:lA-"/\d$">
x

i=1

n

28
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Def 4.7. The operator A = dd* + d*d : QF(M) — QF(M) is called the Laplacian-Beltrami
operator.

Prop 4.3. (A(,D, Y) = (‘P? Ay).

Proof.
(Ap,1p) =(dd*p,1p) + (d*dep,v) = (d*p,d"p) + (dg, dy)
=(ip,dd™¢)) + (¢, d"de)) = (p, A¢)
0

Def 4.8. u € QF(M) is called harmonic if Au = 0 and the space of harmonic k-form is denote
HE(M).

Remark 4.2. f € Q%(M), then Af = —A,f = —tr Hess f.
Coro 4.3. Yu € Q¥(M), Au =0 < du = 0,d*u = 0.

Proof.
(Au,u) = (dd*u + d*du, u) = (du, du) + (d*u, d*u) = |du|® + |d*u|?

So Au =0 iff du = 0,d*u = 0. O
Thm 4.2 (Hodge decomposition). QF(M) = Z*(M) @ d(Q¥ 1 (M)) & d*(QFF1(M))

Proof. The proof of this theorem need some technique about functional analysis. If you are
really interested about this, you can search for the proof on Google by yourself :) O

Def 4.9. If a € QF(M) satisfies da = 0, then « is called a d-closed form.
If @« = dayy for some oy € Qkil(M), then « is called an exact form.

Def 4.10.
Z"(M) = ker(d : Q"(M) — Q" (M)) = {closed r-form on M},

B (M) =im(d : Q""HM) = Q" (M)) = {exact r-form on M}.
Then we define the de Rham cohomology group in degree r to be

Hip(M) = Z"(M)/ %" (M).

Exam 4.1. H}o(R? — {0},R) # 0 since w = % is closed but not ezact.

Thm 4.3 (Hodge). Hjp(M,R) = Z7(M,R).

Proof. Let a € QF be a closed form and # be the projection Q*(M) — Z*(M).
By Hodge decomposition,
o= %(O&) +doqg + d*an

for ay € Qrfl(M),OzQ e Qrtl,

So dd*ag = da = 0, i.e.(d*ag, d*ag) = (dd*ag, ag) = 0.

Therefore o = Z' () + davy, i.e.[o] = [# (o)] € Hjp(M,R).

Hence H},(M,R) = Z"(M,R). O

Def 4.11. X € I'(M,TM), then the divergence of X is

div(X)dvol, 2= L (dvol,).

& X ,
Prop 4.4. div(X) =V, X' = g <% z +P§ka)
x
i=1
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Proof.
Lx(dvoly) =(ix od+doix)(dvoly) = d(ix(dvoly))

:d(X%% (@dxl Ao A da:”))
_a(‘; (Xi\/m) dvoly

vdet g
B 0X' 10logdetg _,;
= <8LUZ + 5 aIZ X ) dVOlg
0 (0X' L v
= < B rsx > dvol,
=(V; X")dvol(g).
The (x) is given by
10logdetg 1 Odetg 1 OJgk ik
2 9zt 2detg Oz  2detg Ozi (detg‘g )
_ 1 w995k _ lgjk 9gjk | 0gji  Ogki
27 9xt 2 ort  dzk  Oxd
:Fii
O
1 9 . f
C 4.4. A, f = - | g"7/det .
ore o V/det g Ox* (g “99 Z>
Proof.
[ O%f of o ([ ,;0f g of ik Of
Afegi (OF pn 0P\ _ 0 ( ;08\ 097 0F  ypy OF
af =9 <6m283ﬂ * 8:3’“) oz’ (g 81‘3) dzi 9z3 7 Y ggk
9 ( i;0f g w091 OF 1 i (Ogu  Ogii  Ogiy\ Of
— 1) Y 2] Yt YJ = g kL[ YT Jjl 7
oz’ <g 8a;j> +g7g ozt 9zF 279 \ Qi * ozt Ozl ) OxF
o ([ ..0f U i w (09 Ogu Oga\ Of
— ij 9 ey Y9 _ )
ozt (g mj> o979 <(9xl T w0 ) Ot
o (.0 , of . [ 0f O
— . ij ZJ T kKl ZJ 1} _ d ij ZJ '
oz’ <g 0:17]> +ha <g 8:Uk> v <g i 6m2>
1 0 . of
= - | g/ det .
V/det g Ox? (g ¢ g@x’)
O
Prop 4.5 (divergence theorem). / div(X)dvol, = 0.
M
Proof.
div(X)dvol, :/ Lxdvol, :/ d(ixdvoly) =0
M M M
O
Prop 4.6. If w is a 1-form, then
d*wdvol, = 0.
M

Proof. Consider X' = gijwj.
Then d*w = —gijviwj = —ViXi = —diV(X).
So the integral is 0 by divergence theorem. O
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PI‘Op 4.7. /M(Agfl)(fQ)dvolg = - /M g(Vfl, Vfg)dvolg = /M(Agfg)fldvolg

Proof.
div(f1Vfa) = g(V 1,V fa) + f1g fo.
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Chapter 5

Covariant derivatives

Def 5.1.
Vx :I'(M,(@T*M) ® (°TM)) - T'(M, (" T*M) @ (°TM))

is defined by
VXT‘<)(1a 7X7“;W17"' 7Ws) :X(TaXh'" aXT;Wla"' aWs)

_ZT(Xl"" VxXiy o, Xy Wh, oo W)
=1

_ZT(le 7XT‘;W17"' avXW]a )WS)
7=1

Def 5.2. Let T € I'(M, (®"T*M) ® (®*TM)), the covariant derivative
VT € T(M, ("' T* M) ® (2°TM))

is defined by
(VT)(X;0,---,0) = (VxT)(e,--- ,0)

Prop 5.1. VT can be written locally as

VT =W rde @ de” @ - - - @ da'™” Q- —.
ii1ein ® ® ® & i & ERe
Where o
o AN o . , o
J1ods _ Ol drie Jp it dp—1Mipr1ds it agieeds
11ty axz + miTil---ir Fllq 11 lg—1tigt1 - ir
Proof.
J1g
Wila 3 T — s da?t e dale
T ox™ oxtr
S
9 9 . . .
—E T — e —— da?t, - )V o dadm, .- dads
1 (933“ 8I’T ozt
m=
-
0 0 0 . .
_ T '7...7Va — e '7dx~717...7dm]5
— Oz 227 O™ Oz'r
oToI" 8 . o . . r o
— O E _F]m qu"'qulqjm+1-~'3s - § Fp T]l]s ) )
&ri q 112 20721 1P 41
m=1 =1
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Remark 5.1. We also write V171 9 = Wil ids,

1Ty 01Ty
If you are confused with these tensor notation, you can read the appendix A first.
Def 5.3. we define V2T === V(VT) € T'(M, @"*2T* M @ @*TM).
And we also write
0
Ozt OxJs

VI = (VW) def @ def @ de® @ - @ da
You may think that
ViVi=V_ o V o

axk dxt
but it is not true. The second covariant derivative Vy, is actually taken on a (r+1, s)-tensor,
that is we need to calculus the covariant derivative over the ‘i’-component.

Lemma 5.1.

o 9 0 0 :
\VAAVS Ji JS_VZ Jl,. Js
RVl =(VT) (893’“’ Oxt’ dxn’ 7 Oz’ ,do ,de >
0 0 ~ ;
V V T T Ji oL, Js
< oo o > <8x“’ ’ 83:“’(13: o ade >

0 0 . .
- T) (==, = dait, -, da’s
(Vvakaii )(axn’ Qi T >

ox

Proof.

0 0
2 g1 Js i s
VT—V(VTZl Zd:z: QA" ® --- @ dx ®—8] R - ®8ij>

— U e ieds k i i i 0 0
—(Vk(vf;j,iT)“ ZT_F ki Lpiy - Z>da: ®dr'®dz" ®---®dz ®a—]® ®8ij
So
VeV js:(VaVaT MY o T ) O 0w dade
21002 5ok ki ¥ 525 A’  Hgir s )
VaoVeT-Vg s T <a)...ja,,d$j1,...7dxjs>
61 ozt 89:7}“ ozt 8x“ 8.’1}'ZT

Coro 5.1. Let T e T'(M,("T*M) @ (*TM)).
Then for wy,--- ,ws € (M, T*M) and Y, Z, X1,--- , X, € (M, TM), we have

(V2T)(K ZaXla 7X7'aw17"' 7(")8) = (VYVZ *nyZ)T(XI,"' 7XT‘7w17"' 7("}5)
Proof.
(VyVyzT = Vv, 12T) (X1, -, Xpywi, o0 5 ws)
= (Vv fV2T = Vv 2T = VypT) (X1, Xpwi,- - ws)
:(fVYVZT+Y(f)VZT— vayZT_Y(f)vZT) (Xla" ' 7X1“,w17"' aws)
=f(VyVzT = Vv, zT) (X1, , Xp, w1, ,ws)

So VyVzT — Vv, 7T is linear.
Hence by lemma 5.1,

(V2T)(Y,Z;X1,--- X, wi, o, ws) = (Vy VT =V, 2T) (X1, -+, X, wr, -0, ws).
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Thm 5.1 (Ricci identity).
i1-ir i1 klptiy--ir ki Litie_1qisr1--ir

s r
VleT-Jl'”]s _ VIVkquij — Z : R mle'“]m—lp]m—Q—l"'js . ZR‘] TJl"']s
m=1 =1

In particular, we have

ViViX' = ViV X' = R}y, XP, ViiViwi — ViViw; = —R{,wq.

Proof.
ViV TP — v T e
0 0

=|\VaoVaeT-Vg oT-VoVoT+Vy T , , ,da?t, , da?s

oz oz 61% Bl ol ox % oxk 8:17“ ax“
:<V7ViT—ViV aT) 8. , , 8. ,dz?t, dz’s

ok oxl ol oxk al‘“ 81:7'7‘

And since
- . J1 oL, Js
Vo Vot (a g )

— JbJIn jl"'jb*ldjbfl"'j’nflanﬁ»l“'js c ) 1 7s
_Zrldr T + E Z_‘liar T

kq™ 10y Kim = 11q—1Cla4+1""tm—1Plm+1"""ir

n#b m#a
Jne Adlin—1qin41"Js D Jbrpd1Jb—19Jb+1"""Js
S S,
a,n bm

kg~ lia ™41 iq—1Ciq4+1"ir 01 b 1 P 1O

i1l 11l —1Chm4-1°r

s r
Jn1 g i1 Jn—1din+1-Js P ¢ ileds
2 gliali + D T, T5 T
n=1 m=1

2nJ1eJs s J1Jn—1qJn+1""Js r Ji-+Js
+a j—’il"'ir + I‘jn ]17:]_”%'7‘ _ Fp 61—%1‘"'L'm,—lpim,—O—l'“i'r
Oxkox! Z kq Ox! Z Kim Ox!
n=1 m=1
s J1Jb—1djp41--Js r ale---js 4 '
+ E F]n 110y o E FC- 11 tq—1Cla+1"""1r
b=1 ' 8xk a=1 fe 8:17k
S Jn . X . . T c
8Fld g1 db—1dibr1eds arlia le“'js ) ]
- 4. E ae
amk 11y 8xk 11'%q—1Cla41"""2r
b=1 a=1
So
g1+ Js J1Js
ViVITE = ViV
_§ : 8Fld _ arkd —|—anqu _ TnT4 TJl"'Jn—ldJnJrl"'Js
- oxk ozl kq™ ld lg ™ kd i1
n=1

T C c
] o Ok kim ™~ lp lim™ kp 11l —1Clm 1+
m=

S T
_ jn jl"'jn—ldjn+1"'js C Jlj,s
= Z RiiaTi,. i, + Z Riki L3y irn s cimsr i
n=1 m=1

Def 5.4. For S = Sijdxi ®@dzd, T = Tda* @ da!, their inner product is
<S, T> = g(S, T) = SZJTklg(d.’EZ &® d.ili‘j, dl’k ® dxl) = Sikalgikgjl.
And for T € T'(M,T*M ® T*M), the trace operator is defined as
try T = 9(9,T) = " Tyj.
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Lemma 5.2. For any S, T € '(M,T*M @ T*M), X € I'(M,TM), we have
Xg(S,T)=9(VxS,T)+g(S,VxT).
In particular, let S = g, then
X(tryT) = trg(VxT).
And locally we have
V.o (¢"Tw) = Ve (trgT) = 9" (ViTw)

Proof.
8 8 _8gij P P
Vw(mwaw)—mw‘ﬂﬂw‘%ﬂ@
_9gij 1 (0gij  Ogkj Ogix) _ 1 (0gji n ki Ogj
ozk 2\ ozk  Oxt oxI 2\ 9zF = OxI Ozt
=0
So

X(g(S, 1)) = (Vxg)(S,T) + 9(VxY,Z) + g(S,VxT) = g(VxY, Z) + g(5,VxT).
O]

Remark 5.2. This lemma tell us if we have some ¢ inside the connection, then we can simply
exchange its position with V.

Thm 5.2 (second Bianchi identity). ViRkipg + ViRiipg + ViRigpg =0
Proof. WLOG, let { 8‘22-} be a normal local frame.
ViRjkpg + ViRhipg + ViRijpg

=V; (ngRékp) +V; (ngRﬁﬂp> + Vi (gquéjp> = gyl (viRé'kp + ViRj, + VkRéjp)

! l
(2 (M O\ | 9 (04, 0T\ o (04, or,
LN\ ot \ O oxk oxi \ Ok Ot Ok Y% O

=0

O]

Thm 5.3 (Shur). Suppose (M, g) is a connected Riemannian manifold and dim M > 3. If
Ric(g) = fg(n — 1), then f is a constant.

Proof. Let
S = tr, Riclg) = n(n — 1)f
Then
S of
aok "M D
On the other hand,
5% =5 (9"Rij) = @(9 7 g Rypijq)
=9 9"V Rpijq = 9" 9" (= VpRinjg — ViRipjo)
=9" " (VpRikgj + ViRphjq) = 9"'VpRaq + 97 ViRy;
of

:2gpqva,kq = 2(7'1 — l)w
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Therefore
(n—2)

Hence f is constant.

oxk

=0.
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Chapter 6

Curvature and topology of
Riemannian manifolds I

6.1 Curvature and Killing vector fields

Lemma 6.1 (Bochner). If (M, g) is a Riemannian manifold and f € C*°(M,R), then
1 .
30|V fI? = [Hess f|* + Ric(Vf,Vf) + 9(VA,f, V).

Proof. We denote

A ﬁ g A z’j‘lf
Then of of
2 _ ijvy. N ¥ e
Hess f = V2f = (V. V,f)dz" @ da!
Agf =gV Vi f
So

1 1 N 1
SAIVIE =g VUGV ) = S0M IV 5 f)
=g" g N L(ViVif - Vif) = Mg (ViVIVf Vi f + VIV - VieVSf)
=g" g Vi f - Vi f + |Hess (f)]
On the other hand,
G GINGNGf Vi f =g g IRV Y f
=g" g (ViViVif — Ry Vsf) - Vif
=g""Vi(g"VEVif) - Vif + g% g RV f - Vi f

Coro 6.1 (radial curvature equation).

tes (JI1) (o.8) = (VsHess J) (o,) + Rlo. VL, VSoo) 4 Hess S(V25 .0
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Proof. Follow by Bochner formula and

; P
g"ViVif -V V,f = Hess f (Van, l)
ozk ax

g o 0
g”Vi(Vlef) ’ ij = (vaHess f) (83:"3’ E):tﬂ)

.. 0 0
QStQZ]Rkithsf : ij =R (83:"3’ Vf,Vf, 8a:l>

Def 6.1. X € I'(M,TM) is a called a killing field if Lxg = 0.

Lemma 6.2.

Proof.

LXQ(K Z) :Xg(Y7 Z) - g([X7Y]7Z) _g(Y7 [Xv Z])

:g(VXY, Z) +g(Y, V)(Z) —g(VXY — VyX, Z) — g(Y, VxZ — VzX)
=g(VyX,Z)+g(VzX,)Y)

Coro 6.2. X is killing, g(VeX,e) is skew-symmetric.

Remark 6.1. {parallel vector field} C {Killing vector field} C {divergence free vector field}.

Since VX =0 = VX is skew-symmetric= div(X) = tr(VX) = 0.

Lemma 6.3. If X is Killing and f == 1|X|2, then

(1) Vf=-VxX

(2) For any vector field V € T'(M,TM),

In particular,

Proof. (1)

(2)

(Hess f)(V,V) = |[VyX|? =R(V, X, X, V).
Agf =|VX|; - Ric(X, X).
§VIV) = Vf = V(X X) = (Vy X, X) = ~(Vx X, V)

1 .
(Hess f)(V,V) =VPVIV,V,f = §VquVqu(gin’X])

1 o
zinngiij(Vq(XlXj))
=VPVig;;(VpV X' X7+ V, X'V, X7)
=V X|? + VPVig (V,V,X") X
J pPYyq
=|Vv X > = VPV, (V,V;X") X
=|Vy X > = VPV (V;V, X' + R

pjsXS) X7
=|VvX]> - R(V,X,X,V)
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The last step follows from that giijVqu = —gquijXi.
Alternative proof:

(Hess f)(V,V) =—g(Vv(VxX),V)
=—gR(V, X)X, V) —=g(VxVvX,V) = g(Vyx X, V)

=—-R(V, X, X,V)—g(VxVyX,V)+ g(VvX, [V, X])

=—R(V,X, X, V) —g(VxVyX,V)+ g(VyX,VyX) — g(VyX,VxV)

=-R(V,X,X,V) - X(9(VvX,V)) + 9(VvX, Vv X)
—R(V, X, X,V)+g(VyX,VyX)

0
Coro 6.3. (M, g) is compact and Ric(g) < 0, then Killing < parallel.
Proof.
[ivxp< [a,r-0
So VX = 0 is parallel. O

Thm 6.1 (Bochner, 1946). If (M, g) is a compact Riemannian manifold with Ric(g) < 0, then
(M, g) has no nontrivial Killing vector field.

Proof. At the maximal point, Ay f < 0, but
VX2 — Ric(X,X) >0
So Ric(X,X)=0,VX =0,4.e.X =0 is trivial. O

Thm 6.2. Let (M, g) be a compact Riemannian manifold with sec(g) > 0.
If dimgp M = 2m, then every Killing vector field on (M, g) has a zero.

Proof. Suppose X is killing and | X \3 attains its minimum at p € M and X, # 0.
Let f = 3| X2
Then
0=(Vf)p) = (VxX)(p)
We claim 3V € T),M, s.t. VVX’p = 0 where V ¢ span{X,}.
Let T,M = E & spang{z,}, where dim E is odd.
Consider the skew-symmetric map

A:E— E* Vi g(VyX,,e)

It must have the eigenvalue 0, since det A = det AT = (—1)""1det A = 0.
Hence we have

0< (Hess f)(‘/,V) = |vV*XV|2 - R(V)XaXa V) = _R(KXaXv V) < Oa

contradiction! O
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6.2 Curvature and Betti numbers

Lemma 6.4. If a is a Harmonic 1-form, then
1 .
iAg’aP = |Val? + Ric(Xa, Xa),

where X, is the dual vector field of «.

Proof.
80zj _
ox’

(Viay)da' A da? = < K ak> dz' Ada? = da = 0.

So VZ‘Oéj = Vjai.
And by d*a = 0, we have

gijVjai =Via; = —d*a = 0.
Hence
fA Jlal? = klvkvl(gijaiaj)
—gkl!]”(vkvlai o + Viay - Vi)
=Val> + g"g" Vi Via; - o
=|Va|* + ¢"gV Vi - a;
=|Val® + ¢" g (V;Viay — Riyas)a;
=|Val® + g" g7 g gpgREy, ctjers
=|Val* + Ric(Xq, Xo)
]

Thm 6.3 (Bochner). Let (M,g) be a compact Riemannian manifold with Ric(g) > 0, then
bi (M) = 0.

Proof. At the maximal point of a 1-form «,
1 .
> §Ag\a\2 = |Val?> + Ric(Xa, Xo) > 0

Soa=0,ieHjs(M,R)=Z"(M,R) is trivial. O

Lemma 6.5. If Ric(g) > 0, then harmonic 1-forms are parallel.

o_/ LA, Jaf? —/|Va| —I—/RIC X, Xa) /|v@y

So Va = 0, i.e.«r is parallel. O

Proof.

Thm 6.4. Let (M,g) be a compact Riemannian manifold with Ric(g) > 0, then by(M) <
dimpg M.

Proof. Consider the evaluation map #1(M,R) — Ty M, o — ay, it is an embedding.
So b1 (M) < dimg M. O



CHAPTER 6. CURVATURE AND TOPOLOGY OF RIEMANNIAN MANIFOLDS I 41

6.3 Harmonic maps between Riemannian manifolds

Def 6.2. For smooth map f : (M, g) — (N, h), define

) L 61”) ?

0ridxi Y ok + 1%, ozt B ) oy

Af:trgB:gij (
If Af =0, then f is a harmonic map.
And if B =0, f is called totally geodesic.
Coro 6.4. Let f: (M, g) — (N,h) be a C* maps, TFAE:
(1) f is totally geodesic i.e. B =0.

(2) f maps geodesic in (M, g) to geodesic in (N,h).

Proof. Let 7 : [a,b] — (M, g) be a C* curve, ¥ = f o~ and V,V are induced connection on
Y*TM,¥*TN resp.

- _ (d d?q d3? d 0
Ve (dt) (dt2 +T8,() g Q)ay
af* dy o Off0frdyidy\ O
( <8xz dt) Tsr Ozt Oxd dt dt ) dy®

2fe dytdy? 8f0‘d2 i Affofrdyidy?\ 9
( + I >8

Dridwi At dt | 9z a2 Br ozt Oxd dt dt

a 2.k j 2 ra B r «a ) J
Ot (4 |y drtarl) (B0 DPOf 0 dotit) O
Az " at at dt ) oy~

~ d .
:f* (v:iit')/* (dt)) + B

So r*B = 0 < + is geodesic iff 4 is geodesic . O

Oxt0xJ + Ozt Qi Pr T U gk

Def 6.3. If f: M — (N, h) is an immersion, consider the induced metric on M, it is

9m = hapy 5505

Then f: (M, gn) — (N, h) is an isometric immersion.
We called f: M — (N, h) totally geodesic if it is totally geodesic w.r.t. gas.

Prop 6.1. v : [a,b] = (M, g) is a regular curve v'(t) # 0.
If v is unit speed curve, then ~y is totally geodesics vy is a geodesic.

Proof. consider the induced metric on I, it is

dvyt dvyd

; t= | (t)]? t
g gt @d [ ()] dt @ d

go=7"g =
SO go = gean, i-€.7y is totally geodesic iff v : ([a, b], gean) — (M, g) maps geodesic to geodesic.
Hence 7 is totally geodesic< v is a geodesic. O

We now try to extend the Bochner formula lemma 6.1 to the case that f : (M, g) — (N, h).

Prop 6.2. Recall remark 2.7, B
B =Vdf.
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Proof.
afe )
— eT(M,T* *TN).
df = 5 —da’ ®8y eI M ® f*TN)
- [Of O\ fon e afe 0
Vk<axldx®ay>—<v ®v) (ayd ®8y>
a2fa o 8f0‘ . 8f0‘ R o
= 5pda’ ®W+am@ <V@d )®+ —da ®(Vaikaya>
_ [ ?f s 8]‘“+ aff of
=\ Gziaer ~ Tk ags T 15v 5,7 0t

; o 0
=de ®B<axwaxi>

Thm 6.5. If f: (M,g) — (N,h) is C*, then

1 ~ 2 N
SAASE = V| 4+ (VAL L) + Rig f2 1 hasg™ " = Ragns f2 17 £ 19" 97
Proof. We denote

9
df == feda’ ® g

So
,A ‘df‘z *glekvl< ijhaﬁfiaff)

=9"9" hag (kaf'@szJr@k@lff'ff)
= o2 ki, &S sa B
Vs[4 g7 g hap Vs,
And by Ricci identity theorem 5.1,
ViVife = ViV = ViV [ — R f + R fi!
99 hasViVS? - £ = ey (VAGF) | f] = (VA f.df)
Hence we obtain
1 _ 2 R g y
SANASP =V + (VAL AF) = g9 hasRin f F] + 69 hapRiks 17 1
_ 2 y
=|Vdf[ + (VA df ) + 6" 97 " hagRinip F ) — 6™ 9" Rusys L 1L 1) 1)
J

~ 2 N
|V + (VA L,AS) + Risf [ g™ " — Rasma S 1] 51 6™

Coro 6.5. f:(M,g) — (N,h) is a harmonic map and

(1) (M,g) is compact and Ric(g) > 0

(2) (N,h) has non-positive sectional curvature.

Then f is a constant map.

42
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Proof. Consider the maximum point p of |df|?.
WLOG, we let Gij (p> = 51']'7 haﬂ(f(p)) = 5045'
Then
Rij fe' 1 hapg™g" =Y Ricg(Va, Va) > 0

for Vo, = (f) e I'(M,TM), and

Ragyo /1 g™ = Ru(Vi, V3, V3, Vi) <0
4.J

for V; = (ff*) e I'(N,TN).
On the other hand,
Ag‘dfP < OaAgf =0.

So df =0,1i.e.f is constant.

Remark 6.2. These type of theorem is called Liouville-type theorem.
In complex analysis, we have the famous theorem from Liouville:
f:C — C is entire and bounded, then f is constant.

Coro 6.6. f:(M,g) — (N,h) is harmonic:
(1) M is compact and Ric(g) = 0

(2) (N,h) has non-positive sectional curvature.
Then:
(1) f is totally geodesic, i.e. Vdf = 0.
(2) If Ric(g)(p) > 0 for some point p, then f is constant.

(8) If (N, h) has negative sectional curvature, then f(M) is a point or a closed geodesic.

Proof. Similar as corollary 6.5, we have
1 - 2
O:/2A9|df|2:/‘Vdf’ +/ZRlcg Vo, Vao) /ZRh Vi, Vi, Vi, Vi) /’Vdf‘

(1) So Vdf = 0.
And X (|df|2) —9 <€de, df> -
Therefore |df| is constant.
(2) Va(p) =0 for every a, i.e. df(p) =0.
So f is a constant.
(3) Vi = v, for every i, .
So rankdf < 1, i.e. f(M) is a point or a curve.

And since f is totally geodesic and M is compact.

Hence f(M) is a point or a closed geodesic.
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Chapter 7

Variational formula

7.1 The First Variation
Def 7.1. Given a closed interval [a,b] C R and two points p, ¢ in (M, g), we denote
& ={v:la,b] = M|y(a) = p,(b) = ¢, is smooth}.

For any smooth curve v € &, the length and energy of v are

b R
dy* dry?
L) = [ W= [ oo ot

1 [° 2 b dr® drd
By =g [ Wora= [ (a0 ) a

Def 7.2. Given v € &, a proper variation of v is a smooth map
a:fa,b] x (—e,e) > M
such that
(1) aft,0) = ~(t)
(2) afe,s) € &

Lemma 7.1. Let X be a C* vector field along v with X(a) = X(b) = 0, then there exists a
proper variation a of v such that
0
- (5)

X is called the variational vector field of a.

= X.
s=0

Proof. We let
a(t, s) = expy ) (X))

Since dexp, () is identity around 0, so

(&)

T d(expy ), (X300) = Xoo

44
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Thm 7.1. Lety : [a,b] — (M, g) be a C* curve and « is a proper variation of vy with variational
vector field V', then

d

P OE’(a(-,s)):/ab<@§tv,7'>dt:—/:<V,@§t7'>dt.

Proof. We put the canonical metric and trivial connection V on (a,b) x (—¢,¢).
V be the induced connection on o*T'M, g be the induced metric on o*T'M.
V be the induced connection on v*T'M, ¢ be the induced metric on v*T'M.

2 (o) (2)) =2 (B)0-(2))

Ss=

And since

(&)

So we conclude that
0 (8
*\ ot

1 /b
s=0 2 a

d

ds

)-La(

Coro 7.1. Let v : [a,b] — (M, g) be a unit-speed curve and o is a proper variation of v with
vector field V', then

d d b, ,
e S_DL(a(o,s)) =3 SzoE(a(o,s)) —/a <V%V,’y>dt
Proof.
a4 /b 9 dt_l/" N2 N
ds|, o Jo | \0t )" T2 ), |" \or ds|,_o | \ ot
_ o 95l
1 / L 0 LAY
2/, W®)| 0s|,_,| ™ \ ot
= 55| Flate)

Thm 7.2. Let [a,b] be a compact interval and v : I — (M,g) be a C* curve, TFAE
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(1) ~v is a critical point of E : &£ — R. That is, for any proper variation of +y,
d
<1 Bla(,s) =0
S| Bl

(2) ~ is parametrized proportional to the arclength, |y (t)| = ¢ > 0 and v is a critical point of
L:% —R.
(8) v is a geodesic.

Proof. (1) < (2) by corollary 7.1 and (3) = (1), (2) is trivial.
And by (1), (2), for every vector field along v with V(a) = V(b) = 0, we have

/ab<V,@§t’y’>dt—0.

Suppose 3ty € [a,b], s.t.4"(to) # 0.
So there is a neighborhood U around ¢y, such that for every t € U, |7 (t)| > 0.
Moreover, we let

Vi = F()Y"(t)
where f(t) is a bump function for {to} supported in U.
Then

/b<V, V')dt = / FOP )t > o,
contradiction! ’ : O
Thm 7.3. Let v € & be a C*™ curve TFAE:
(1) ~v is parametrized proportional to the arclength and v minimizes the length, i.e.

L(y) = ;gé L(%)

(2) v minimizes E, i.e.
E(y) = inf E(§
() = inf B()
FEach statements implies v is a geodesic, and it is called a minimal geodesic.
Proof. (1) = (2): For any 4 € &,
L(7)? < 2(b - a)E(7).
And

b b .
o) = [ W= 0-a]Ba) = 5 [ iea= S5y

In this case,

20— a)E(y) = L(7)* = L(3)* < 2(b — a) E(%).
(2) = (1): Since 7 is a critical point of E.
So «y is parametrized proportional to the arclength.
Suppose there is ¥ € &£ such that L(§) < L(v).
WLOG, assume 7 is regular, and by reparametrize, we can get 5.
Then we conclude that

(b—a)|¥| =L(H) =LEH) < L(y) = (b—a) 3.

But on the other hand,
b—a,. 2 . . b—a, ,2
s V[ =E{) =E®) 2 E() = ——]["

contradiction! O
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7.2 The Second Variation
Def 7.3. An second variation of a smooth curve 7 : [a,b] — M is
a(t, s1,s2) : [a,b] x (—€1,€1) X (—€2,62) = M, (t,0,0) — ~(t)

with variational vector fields V, W such that

V:a*<8> ,W:a*<8>
081 s1=52=0 882

Thm 7.4. If « is an arbitrary second variation of v, then

s1=582=0

32
881682

b b
E(a(s, s1,82)) = <V§tV,V§tW>dt—/ R(V,~,~, W)dt

/
[ {5 (7 ()

s1=82=0

Proof.
0 0 0 - 0 0
gz (31) o (31)) =2 (7 (5) ()
LN A AN A A
2951055 \ \0t) N\at)) T Bs \ o \sy) "\t
- - 0 0 - 0 = 0
(T 7a0 (5) o (30)) + (Ta () 7o (30))
- 0 0 (0 0 0 0
(%% (55) - (@) + (2 o0ai) - (50) = (&)
- d - 0
(%0 (5) Ta (50))
And since
Vo o 9 , Vo o 9 =<@AV,@AW>
ot 0s1 ot 059 51=59=0 at at

#osin) o (30) ()

So the proof is completed.

$1=582=0

Def 7.4. a second variation « of v is called proper if

a(a, s1,52) = v(a),a(b, s1,s2) = v(b).

Y ) dt
s1=82=0

47

Thm 7.5. Let v : [a,b] — (M,g) be a geodesic and o is a proper second variation of ~ with

variational vector fields V. and W, then

82
681852 s1=52=0

b b
E(a(o,sl,SQ))Z/ (VaV,Vaw) dt/ R(V,7,~', W)dt
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_ o ,
<V£104* <882> 51520a7>

By the integration by parts argument,

b ~ — 0 / b = 0 v /
Vo (V. o ay|— ) = Voo ay | 7— ,Vovy )=0
“ ot 951 059 $1=82=0 a ds1 052 $1=59=0 9t

Hence by theorem 7.4, the proof is completed. ]

Proof. Since « is proper, so
b
=0

a

Remark 7.1. In particular, if sec(M, g) < 0, then

82
—| Exo.
0s% |,

And the integration by parts argument shows that

/ab <?%Vﬁ%w> dt = _/a” <@%@%V, W> dt

So

Coro 7.2. For a unit-speed curve vy and proper second variation o of =,
62
881882

b b
L(a(.,sl,SQ)):/ <V§tV,V§tW>dt—/ R(V,~,, W)dt

[ g (T

$1=582=0

Moreover, if v is a geodesic,
82
681882

dt dt

L(a(e, s1,50)) = — /b <@iﬁivi 4R (Vi,»/) ) W¢> at,

$1=82=0
where V&, W are the normal components of V,W w.r.t. ~'.
Proof.

2 2 2
9°L(a(s, s1,52)) :/b L Plaa(g) 1 deu ()] 9fos (F)]
081089 o 2‘04* (%)} 081089 4}a* (%)‘3 081 089

And since + is unit-speed and
2

2(VaViy) = o~ a (2 22<%W '>:i o (2
) 051y, _sool \Ot)|’ & 0s2|s _s—o|  \Ot
s1=52=0 s1=52=0
we can obtain that
(92 82
L g E
951053, ., o (e, s1,2)) = 55— e (a(e, 51,59))

b
[ (v ) (W)
a dt dt
And if v is a geodesic, notice that

“ d “
Va (V,y)7 = <dt v 7’)) = <V%V,v’>’y’,
R(VE A,y W) =R(V, v, v, WH).

Hence we can easily obtain the desired formula. O
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7.3 Jacob Field and Conjugate points

We now want to consider the variation « through geodesic with variation field V. Recall
that the geodesic has locally minimal energy, so for any variation field W, the variation of
energy along geodesic a(e, s) is zero. Then if we take a variation along «, the second variation
of energy is still zero. By remark 7.1,

VaVaV+RV,y)Y, W) =o.
{ )

dt dt

Hence we obtain the definition of Jacobi field:

Def 7.5. Let 7 : [a,b] — (M, g) be a geodesic, a vector field V € I'(v*T M) is called a Jacobi
field if o
VQVQV‘FR(V,’}/)’}/ =0.
dt dt
A Jacobi-field V' with (V,~') = 0 is called normal Jocobi field.
Exam 7.1. V =+, ty" are Jacobi field, but V = t*>~' is not Jacobi field.
Prop 7.1. Let vy :[a,b] — (M, g) be a geodesic

(1) If a: [a,b] X (—e,e) — (M, g) be a family of geodesics and a(t,0) = ~(t), then
0
v ()

(2) Given vi,ve € Ty M, I Jacobi field J around v, such that

s=0

is a Jacobi field.

J(a) =v1,J'(a) = vo.

Proof. (1)

Va4V g YRy 9 - o\ [0 0 0
V39500 (5:) = 94950 (5) = 92950 (5) + 1 (55 ()

And since a(e, s) is a geodesic for any s.

So when t = 0,

(2) By ODE.
0

Thm 7.6. Let (M, g) be a Riemannian manifold and ~y : [0,1] — (M, g) be a geodesic , then the
Jacobi field J along v with J(0) = 0,J(0) = v is the variational vector field of o, where

alt, 5) = exp, o (H((0) + sv))
Proof.

So we can obtain

J'(0) = v%a* (;)
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Coro 7.3. Prove the Taylor expansion formula for Riemannian metric in theorem 3.3.

Proof. Consider the geodesic
y(t) = (tzt, - ta™)

and the Jacobi field J along v with J(0) = 0, J’(0) = v with norm f = ||.J||%.
We denote X
RX =R(Y, X))\ R'X = (VtR) (v, X)

So we can conclude that
J(0) =0,J'(0) = W, J"(0) = RJ(0) =

£(0) =0, f(0) =0, f"(0) = 2[W|7*, f®(0) = 0
FH(0) =8((RJ)'(0), W) = 8((RT)(0), W) + 8(RW, W)
=8(R'W, J(0)) + 8(RW, W) = 8(RW, W)
On the other hand,
F=I1T017 = W tW)4(v(t) = g4 (ta) W W
So by Taylor expansion,

4
t2gi(tz) = t%6;; — 7 Rikij (p)z*zt + o(th)
Hence we complete the proof. 0

Remark 7.2. Using this method, we can compute higher degree terms of g;;(z), the first four
terms are

1
lij — ng‘klj(p)fU 2t — V Rzkljmkazla:m + < Rllijqu V v Rzlmj> r'xaPad

Prop 7.2. Let J be a Jacobi-field along geodesic v : [a,b] — (M, g).
(1) (J(),~'(#)) = t{J"(0),7'(0)) + (J(0),7'(0)).
(2) If v is a unit-speed geodesic, then
Tt =T = (I = J(t) = 1J'(0),7'(0)y + (J(0),'(0))7'
1s a normal Jacobi field.

Proof. (1)
<J7 ,y/>/ — <<]/,’)/> + <J7 '7,/> — <<]/,’)/>
(') =T + (2" = (I = =(R(J,4), 7)) =0
So (J',v') is a constant, this concludes the desired formula.
(2) .,
(JJ-) :J//_<J77>/, r— g R(JJ‘,’)//) IR(J,’)//)

So J* is also a Jacobi field and moreover, it is normal.
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Prop 7.3. Let (M,g) be a Riemannian manifold with constant sectional curvature K and
v : [0,0] = M be a unit-speed geodesic, then a normal Jacobi field J with J(0) = 0 is of the
form

mtE(t) K=0
Ity = "R gy K0

msinh(v—Kt

B O Y

Where E(t) is any parallel vector field along vy such that

(1) (B(),7'(5) =0

(2) |E(®)] =1
9 (749)], =m0
Proof.

R(J. .\ W) = K(g(J,W)g(v,7) = 9(J;7)g(W.~)) = Kg(J, W).
So R(J,v")y = KJ, and the Jacobi field equation reduces to

J'+KJ=0.

Let E(t) be a parallel vector field along ~ satisfying (1) and (2).
Suppose J(t) = u(t)E(t) for some function wu.
Then we have the differential equation

v + Ku = 0,u(0) =0

And the solution are

mt K=
uft) = { MVED s
m sinh —Kt)
where m is given by
_J(0)
- E(0)
And since the dimension of space of normal Jacobi field with J(0) =0 is n — 1.
Hence every normal Jacobi field with J(0) = 0 is of the form we desired. O

Def 7.6. Let 7y : [a,b] — (M, g) be a geodesic with y(a) = p,y(b) = ¢ for some a,b € I.

(1) We say p and ¢ are conjugate along ~ if there exists some non-trivial Jacobi field J, such
that J(a) = J(b) = 0.

(2) The maximum of such linearly independent Jacobi field is called the multiplicity of the
conjugate point ¢, denoted by m.(q).

(3) the conjugate set of p is conj(p) = {q € M|3vy(a) = p,v(b) = ¢ is geodesic, J(a) = J(b) = 0}.

Lemma 7.2. Let v : [a,b] — (M, g) be a geodesic with y(a) = p,v(b) = q for some a,b € I,
then there are at most (n — 1) linearly independent Jacobi fields along v with J(a) = J(b) = 0.

Proof. By ODE theory, there are at most n linearly independent Jacobi fields with J(a) = 0.
But the Jacobi field J(t) = (t — a)7/(t) does not vanish at b. O
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Exam 7.2. Consider the n-sphere (S, gean) and let v : [0, +00) — S™ be a unit-speed geodesic
in S™.

Since S™ has constant sectional curvature 1.

So the normal Jacobi field with J(0) = 0 is of the form

J(t) = msin(t)E(t).

Hence the antipodal point v(m) is conjugate to v(0) along v with multiplicity n — 1.
Moreover, conj(p) = {—p} for every p € S™.

Exam 7.3. Consider the n-torus (T", gean) and let v : [0, 4+00) — S™ be a unit-speed geodesic
in T™.

Since T™ is flat.

So the normal Jacobi field with J(0) = 0 is of the form

J(t) = mtE(t).
Hence conj(p) = @ for every p € T".

Thm 7.7. Let (M,g) be a Riemannian mainfold, fit p € M and let v € &, C T,M,v,(t) =
exp,(tv) : [0,1] = M and q = v,(1).
Then v is a critical point of exp,, : &, — M iff q is conjugate to p along .

Proof. For any w € T,(T,M), let a(t,s) = exp,(t(v + sw)).
Then the variation vector field is

J(t) = (dexp,),, (tw), J(0) = 0, (@ij) 0) = w.
If w # 0 and w lies in the kernel (dexp,)),, then
j(l) = (dexp,)y(w) = 0.

So p and ¢ are conjugate along ~.
Conversely, suppose p and ¢ are conjugate along v by some Jacobi field J such that J(0) =
J(1) =0, let

w = (@%J) 0).

Then by the uniqueness of Jacobi field with initial conditions, J = .J.
Hence (dexp,,),(w) = 0, i.e.v is a critical point of exp,, : €, — M. O

Coro 7.4. Let (M, g) be a complete Riemannian manifold. Fizp € M and v € T,M, TFAE:
(1) v is a critical point of exp, : TyM — M.
(2) q = exp,(v) is conjugate to p along () = exp,(tv) : [0,1] — M.

Coro 7.5. Let (M,g) be a complete Riemannian manifold, p € M.
If q € conj(p), then Fv € T,M such that exp,(v) = q and

(1) v is a critical point of exp, : TyM — M.
(2) q is conjugate to p along 7, (t) = exp,(tv) : [0,1] — M.

Prop 7.4. If (M, g) is a complete Riemannian manifold with non-positive sectional curvature,
then for every p € M, conj(p) = &.
Moreover, the exponential map exp,, : T,M — M is a local diffeomorphism.
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Proof. Suppose g € conj(p) is conjugate to p along geodesic 7 : [0,1] — M by Jacobi field J
such that J(0) = J(1) = 0.
Consider f = ||J||?, then

@) = (I + |7|P = =RUA AL ) + |7 = 0.

And since f(t) > 0, f(0) = f(1) = 0.
So f =0, i.e. J is trivial, contradiction! O

Remark 7.3. Further more, we can prove that the exponential map is covering map, we will
discuss these in next chapter.

7.4 Index form

Def 7.7. Suppose v : [a,b] — (M, g) is a non-trivial geodesic, the index form I, : I'(v*T'M) x
I'(v*TM) — R, is defined as

b b
L(V,W) = / <vdiv,vdiw> at — / R(V, ', W)dt
Lemma 7.3. V is a Jacobi field iff
L(V,W)=0
for every variational vector field W.

Proof. If V is a Jacobi field, then it is trivial.
If I,(V,W) = 0 for every variational vector field W, then

b
/ <viviv YRV, ), W> dt = 0.
a dt dt

So using the similar method in theorem 7.2, we can obtain

@g@gv-l- R(V,’y/)’yl =0.
at  at

Hence V is the Jacob field. O

Def 7.8. If V is piecewise C* over [a,b], i.e. a <tg < - <ty =b,Vi=V
we define

is smooth,

[ts,tig1]

tit1 k tiv1 , .
-3 [T e RO W
i—o Jti
Prop 7.5. If I,(V,W) = 0 for any piecewise C* variation vector field W, then V is a C*
Jacobi field.
Proof. Let W be a piecewise C* variational vector field such that W (t;) = 0 for every i, then
k

t7,+1 R N
Z/ <vivgvi+R(m,fy')f/,W> dt = I,(V,W) = 0.
ti

: dat  dt
=0

And since every W|(t_ biep) AT€ independent, so
(2%
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for all ¢ € [0, k], otherwise we can times a constant on W

(tistigr)
Therefore V a \Y a Vi + R(V "y =0 for every i,i.e. V; is Jacobi field.

Moreover, fix i E {0 -, k} and let

0 i=j
W(tj):{wdd‘/)(y) (ﬁgv )(tj) i # ]

Then
2

0=L(V.W) = |(VaVi) (t) — (Va Vi) (t)
Hence by gluing up every {V;}, we obtain the Jacobi field V. O

Coro 7.6. Let vy : [a,b] — (M,g) be a unit-speed curve, if v is a local minimal geodesic, then
I,(V,V) =2 0 for every variational vector field V.

Proof. Since « is locally minimal, for every proper variation o with variational vector field V,
82

952 E(a(e,s)) =I,(V,V) > 0.
s=0

O

Lemma 7.4. Let 7 : [a,b] — (M, g) be a unit-speed geodesic. If v has no conjugate point, then
there exist Jacobi fields Ja,-- -, Jy, along v such that

(1) Ji(a) = 0,i = 2 and {7'(b), Ja(b),--- , Ju(b)} is an orthonormal basis of of T ) M.
(2) (Ji(t),7'(t)) =0 fort € [a,b],i>2

(3) {7 (t), Ja(t), -, Jn(t)} be linearly independent for t € (a,b].

Proof. (1) Let {y(b),e2,--- ,en} € Ty)m be an orthonormal basis.

Since there is no conjugate points along ~.

There exist a unique Jacobi field J; such that
Ji(a) =0, J;(b) = e,
for every 2 < i < n.
(2) Since
(Jit),~'(£)" =0
And J;,+" are normal at a and b.

So J; are normal Jacobi field on .

Moreover, span{Ja(t), -, J,(t)} is linearly independent with +'.
(3) Suppose e € (a,b), s.t.{J2(c), -, JJ,(c)} are linearly dependent, let

- f: A (t)
1=2

such that W(c) = 0.

So W‘[a,c] is a Jacobi field with W (a) = W (c) = 0.
Therefore W (t) = 0 over [a, c|.

Hence W (b) = 0,4.e.Ag = - -+ A\, = 0, contradiction!
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Def 7.9. Vo ={V e T(v*TM)|V(a) = V(b) = 0},Ng = {v € Vo|{v,~") = 0}.
Thm 7.8. Let v : [a,b] — (M, g) be a unit speed geodesic, then
(1) If v has no conjugate points, then I is positive definite on Ny, Vo.

(2) If v(a) and ~(b) are the only conjugate points along v, then I,(V,V) = 0 on Ny, Vo,
moreover, 1,(V,V) =0&V is a Jacobi field and V € Ny.

(3) v has an interior conjugate points Isome V€ Ny, s.t.1,(V, V) < 0. In particular, v is not
a local minimal geodesic.

Proof. (1) Suppose V' € No, let {7'(b),e2, -+ ,en} be an orthonormal basis of T’ M and J;(t)
are Jacobi fields such that J;(a) = 0, J;(b) = e;.

Since J; are perpendicular to ', so let

where f?(b) = 0 for each i and
L(V,V) :/ab<(fiji)’,(fﬂjj)’> dt—/abfiij(Ji,'y’,'y’,Jj)dt
- / b () P T3y + (F) I T3+ £ T T3 ) dt
+ / (Y () 1) = F PR ) de

On the other hand,

(i T3) = (T T)" = (T T)) = (I T3 = (RO Jj) = R(Tj. ) i) = 0

J ]

Therefore

(Jir Jj) = (Ji, Jj),

)
L) = [ (PO = £ )

[ (P) ) = FPROA )
b

P b Y2 4
= f'fIJL, ;) +/ (f) (f7) (Ji, Jj)dt

:/a”

The identity holds iff ( fi)/ J; =0, i.e.f; are constant.
And since f;(b) = 0.
So f; =0,i.e.V is trivial.

a

2
dt >0

(),

Hence I, is positive definite on Np.

Now we suppose V' € Vy and define

VE=V = (V.97 € No,
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So
L(V.V) =1, (VL, VL) + 2L, (VAVoA )W) = L (Vo) (Vo))
b b
=1, (VL,VL) +2/ <V’,<V’,7’>7’>dt—/ (V') Pat
ba , a
=1, (v, vh) +/ (V) Pdt > 0

The identity holds iff V+ =0, (V’,4/) = 0,i.e.V = 0.

Hence I, is positive definite on Vy.

Define ¢ : [a,c] — (M, g),~¢ = 7.

Then I,c is positive define.

Consider a parallel frame {7 = e1,e9, -+ ,¢e,} along ~.
If V€V, then let

n

V=> ft)et).

=1

So there is an induced variational vector field along v¢ given by

e - 3 5 ((b—a)t—i—a(c—b)) ol

c—a

Therefore I,¢(V¢,V¢) > 0 and

I :1 Ic ¢ 62.
LV V) = lim Le(VE, V) > 0

If I,(V,V) = 0, then I,(V,W) = 0 for every W € Vg since I, is semi-positive definite.
So V is Jacobi field with V(a) = V(b) = 0,7.e.V € Np.

C

If v(a) is conjugate to y(c) for some ¢ € (a,b), then there exists a Jacobi field J; along ~y
with Jl(a) = J1(6> =0.

Consider

Then it is easy to see that I,(J,J) = 0.
Let W be a C°° variational vector field with

So for sufficiently small ¢,

= —|[W(e))* <0

a

L(J,W) = <@ J, W>

4
dt

L(J +eW,J+eW) = 2eL,(J,W) + > L, (W,W) < 0

Hence 3V € Vy, s.t.L, (V1 VL) < L(V,V) < 0.



CHAPTER 7. VARIATIONAL FORMULA o7

Coro 7.7. Let v be a unit-speed geodesic that has no conjugate point, and V. W are vector field
along v such that

If V is a Jacobi field, then
LV, V) <L,(W,W)

and the identity holds iff V. =W.

Proof.
LV -W,V-W)=LV,V)+ L (WW)-2L,(V,IW) >0
b b
Iy(‘@ ‘/):: <‘/;‘//> = <‘//7‘¢/> = IW(‘C VV)
So 1,(V,V) < I,(W, W) and the identity holds iff V- W = 0. O

Def 7.10. Let B: V x V — R be an symmetric bilinear form.

(1) The index of B is defined to be the maximal dimension of all subspaces W of V' such that
B : W x W — R is negative definite, denoted as u(B).

(2) The nullity of B is the dimension of the null space

N(B) ={v e V|B(v,w) =0 for all w € V'}

B is said to be degenerate if the nullity is positive.

Coro 7.8. If y(b) is a conjugate point of v(0) along a unit-speed geodesic v : [0,b] — (M, g),
then
my(7(8)) = dimN(I,).

Proof. By theorem 7.8(2), N(Iy) = {V € Ny|V is a Jacobi field}.
So by definition m (v(b)) = dim N(Z,). O

Thm 7.9 (Morse index theorem). Let v : [0,b] — (M, g) be a unit-speed geodesic, then the
index of I, is finite and equals to the number of points y(t) with 0 < t < b that conjugate to
~v(0), each counted with its multiplicity, i.e.

pwI)= > dimN(Iy).
o<t<b
v (t)Econj(v(0))

Exam 7.4. Consider (S! X R, gean), which is flat.
Let v : [a,b] = M be a unit-speed geodesic, we claim that vy has no conjugate point.
Otherwise, there exists Jacobi field J along vy such that J(a) = J(c) =0, so

J"+ R(J,Y )y =0,ieJ" =0.
For J(t) = J'(t)e;(t) where {e;(t)} is a parallel basis, we have
J"(t) = (J)" (t)ei(t) = 0,ie. (J1)" =0.

So J =0 is trivial, contradiction!
Hence v is a locally minimal geodesic, while it may not be the minimal geodesic.
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7.5 The cut locus and injective radius

Def 7.11. Suppose (M, g) is a complete Riemannian manifold and p € M,v € T, M.
The cut time of point (p,v) is defined as

tewt(p,v) = sup {b >0 %‘[0 b is a minimal geodesic} )
Suppose teut(p,v) < 400, the cut point of p along v, is Yy (teut(p, v)) € M.

(1) The cut locus of p, denoted by cut(p), is the set of all ¢ € M, such that ¢ is the cut point
of p along some geodesic.

(2) The tangent cut locus of p is defined as

Tcut(p) = {U € TpM

v

|U| = teut <p> ) } .
|v]
v

|U| < teut (pa > } .
v

Prop 7.6. The cut point(if exists) occur at or before the first conjugate point along every
geodesic.

(3) the injective radius domain of p is

HMZ%GQM

Proof. Suppose 7 : [0,b] — M is a geodesic such that v(¢) € conj(y(0)) with ¢ € [0,b).
Then by theorem 7.8(3), 7 is not local minimal.
So the cut point of v(0) along 7 is < b, contradiction! O

Exam 7.5. (1) For (S", gean), cut(p) = conj(p) = {—p}.

(2) For (S' X R, gean), conj((p, ) = &, cut((p,x)) = {p} x R.

Thm 7.10. Let (M, g) be a complete Riemannian manifold and p € M,v € T, M with |v| =1,
teup(pyv) = ¢ € (0, +00]

(1) If 0 < b < ¢, then

(a) 'yq,|[07b] has no conjugate points

(b) 'yv|[0 b B the unique minimal unit-speed geodesic connecting v,(0) and ~,(b).

(2) If ¢ < +o0, then 7, is a minimal geodesic connection 7,(0) and 7y,(c).

’[042]
Moreover, one or both the following statements hold.

(a) vu(c) is conjugate to p along v,

(b) There are two or more unit speed minimal geodesics connecting v,(0), vy (c).

Proof. (1) By proposition 7.6, 7, (t) can not be conjugate to p for 0 <t < b.

And by the definition of t..:(p, v), there exists some b’ such that b < b’ < ¢ such that ~,
is minimal.

o

Suppose the exists a unit-speed curve p : [0,¢] — M with u(0) = p, u(c) = ~(b) and ¢ < b.
Then b’ = d(p,v(')) < d(p,7(b)) + d(7(b),y(V))) <c+ V' —b.
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So ¢ =b.

And consider the curve ﬂ‘[o,b] =, ﬂ‘[b’b,] = %’[b,b/]'
Then L (1) = d(p, q), i.e.fr is smooth geodesic.
Hence p/(b) = ’y‘; (b), ..y, = p is unique.

We assume 7, (c) is not conjugate to p along ~,.

There exists a sequence {b;} decreasing to ¢ such that -, : [0,b;] — M is well-defined but
not a minimal geodesic by definition.

Let v; : [0,a;] — M be a unit-speed minimal geodesic connection p and ~,(b;).
Suppose w; = 7;(0) € T, M, ;(t) = exp,(tw;).

By compactness and passing to a subsequence, we assume a; — a,w; — w, then
exp,(aw) = lim exp,, (a;w;) = lim y;(a;) = lim 7, (b;) = 7o (c).

So Yy 1 [0,a] = M,t + exp,(tw) is a unit-speed geodesic connecting p and ,(c).
Moreover,

¢ =d(p,1(c)) =limd(p,vi(a;)) = d(p,exp,(aw)) = a
Therefore 7, is a minimal geodesic, we shall show that w # v.

Since cv is not a critical point of exp, : T, M — M and so it is locally injective in a small
neighborhood U of cv.

But exp,(biv) = exp,(a;w;).
So for large i, bjv € U and a;w; ¢ U.

Hence cv # aw, i.e.v # w.
O

Remark 7.4. In many usual examples, there seems to have more than one minimal geodesics
passing through p and ¢ when p, ¢ are conjugate along ~.

However, this is not necessary.
We consider the meridian v of parabolic starting at p = (o, 3o, 20) for zo > 1.
Then + is obviously minimal around 0.

but when v(t) = (—z0, %0, 20), the length of latitude is m,/zp < 2 (zo + \/%) <L (fy‘[o t})'
So while going through ~, there is first only one minimal geodesic, and at some point, the

single minimal geodesic bifurcates into two, which are symmetrical about the plane of ~.

That point is called bifurcation point, and obviously its a conjugate point of p along v with

only one minimal geodesic 7.

This type of point has some good properties, you can search for them if you are interested.

Thm 7.11. (M, g) is complete, p € M, then

(1) teyt : STM — (0,+00] is continuous.

(2) Teut(p) is the boundary X(p).

(3) epr (Tcut (p)) = cut (p) :

(4) cut(p) is closed subset in M of measure 0.

(5) If M is compact, then cut(p) is compact.
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(6) exp, : X(p) — M\cut(p) is a diffeomorphism.

(7) exp, : X(p) — M is surjective.

(8) inj, (M, g) = d(p, cut(p)).

(9) inj: M — (0,400] is continuous.

Proof. (1) Consider a sequence (p;, v;) converges to (p,v) in STM.

Let ¢; = teue(pi, vi) and C = teu(p,v), assume a subsequence of ¢; converges to ¢, we shall
proof that ¢ < C and C < c.

We first assume ¢ < +o00.

By continuity of distance function, d(p,exp,(cv)) = lim d(p;, exp,, (c;v;)) = lim¢; = c.

So 7, is minimizing on [0, b],i.e.C > c.

By theorem 7.10, there must be infinite (p;,v;) such that 7,,(c;) is conjugate to p; along
Yu;, or infinite (p;,v;) such that for some w # v € ST, M, exp,, (tw;) is minimizing and
exp,, (ciw;) = exp,, (¢iv;).

For the first case, (p;, c;v;) are critical points of the exponential map.

By continuity, (p,cv) is also a critical points of the exponential map, i.e. ~,(c) is the
conjugate point of p and so C < c.

For the second case, by passing to a subsequence, we assume w; — w.

And WLOG, we may assume that v,(c) is not a conjugate point of p.

Then exp is locally injective in a small neighborhood of (p, cv).

So similar to the proof of theorem 7.10, we can conclude that w # v, i.e.C < c.
Now suppose ¢ = +00.

Then for ¢g > 0, 7, is minimizing on [0, ¢g] for sufficiently large i.

By continuity, d(p, exp(p, cov)) = lim ¢y = cp, i.e.y, is minimizing on [0, co].

So ¢ < C, and C < c is trivial.

Hence c = C,i.e. lim ¢; =C.
i—+4-00

since tq¢ is continuous.

So X(p) is open and T,y (p) = 0X(p).

For every g € cut(p), assume ¢ is the cut point of p along ~, for v € ST,M, then
eXPp(tcut(P, U)U) = Vv(tcut(pu U)) =q.

And since |teut(p, v)v| = tewt(p,v).

So exp,,(Teut(p)) D cut(p).

And exp,,(Teut(p)) C cut(p) by definition.

Consider a sequence {g;} converges to ¢ in M such that ¢; € cut(p).

Let ¢; = exp(teut(p, vi)v;) and by passing to a subsequence, we assume v; — v.

Then tcu(p, v;) must be bounded, so

lim teut (p, Ui) = teut (p7 U)'



CHAPTER 7. VARIATIONAL FORMULA 61

By the continuity, ¢ = exp,,(tcut(p, v)v) € cut(p), i.e.cut(p) is closed.
And since Ty (p) is the graph of tey(p, ®) : ST,M — (0, +00].

So Teut(p) is measure zero, so is cut(p) = exp,(Teut(p))-
Follows by the fact that closed subset of compact set is compact.

For v € ¥(p), there is one and only one unit-speed minimal geodesic passing through p and
exp,(v) given by exp, <t‘%‘)

So exp,, is a smooth bijection from ¥(p) onto its image.

And by theorem 7.10 and (3), exp,(X(p)) = M\cut(p).

Hence exp,, : X(p) — M\cut(p) is diffeomorphic.

Follows by (2), (3), (6).

Since Bd(p,cut(p))(p) C 2(]))
So inj, (M, g) > d(p, cut(p)).
And for g € ijp( M,g)(P), ¢ is not critical value of exp,, and has a unique preimage.

Therefore q ¢ cut(p), i.e.inj,(M, g) < d(p,cut(p)), this completes the proof.

inj, (M, g) = inf{tcu(p,v)|v € ST,M}.
So consider a sequence p; converges to p in M.

Let ; = inj,, (M, g) = tew(pi, vi), R = inj,(M, g) = teuw(p, V), assume a subsequence of 7;
converges to r, we shall proof that r < R and R < r.

By passing to a subsequence, we assume v; — v.
Then r; = tey(pi, vi) = tew(p,v) = Ryi.er > R.

And by continuity, for the sequence (p;, w;) converges to (p, V') in STM, r; < tew(pi, wi) =
tcut(pv V) = R.

Sor<R,ieR=r= lim 7.
1——+00
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Topological properties of
Riemannian manifold

8.1 Local isometries and isometries
Def 8.1. If o : (M, gy ) — (N, gn) is a C° map,

(1) ¢ is called a local isometry if
dgop : TpM — Tg(p)N

is a linear isometry, i.e. *gn = gur
(2) ¢ is called an isometry if ¢ is a diffeomorphism(or surjective) and
dn(e(p),¢(a)) = du(p, @)
Thm 8.1. If ¢ : (M,gm) — (N, gn) is bijective, TFAE

(1) ¢ is an isometry
(2) ¢ is a diffeomorphism and a local isometry

(8) ¢ is a diffeomorphism and for every C* curve v : [a,b] — M,

L(¢oy) = L(v).

Proof. (1) = (2): For r < min{inj(M, p),inj(NV, q)}, consider the unit-speed minimal geodesic

Yo [0,7] = Mt exp,(tv).

Then dn (¢(70(s)), (v (1)) = [s = t].

And let v, be the unique unit-speed minimal geodesic from ¢ to @(7,(r)).

Suppose ¢©(7,(t)) # Yu(t) for some t € (0,7).

Then the composition of two minimal geodesics from g to ¢(y4,(t)), from @(v,(t)) to Y, (r)

resp. is different from -, but has the length r, contradiction!
So o, =7, is an unit-speed minimal geodesic and

d¥y

dt

eyl =| G 0| =1

Hence dy,, is isometric,i.e. ¢ is a local isometry.

62
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(2) = (3):
b b b
Lpon) = [ eolt= [ o] = [ 1| =L
(3)=(1)
dn(e(p),(q))= _inf  L(y)= _inf L(¢'oy)= inf L(7) =dul(pq).
V€L (p),0(a) YE€EZo (), 0(a) VE€EZp.q
So ¢ is an isometry. O

Thm 8.2. Let (M, gnr) and (N, gn) be two Riemannian manifolds and ¢ : M — N be a smooth
map, TFAE:

(1) ¢ is a local isometry.

(2) For every p € M, there are open neighborhoods U of p in M and V' of p(p) in N such that
QO}U :U =V is an isometry.

Proof. (2) = (1) is trivial by theorem 8.1.
(1) = (2): Since linear isometry is invertible.
By inverse function theorem, ¢ is local diffeomorphism.
So the proof is completed by theorem 8.1. O

Coro 8.1. Let ¢ : (M, gy ) — (N, gn) be a local isometry, if v : [a,b] = M is a C*° curve and
Y =@on, then

(1) ¢ is totally geodesic.
(2) v is a geodesic in (M, gy ) < 7 is a geodesic in (N, gn).
Proof. Since ¢ is a local isometry.
So *gn = gm, .. B(X,Y) = Vxp.Y — ¢ (VxY) =0.
And by corollary 6.4, ¢ is totally geodesic and ~ is geodesic iff 4 is geodesic. O
8.2 covering map

Def 8.2. A Riemannian covering map m : (M, gnpr) — (N, gn) if
(1) 7 is a covering map

(2) mis C*°

(3) m is a local isometry

Thm 8.3. Suppose 7 : (M,g) — (M, g) is a local isometry.

(1) If M is complete= M is complete and 7 is a Riemannian covering map

(2) If w is a covering map, (M, g) is completes (M, §) is complete
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Proof. (1) For every p € M,p € 7~ !(p) and a geodesic v starting at p, there is a unique geodesic
v starting at p with
7'(0) = dg, " (7/(0)) -

Then 7o 7 is a geodesic starting at p with
(m03)"(0) = (dgp o de, ") (Y (0) =7 (0).
So m o7 = is well-defined all over R, 7.e. M is complete, and
7 (expj (dip, ' (v))) = exp,(v),

i.e. T is surjective.

Define U, = B.(p),Us = B: (p), we now prove that U, is evenly covered by {Us}.

For another ¢ € m~!(p), the geodesic from p to ¢ maps to a geodesic loop from p to p.
And the loop must go outside U, and get back, i.e. d(p,q) > 2e.

SoU; NU; = @.

On the other hand, for every ¢ € 7~ 1(U,),d(r(q),p) < ¢, i.e.d (¢, p) < € for some p.
Therefore ¢ € U and

w(Up) = |_| Us.

per—(p)
Hence 7 is a Riemannian covering map.

(2) By Hopf-Rinow theorem, Riemannian manifold is geodesic complete iff it is metric complete.

So (M, g) is complete iff (M, §) is complete since 7 is a covering map.
O

Prop 8.1. Suppose (M,g) is a Riemannian manifold and T is a discrete Lie group acting
smoothly, freely, properly, and isometrically on M.

Then M/T ha s a unique Riemannian metric such that the quotient map ©: M — M/T is
a normal Riemannian covering.

8.3 Deck transformation
Prop 8.2. Suppose M —— M is a covering map

(1) (Unique lifting proposition)If B is a connected topology space, f : B — M is continuous,
then any two lifts of f that agree at one point are identical.

(2) (Path lifting proposition)Suppose f : [0,1] — M is a continuous path, then for any p €
71 (£(0)), 3Nift f:[0,1] = M, f(0) = p

(3) (Monodromy theorem)Suppose f,g : [0,1] — M are path-homotopic and fg [0,1] - M
are their lifts starting at the same point, then f,§ are path homotopic and f(1) = §(1).

Proof. These are some easy topology proposition, so we will use them directly without proving.
O

Def 8.3. Let m : M — M be the universal cover of M, deck transformation F : M — M is a
homeomorphism with 7 o F' = 7, the set of deck transformation is denoted by Aut, (M )
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Prop 8.3. (1) m (M) = Aut, <M>
(2) Aut, (M) acts C™, freely and properly on M

(8) Aut, (M) acts transitively on each fiber of m.

Proof. These are some easy topology proposition, so we will use them directly without proving.
O

Prop 8.4. Deck transformation is isometry.
Proof. F*g=F*n*g= (no F)*g=7"g=g. O
Def 8.4. Let v9,71 : [0,1] — M be two loops, they are said to be free homotopic if they are
homotopic through closed paths, i.e. there exists a homotopy H : [0, 1] x [0,1] — M such that
H(0,t) =y(t), H(1,t) = 71(t), H(s,0) = H(s,1).
The equivalence class of loops in M given by freely homotopic is called free homotopy class.

Def 8.5. Let (M, g) be a complete Riemannian manifold and F : M — M be an isometry.
A geodesic v : R — M is an axis of F' if F' o+ is a nontrivial translation of «y, 7.e. there
exists a nonzero constant ¢, such that

(For)(t) =~(t+0).
An isometry with no fixed points that has an axis is said to be axial.

Lemma 8.1. Let F' be an isometry of a complete manifold (M, g). If 6r(p) = d(p, F(p)) has a
positive minimum, then it is axial.

Proof. Suppose 0r has a minimum at p € M, and let v : [0,1] — M be a minimal geodesic
connecting p and F(p).
Then 4 = F o v is a minimal geodesic connecting F(p) and F?(p).
We claim v and 4 form an angle 7 at F'(p) and thus fit together an extension of v to [0, 2].
For any t € [0, 1], we have

dr(p) =d(p, F(p)) < d(v(1),7(t))
<d((t),7(1)) + d(v(1),7(2))
=d(y(t),7(1)) + d(7(0),7(t))
=d(y(t),7(1)) + d(v(0),~(t))
=d(v(0),7(1)) = d(p, F(p))
So d(y(t),5(t)) = d(y(t),v(1)) + d(y(1),7(t)), this proves the claim.
Hence (F' o7)(t) = v(t + 1) and repeating this process we can define v all over R. O

Lemma 8.2. If (M, g) is compact Riemannian manifold and F : M — M be a nontrivial deck
transformation on the universal cover w : M — M, then

(1) ér(p) = d(p, F(p)) has a positive infimum, 0p(p) > 2inj(M), i.e. F is axial

(2) The azis 7 corresponding to this minimum is mapped to a closed geodesic in M whose length
is minimal in its free homotopy class.
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Proof. (1) is directly follow by theorem 8.3 and lemma 8.1, we now proof (2).

It is obvious that 7 : [0,1] — M,#(0) = #,7(1) = F(Z) projects to a loop in M.

We first claim that if 59,71 : [0, 1] — M are curves connecting Zg, F(Zo) and &1, F(#1) resp.
with, then ~g, 1 are freely homotopic.

We define a homotopy H(s,t) : [0,1] x [0,1] — M with

H(s,1)=F (ﬁ(s,c))) JH(0,8) = F0(t), H(L, 1) = 71(t).

Then H is a free homotopy of 7 and 1.
And let H = mo H, we have

H(0,8) = (7o 1) (0,8) = (w0 30)(t) = 70(t), H(1,) = 1 (),

H(s,0) = (ﬂ'olf[) (s,0) = (WoFoI:I) (s,0) = (WOI:I) (s,1) = H(s,1).

So H is a free homotopy of vy and ~;.

We then claim that let vy : [0,1] — M be a path with 50(0) = Zo,70(1) = F(Zo), if 71 is
freely homotopic to 79 by H, then F(51(0)) = 41(1) for some lifting 41 of ~;.

Let H :[0,1] x [0,1] — M be the lift of H with H(0,0) = .

Then both 4o(t), H(0,t) are lifts of yo(t) and 40(0) = H(0,0).

So Fo(t) = H(0,1t).

And both (F o ﬁ) (s,0), H(s,1) are lifts of H(s,0) with

(Foft) (0,0) = Fodo(0) = 0(1) = £(0,1).
Therefore (F o FI) (5,0) = H(s,1) and 41 = H(1,t) is a lift of ~;(t) since

(7 0A1)(t) = (77 o ﬁ) (1,8) = H(1, 1) = (1.

By lemma 8.1, the axis of F' in [0, ¢] is a minimal geodesic 74 from p to F (p).
So for v; ~ o4 w.r.t. freely homotopic, we have

Hence v has the minimal length in [v]. O

Coro 8.2. Let M be a compact connected Riemannian manifold, then every nontrivial free
homotopy class in M 1is represented by a closed geodesic that has minimum length among all
admissible loops in its free homotopy class.

Proof. For an arbitrary loop =g start at p, we want to find a closed geodesic « that is freely
homotopic to vp.

Consider the deck transformation such that F(50(0)) = qo(1).

By lemma 8.2, F' has an axis 4 and 7« O&’[Ovcl is a closed geodesic in M whose length is
minimal in its free homotopy class.

And by the proof of lemma 8.2, 7o '}’[ch] is freely homotopic to 7. 0
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8.4 Manifold with Non-positive Sectional Curvature

Thm 8.4 (Cartan-Hadamard). Let (M, g) be a complete Riemannian manifold with sec(g) < 0.
Then Vp € M,exp, : TyM — M is a covering map.
In particular, the universal covering M of M is = R".

Proof. Since sec(g) < 0.
By proposition 7.4, exp,, : T,M — M is a local diffeomorphism.

Let g = exp,(g)-

Then exp,, : (T, M, g) — (M, g) is a local isometry.

Consider 4, (t) =tv : R — T,M.

Then exp,(9,(t)) = exp,(tv) is a geodesic in (M, g).

Therefore 4,(t) is a geodesic in (T,M, ).

By Hopf-Rinow, (T,M, §) is complete.

Hence by theorem 8.3, exp,, is a Riemannian covering map and M =~ T,M = R". ]

Remark 8.1. S™ has no Riemannian metric with sec(g) < 0.
But for n > 3, S” has Riemannian metric with Ric(g) < 0 (HIGHLY NONTRIVIAL).

Coro 8.3. Suppose M, N are compact C* manifolds, if one of them is simply connected, then
M x N does not admit a Riemannian metric with non-positive sectional curvature.

Proof. Suppose M is simply connected and N is the universal covering of N.

Then 7 : M x N — M x N is the universal covering.

If g is a Riemannian metric with sec(g) < 0 on M x N, then the pull back metric 7*¢g is a
complete Riemannian metric with sec(7*g) < 0, and M x N = RV,

Let p1 : M x N — M be the canonical projection and p be a volume form on M.

Then dp*(u) = pt(du) = 0, i.e.pi(p) is a closed form on M x N = RV,

So pip is exact.

Fix a point o € N and let ¢ : M — M x N,z — (z,10) be a embedding, then

/ p“{uz/ L*(p’{u)Z/ (plob)*uz/ p>0.
(M) M M M

On the other hand, pju is exact on M x N, i.e. fL(M) pip = 0, contradiction! O

Def 8.6. A simply connected complete Riemannian manifold (M, g) with sec(g) < 0 is called
a Cartan-Hadamard manifold.

Thm 8.5. Let (M, g) be a simply connected complete Riemannian manifold, TFAE:
(1) (M,g) has sec(g) <0

(2) for allp € M and v, € T,,M, ) )
’(dexpp)v (v)| > |0].

(3) for allp € M and vy,v1 € T,M
d(exp,(vo), exp,(v1)) = |v1 — vol.
Moreover, if one of them is satisfied, then
(a) exp, : T,M — M is a diffeomorphism

(b) Any two points in M are connected by a unique geodesic.
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Proof. (1) = (2): Consider the variation
a(t, 5) = exp, (t (v + 50))

with variational vector field

0= (2)

So J(0) =0,J(0) = 2.
Let f(t) = |J(t)|, then

= (dexpy)i(vrso) (10) = (dexp, )iy (t0) .
s=0

t=1J(t) t>0

F1@t) = Inl~"n, J') with n = {J’(O) f—0

Therefore we have |f/'(0)| = |.J'(0)| = |0] and

_

£(t) ¥ (J20T, 0y = (J,J')?) — R(J7 75 J)

>0
7]

Set F'(t) = f(t) —t|v].
Then F” > 0, F'(0) = 0, F(0) = 0.
Hence F(t) is increasing, i.e.

F(1) = ‘(d exp, )y ()

— 18] = 0.

(2) = (a): exp, is a local diffeomorphism.

So similar to the proof of Cartan-Hadamard theorem, exp, : (T,M,g) — (M, g) is a Rie-
mannian covering map, where g = exp,, g.

And T,M, M are simply connected.

Hence exp,, : T,M — M is diffeomorphism.

(2) = (3): Consider the geodesic v from exp,(vo) to exp,(v1) and let exp,,(v(t)) = ().

Then by using (a), we have

1 1
d(expy(vo) expy(v1)) = /O I/ (6)]dt = /0 |(dexp,)oe (v/(£))|dt

/0 1 o' (t)dt

(3) = (2): Fix p € M,v € T)M and let ¢ = exp,(v).
Then exp, : TyM — M is bijective since (M, g) is complete and so for every w € T, M,

1
2/0 v/ (t)]dt >

=[v1 — o

d(expy(0), expy(w)) = d(g, expg(w)) = |w].

Define
p= equ_1 oexp, : TpyM — Ty M.

Then ¢(v) = 0 and it is differentiable around v,
(dp)y, = (d exp;l)q o (dexp,)y = (dexp,)o-

We choose w = ¢ (v + 0) for some ¥ € T,M, then

o (v 4+ 0)] = d(g. expy(p(v + 0))) = d(exp,(v), expy(v + ) > [3].
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Hence

oo +40) =) ol

= () (0)] = g A g

}(d expp)v (0)
(2) = (1): Suppose R(v,v,v,v) > 0, consider the Jacobi field
J(t) = (dexp, )i, (19).

Then J(0) =0, J'(0) = 0.
And let f(t) = |J(t)|*, by theorem 3.3,

£(t) = [8]*? — 8R(D,v, v, 0)t* + O(t°).
So f(t) — |8*#? < 0 around 0, but
F(&) = [T®)* = [(dexpy)e (t0)]” = |t3[?,
contradiction! O

Prop 8.5. Let (M, g) be a Cartan-Hadamard manifold, then for every p € M,vg,v1 € TyM and

0<t<T,
d(exp,(tvo), exp,(tv1)) - d(exp,(T'vo), exp,(Tv1))
t = T '

lvo — v1] <
Proof. By theorem 8.5,
[tvg — tu1| < d(expy,(tvo), exp,(tv1)), [Tvo — Tv1| < d(exp,(Tvo), exp,(Tv1)).
So we only need to show that

d(exp,(tvo), exp,,(tv1)) . d(exp,(Tvo), exp,(Tv1))
t h T ‘

Consider the Jacobi field
J(t)=(d expp)m (t0)

and £(t) = J(0)].
Then f is convex by theorem 8.5.
Therefore

fy < T=DIO +41(D) - [depy)altd)] _ [(@exp,)r(To)
< v e, NEEP ] €0y (0]

Consider the geodesic v from exp,,(T'vp) to exp,(T'v1) and let exp,(Tv(s)) = 7(s), then

d(expp(TU0)7 epr<TU1)) . ! | (d eXp )Tv(s) (Tv’(s)) ‘
T - /0 T ds
! |(dexpp)tv(s)(tv/(5))’
> /0 " ds
. d(expp(tvo)t, exp,(tv1))

Coro 8.4. Let (M, g) be a Cartan-Hadamard manifold, then for a geodesic triangle ABC),

(1) LA+ /B+ /C <
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(2) ¢ > a® +b? —2abcos ZC.

If sec(g) < 0, inequalities are strict.
Proof. (1) Let A = expa(vg), B = expg(v1), then

¢ >|vg — v1]* = |wo)?® + |v1]* = 2|vol|v1| cos Z(vo, 1)
=d(C, A)% 4+ d(C, B)? — 2d(C, A)d(C, B) cos LZACB
=a® 4 b* — 2abcos LC

2 2 2 b2 2 2 2 2 _p2
LA+ /B + /ZC < arccos Hic -+ arccos u -+ arccos L = .
2ab 2bc 2ca

If M has negative sectional curvature, then d(exp,(vo), exp,(v1)) > |vo — v1].
So the inequalities are strict. ]

Lemma 8.3. Let (M,g) be a Cartan-Hadamard manifold, for every p,q € M,v € T,M, we
define pg = exp,(—v),p1 = exp,(v), then

d*(po, q) + d*(p1,q) = d*(po, p) + d*(p1,p) + 2d*(p, q).

Proof. let ¢ = exp,(w)
Then d(p,q) = |w|,d(po,q) = |w+ v|,d(p1,q) = |w —v].
And d(p, q) = |wl|, d(po, p) = d(p1,p) = |v], so

d*(po, q) + d*(p1,q) =w + v|* + |w — v|* = 2v[? + 2|w|?
=d?(po, p) + d*(p1,p) + 2d*(p, q)

O

Lemma 8.4 (Serre). Let (M,g) be a Cartan-Hadamard manifold, for every p € M,r > 0, let

B(p,7) C M be the closed ball of radius r centered at p.
Let Q C M be a non-empty bounded set, and define

rq = inf {r > 0|E|p € M,s.t.Q C B(p, r)} .
Then there exists a unique point pg € M,s.t.Q2 C B(pq,rq).

Proof. Existence: let (p;,7;) be a sequence such that Q C B(p;, ;) and r; — rq.
Then for q € Q, d(q,p;) < ri,i.e.{p;} is bounded.
So {p;} has a convergence subsequence converges at some point pq.
Hence Q C B(pq,rq)-
Uniqueness: Suppose there exist pg,p1 € M such that Q C B(po,7q) N B(p1,7q).
Let p1 = exp,, (vo) and take

2]
p=om (%)

Then by lemma 8.3, for any g € €2 we have

dQ(POaQ)+d2(P1aQ) dQ(POaPl) 2 dz(p07p1) < 2
2 -y R L)

N
-

d*(p,q) <

So d(po,p1) = 0, i.e.po = p1. O
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Thm 8.6 (Cartan fixed point theorem). Suppose that (M, g) is a Cartan-Hadamard manifold
and G is a compact Lie group acting smoothly and isometrically on M, then G has a fized point
in M i.e. dpg € M such that gpg = po for all g € G.

Proof. Let p € M and consider the group orbit
Qp = {gplg € G}.

Since G is compact, €2 is bounded.
So pq,rq > 0 is defined by lemma 8.4 and

Q= gQ C B(gpQ,TQ).
Hence pn = gpq by the uniqueness of pq. ]

Thm 8.7 (Cartan torsion theorem). If (M, g) is a complete Riemannian manifold with sec(g) <
0, then 71 (M) is torsion free, i.e. all nontrivial elements have infinite order.

Proof. Let 7 : (M,g) — (M, g) be the universal cover and I' = Aut, <M> =~ (M).

Then by proposition 8.1, M = M /T and the induced metric is isometric.

Suppose ¢ is a torsion free element in I'.

Then the subgroup of I' generated by ¢ is a compact Lie group and acts smoothly and
isometrically on M.

So by Cartan fixed point theorem, ¢ must have a fixed point.

But I act freely on M, contradiction! O

8.5 Manifold with negative sectional curvature

Thm 8.8 (Preissmann). Let (M,g) be a compact Riemannian manifold with sec(g) < 0.
(1) Any nontrivial abelian subgroup of w1 (M) is = 7

(2) w1 (M) is not abelian

Coro 8.5. If M, N are two compact manifolds, then M x N can not support sec(g) < 0.

Proof. Suppose M x N has sec(g) < 0.
By corollary 8.3, M, N are not simply connected.
Then 71 (M x N) 2w (M) x w1 (N).
Consider nontrivial elements g1 € 71 (M), g2 € 71 (N), then g1, g2 must be torsion free.
So ((g1,¢€), (e,92)) = Z X Z is a nontrivial abelian subgroup of 7 (M x N), contradiction! [

Lemma 8.5. Suppose (M, g) is a Cartan-Hadamard manifold with negative sectional curvature.
If o : M — M is an axial isometry, then its axis is unique up to reparametrization.

Proof. Suppose 1 and 72 are both axis but do not intersect.
Let A = 71(0)7 B = '71(1> - QP(A)7 C= 72(0)7 D = 72(1) = (P(C)
Consider the geodesic o from A to C, then ¢ o o is a geodesic from B to D.
So the geodesic quadrilateral ABDC' has angle sum 2.
On the other hand, the geodesic triangles ABC, BC'D have angle sums strictly less than 7.
And B is inside the angle ACD since v; and 2 do not intersect.
Therefore ZACB + Z/DCB = ZACD and similarly ZABC + /DBC = ZABD.
These are contradiction, i.e. 1,y must intersect at some point p = 71 (t1) = y2(t2), then

©(p) = m(t1 + c1) = 72(t2 + c2).

is another intersection point.
Hence 1 = 7, since (M, g) is a Cartan-Hadamard manifold. O
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proof of theorem 8.8(1). Let 7 : (M,g) — (M, g) be the universal covering.
Then (M , g) is a Cartan-Hadamard manifold with negative sectional curvature.

It suffices to show that every nontrivial abelian subgroup H of Aut, (M ) ~ (M) is
isomorphic to Z.

Let ¢ be a nontrivial element in H and ~y is its unique unit-speed axis.

If ¢ is another nontrivial element in H, then

p(W(1(1)) = Y(e(v(t)) = (v (t +¢)).

So 1 o~y is also an axis for .

By lemma 8.5, ¥ o v is a unit-speed reparametrization of ~, i.e. ¥(v(t)) = y(t + a).
Suppose ¢ is irrational, then spany(a,c) is dense in R.

Consider z,y € Z such that 0 < za + yc < inj(M).

Then (¢ 0 ¢¥)(7(0)) = ~y(za + yc).

Therefore 7o 7‘[0 vatyd is a unit-speed geodesic loop, contradiction!

So & = % for some x,y € Z, i.e.p” = Y.

Hence H = Z. O

Lemma 8.6. Let (M, g) be a complete Riemannian manifold with non-positive sectional cur-
vature and w: M — M be the universal covering.

If the geodesic v : R — M is a common azis for all elements of Auty (M), then M 1is not

compact.

Proof. For any point p = 4(s) and k& > 0, we consider the unit-speed geodesic
B0,k = 3, 5(0) = 5, (5(0),7(s) ) = 0.

Let ay be the minimal geodesic in M passing through 5(k) and p = 5(0).

Then S - ay, is a loop at p, i.e. L(ag) < L(B) = k.

We claim that L(ax) = k, so that M is not bounded.

Let aj be the lift of ay starting from B(k) and I is the deck transformation w.r.t. S8 - ay.
Then F (p) is the end point of &; and

F(p) = F (3(s0)) = ¥(s0 + ¢).
By corollary 8.4, L(ay) = L (&) > L (B) = k in right geodesic triangle (ﬁ, B(k), F (ﬁ)) O

proof of theorem 8.8(2). Suppose 71 (M) is abelian.
Let 4 be the axis of the generator ¢ of Aut, <M>

Then ¢" (3(t)) = 7(t 4+ nc), i.e.y is the common axis for all elements of Aut, <M>
By lemma 8.6, M is not compact, contradiction! O

There are some advance theorem for the fundamental group of compact Riemannian manifold
with non-positive sectional curvature, we will not proof them.

Thm 8.9 (Byers). If sec(g) < 0, then any nontrivial solvable subgroup of w1 (M) is isomorphic
to Z and m (M) is not solvable.

Thm 8.10. Ifsec(g) < 0, then any subgroup of w1 (M) that contains a nontrivial abelian normal
subgroup is tsomorphic to Z.

Thm 8.11 (Yau,1971). If sec(g) < 0 and (M) is solvable, then M is flati.e. isometric to
R"/T.
Thm 8.12 (Lawson-Yau,Wolf). Ifsec(g) < 0 and A is a free abelian subgroup of w1 (M) of rank

k > 2, then M admits a totally geodesic and isometrically immersed flat k-torus.

Prob 8.1. Open problem: does S* x S* have Ricci-flat metric?
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8.6 Manifold with non-negative curvature
Thm 8.13 (Myers). Let (M, g) be a complete Riemannian manifold with

(n—1)g

where R € RY,n > 2, then
(1) diam(M,g) < 7R,
(2) M is compact,
(3) |m(M)| is finite.

Proof. (1) Suppose diam(M, g) > wR.
Since (M, g) is complete.

So there exists a unit-speed minimal geodesic 7 : [0,1] — M with [ > 7R.

73

Let (e1(t) =7'(t),ea(t), -+ ,en(t)) be an orthonormal basis of T, ;)M where eg,--- e, are

parallel vector field along ~y, consider the variational vector field
Vit) = sm<77>ei(t).

Then V;(0) = V;(I) = 0 and so by theorem 7.5,

s=0

n l n l
Blois) =3 [ (VaviVavi)ar=3 [ R Var
=2 =2

This is contradiction!
So diam(M, g) < 7R.

(2) Since diam(M, g) < 7R is bounded.

So M is compact.

(3) Let 7: (M,g) — (M, g) be the universal cover.

Then (M , §> is also compact.

So 7 is proper and must be a finite cover, i.e. |m(M)] is finite.

O]

Remark 8.2. S.Y. Cheng proved that if the identity holds, then (M, g) is isometric to the

constant sectional curvature manifold (S"(R), gean), we will proof this in the last chapter.

Coro 8.6. Let (M, g) be a complete Riemannian manifold.
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(1) If it has sectional curvature K > # > 0, then diam(M, g) < 7R.
(2) If it is compact and has positive Ricci curvature, then |mi(M)| is finite.

(3) If it is an Einstein manifold with positive scalar curvature, then M is compact and |y (M)]
is finite.

Proof. All are directly follows from Myers theorem. O

Lemma 8.7. Let A:R"~! — R""! be an orthonormal transformation, if det A = (—1)", then
there exists some v € R""1\{0} such that Av = v.

Proof. Let the eigenvalues and eigenvectors of A be \;, v; resp, then

lui* = viv; = vF A* Av; = | N[ |vs]?

So ‘/\z‘ =1
And since |A| = (—-1)",dim A =n — 1.
Hence there is some 7 with A; = 1, i.e. Av; = v;. O

Thm 8.14 (Synge). Let (M,g) be a compact Riemannian manifold with positive sectional
curvature.

(1) If dim M is even and M is orientable, then m (M) = {e}.

(2) If dim M is odd, then M is orientable.

Proof. Suppose the conclusions are not correct.
Then 71 (M) # {e}.
Let 7 : (M,g) — (M, g) be the universal cover.

We endow M with

(1) the pullback orientation when dim M is even.

(2) an arbitrary orientation when dim M is odd.
There is a nontrivial deck transformation F : M — M and

(1) F is orientation preserving when dim M is even

(2) F is orientation reversing when dim M is odd

So by lemma 8.2, there exists an axis 4 : R — M for F and v = mwo 7 is a closed geodesics
in M that minimizes curve length in its free homotopy class and WLOG, we assume

F(3(1)) = 3(t +1).
We claim that there exists a variation a of v in the free homotopy class of ~,i.e.
a(t,0) =(t),a(0,s) = a(l,s)

such that the variational vector field V satisfies that
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Assuming the claim, we have

62

I
|
o\'_l
E3
<
\g
\g
&
/\

This is contradiction!
Proof of claim:
Let 2o = 4(0), 21 = 5(1) = F'(%0),p = 7 (T0) = 7 (¥1) and

]5 = ]:)07177y : TioM — Tj}lM, P = ]:’0717,y : TpM — TpM.

be the parallel transports along 1'[0 1 in M and loop 7‘[0 1 in M resp.

Since local isometries preserve parallelisms.
So the following diagram commutes and all these maps are linear isometries

TjOM i) T;;HM

dﬁiol \Ldﬂ'@l

oM —F— T,M
And since Z~\~4 is simply connected and it is oriented.
Therefore P is orientation preserving, moreover,
(1) when n is even, the vertical maps are both orientation-preserving, so is P
(2) when n is odd, F' is orientation-reversing and
dﬂ';;o = dﬂ';;l odF — SZ‘Q
implies that the two vertical maps induce opposite orientations on 7}, M, so P is orientation
reversing.
Since « is closed geodesic, we have
P((0)) =~/(1) =+(0).
On the other hand, P is an isometry and it induces a linear map
A=P W-=>W
4%

where W is the orthogonal complement of 4/(0) in T, M.
Notes that dim W = n—1 and det(A) = (—1)", by lemma 8.7, there exists nontrivial v € W

such that A(v) =
Consider the parallel vector field

V(t) = Potr(v)
along v with V(0) = V(1) = v, V(t) L v/(¢) and the variation
a(t,s) = expy ) (sV(t)).
Then «(t,0) = v(t),@(0,s) = a1, s) and the variational field of a is V'(¢). O
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Coro 8.7. Let (M, g) be a compact Riemannian manifold with positive sectional curvature, if
dim M is even, not orientable, then m (M) = Z/27Z.

Proof. Let M be a two-sheet orientable cover of M.
By theorem 8.14, M is simply connected and so it is the universal cover of M.
Hence |m (M)| = 2,i.e.m (M) = Z/27. O

Coro 8.8. the product metric of RP? x RP? has positive Ricci curvature, but it cannot support
a metric with positive sectional curvature.

Proof. 71 (RP? x RP?) = (Z/27)2.
So the conclusion follows by corollary 8.7. O

Conj 8.1 (Hopf). The product metric of S* x S? has positive Ricci curvature, does it admit a
metric with positive sectional curvature?

Thm 8.15 (Weinstein-Synge). Let (M, g) be an n-dimensional compact oriented Riemannian
manifold with positive sectional curvature.

Given an isometry F' : (M, g) — (M, g) that F preserves the orientation when n is even, or
F reverses the orientation when n is odd, then F has a fixed point.

Proof. Suppose f has no fixed point.
Then there is a point p € M such that d(p, f(p)) is minimal since M is compact.
by lemma 8.1, let v be the axis of f such that v(0) = p,v(1) = f(p).
So f«(7/(0)) = 1/(1),d.e.fx is isometric from ~/(0)+ — 4/(1)*, consider

W:W//(O)L7A:f*_lopo,1,'y W = W
w

Then det(A) = (—1)™ and by lemma 8.7, there exists v € W\{0} such that Av = v.
Define

V(t) = Pot~(v),at,s) = exp,q(sV (1)),
then we have

V(0) = 0,V(1) = fulv),
a(t,0) = (1), a(l,s) = expp,) (fe(sv)) = flexpy(sv)) = f((0, 5)).

Similar to Synge theorem, we have

82 1
5| Bty == [ Ry vde<o,
88 s=0 0
contradiction!
Hence f has fixed point. O

8.7 Constant sectional curvature

Exam 8.1. (1) (R™, gean) has sectional curvature zero.
(2) (S™(7), gean) has constant sectional curvature %2
(3) (B™(7), gean) with

4rt " . .
Gcan = m Z dz' @ dz*
=1

has constant sectional curvature 7%2.
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(4) (Hnagcan) with

9 [n—1 ) .
Jean = (Z do' @ da’ +dy ® dy)
i=1

<

has constant sectional curvatur —T%.

Thm 8.16 (Local Cartan-Ambrose-Hicks theorem). Let (M, g) and (M, §) be two Riemannian
manifolds and 3
(I)O : TpM — TﬁM

be some fized linear isometry.
Suppose § € (0, min {inij, inj,;M}), for any v € TyM with |v| < 6 we define

(t) = expy(tv), 7(t) = exp;(tPo(v))
and a linear isometry
Oy = poss 0 Poopyt, : ToyM — Ty(t)M.
TFAE:
(1) There is an isometry ¢ : B(p,§) — B(p,d) with ¢(p) = p, (p«)p = Po

(2) ®; preserves the curvature, i.e. for allt € [0,1] and u,v,w,z € T\;)M, then

R(U,V,W,Z) = R(®:U, ,V, >, W, D, 7).
Moreover, if one of these conditions hold, the isometry is precisely given by
¢ = exp; oPp o e><p1;1 : B(p,d) — B(p,0)

and @y = @y p)-

T,M —2° s T;M M — s TN
PO,t,»yJV lPo,tﬁ, exppi iexpﬁ
(b Y ~
TynM — ¢ T M B(p,6) _?. B(p,6)

Proof. (1) = (2): we only need to show that ®; = () ()-
Since (¢ 07)'(0) = Bo(v) = 7(0).
So 4(t) = o(v(t))-
Consider an orthonormal basis (61 = |7/(0)| ,€9, ,en) of T,M.

0)
By parallel transport, let (e1(t), -+ ,e,(t)) be a orthonormal basis of T, M, then

Vo ®i(ei(t) = Vo (9e)yn (eilt)).

dt dt

Hence ®; = (¢u)(1)-
(2) = (1): we define

¢ = expgz 0P o (3)(ij1 : B(p,0) = B(p,0).

Then ¢(p) = p, (¢«)p = Po.
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We want to show that ¢ is an isometry, i.e. for any w € T, M,

|(pe)qu] = Jwl.
Consider a geodesic v : [0,1] — M from p to ¢ and Jacobi field J with J(0) = 0,J(1) = w
and let J =3 y;(t)ei(t).
We claim that J = ®,(J(t)) is a Jacobi field along 7.
By the Jacobi field equation,

v+ > ui|Y (0)]'Riei, ex,e1,€5) = 0.

If we set €;(t) = ®¢(ei(t)), then
J(t) =Y wi(t)é(t).
i=1
Since ®; preserves curvatures and |y/'(0)| = |5/(0)|, so we obtain

v + 3 uil7 (0 R, é1,61,8) =0,

i.e. J(t) is a Jacobi field.
On the other hand,

J'(0) = ®o(J'(0)), (1) = (dexpz)so) (£7(0))

So we have ) 3
J(1) =(dexpp)z ) (7(0))
—(dexpy)s (o) 0 Bo o (dexpy) Ly (I(1)
=(pxq)(J(1))
Hence |(puq)(w)| = ’j(l)’ = |®1(J(1))| = |J(1)| and ¢ is a isometry. O

Thm 8.17 (Cartan-Ambrose-Hicks theorem). Let (M, gnr) be a connected Riemannian mani-
fold, suppose @ and v are two local isometries from M to (N, gn).
If there exists p € M such that o(p) = ¥(p) and @y = Yy, then p =1,

Proof. Since M is connected.
So there is a path v : [0,1] — M from p to ¢ and let

A= {t e 0.Ue((®) = v, ()5 = ()} -

Consider a small neighborhood V' of p, such that go‘v , w’v are isometry.
Then f: @ tot:V — W is an isometry with f(p) = p, fxp = Id.
By Local Cartan-Ambrose-Hicks theorem, we have

f(q) = exp, old o exp, ' (q) = q.

Therefore f =1d, i.e.A is open, and the closeness of A is obvious since ¢, are smooth.
Hence A =[0,1],i.e.0 = . O

Thm 8.18 (Uniformization). Let (M,g) be a complete Riemannian manifold with constant
sectional curvature K, then (M,g) is isometric to M /T, where M is one of the model spaces
R™, S™(r),B"(r) and I' C Iso(M, gean) is discrete and acts freely.
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Proof. Let <M ) f]) be the universal cover of M and My be the corresponding model space.

If My =R" or B"(r) and K <0, fix p € My, p € M and linear isometry &g = T, My — TI;M.
Consider the map )
Y= expﬁoq)oexp;1 My — M

By Cartan-Hadamard theorem, ¢ is well-defined.
And By local Cartan-Ambrose-Hicks theorem, ¢ is local isometric.
Moreover, ¢ is isometric by theorem 8.3 and theorem 8.1.
If My =5"(r) and K >0, fix p € My,p € M and linear isometry ® : T, My — TZ;M.
Consider the map
¢1 = exp;o®g o e>(p1;1 S (r)\{—p} — M.

Then by local Cartan-Ambrose-Hicks theorem, ¢ is well-defined local isometry.
Choose another point m € S"(r)\{£p} and set m = p1(m).
Define Vo = (dy1)m : TnMo — T M and

@2 = exp,; oWg o exp,l s S*(r)\{—m} — M.
Since W = S"(r)\{—m, —p} is connected and
®1 (m) = @Z(m) = Th, (dQOQ)m = ¢0 = (ngl)m

So by Cartan-Ambrose-Hicks theorem, ¢1 = @2 on S™(r)\{—p, —m}.

Now we define
o = Jeie) 2 eS N\ {-p}
2 {m@c) v € S\ {m)

Hence ¢ : S™(r) — M is local isometry and by theorem 8.3 and theorem 8.1, ¢ is isometry.
O

Coro 8.9. Let (M,g) be a complete Riemannian manifold with constant sectional curvature
K =1. If dimg M = 2024, then M = S?024 o1 M = RP?0%,

Proof. By the theorem, M = S2024, .
And if M is orientable, then 71 (M) = {e},i.e.M = M.
If M is not orientable, then 71 (M) = Zo, i.e.M = S?0% /7, =~ RP2024, O



Chapter 9

Radial distance function

9.1 Elementary computations

Prop 9.1. Let (M, g) be a complete Riemannian manifold, p € M,U = M\cut(p).
For any q € U, we define the distance function r: U — R, r(q) = d(p,q), then

(1) r is continuous.

(2) r is C* over U\{p}.

(3) r% is C™ over U.

(4) 7(q) = |exp, ' (9)|-

(5) Vr is defined intrinsically on U\{p}.

Proof. In normal coordinate (z!,---,2") centered at p, the unique geodesic vy with v(0) = p

and +/(0) = v is given by
Yo(t) = (toh, - t™).

So forq:(qu... 7qn> GU,

]
Def 9.1. In normal coordinates (x!,--- ,2™) around p, the radial vector field over U\{p} is
or 0 zt 0
Or = Ozt Oxt Z r Ozt

Remark 9.1. 0, is invariant under the orthogonal transform, but it is not defined in general
coordinate system.

Thm 9.1. On U\{p},

(1) 10:| =1
(2) Vr = 0,.

80
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Proof. (1) In normal coordinates (x!,--- ,2") centered at p € M, for ¢ = (¢,--- ,q"),

exp, () =) ¢

r(g) =/ > (g%

0
ozt »

Let b = r(q), then

tq! tq™ i
fY’U(t):<b77b 787"‘(]:%@21

And since 7, is unit-speed geodesic.
So [0y = |y, (b)| = 1.

(2) We shall show 0, is orthogonal to the level set of r, so that Vr is parallel to 0,.
Let ¥ = exp,(0B(0,b) N X(p)) C M.
We show that for any ¢ € ¥ and w € T, M tangent to 3 at p,

g (&!q,w) =0.

81

Let ¢: (—¢,e) — X be the smooth curve with ¢(0) = ¢,¢'(0) = w and |¢(s)| = b, consider

w(8> = 87»‘0(5) = Z 611(78) azi

c(s)
And we define a family of geodesic « : [0,b] X (—¢,e) — U by

cl(s c"(s
a(t, s) = exp,(tw(s)) = (t b( ), ’t b( )>

By Gauss lemma 3.1, since |w(s)| = 1, we can obtain

9 9\ g
“\ae) " \os )/ =T
Note that
0 [t (s)) t(c"(s)) _[dd dc” o
a*(88>(b70)_< b 7"'7T (b70)_ Ev' 7d8 O_C(O)_wa
0 cH(0) c™(0)
a*<81€)(b’0)_< R s )—w(O)—8r|q.
Hence g ((’Mq ,w) =0.
On the other hand,
(a0 o 0N\ or abak
g(o,vr) _g<r8xi’g o ou) = ramt = X =1=0 (0

k

Hence ar|q —Vr=0.

Coro 9.1. In normal coordinates {z',--- , 2"} centered at p € M

. ar\q).
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(1) Zgiﬂj =z
J

0gi
(2) Gim = bim — Y 570!
2 :agl_] j_ agmj "
(3) oxt

J

agl ,L 89771 ’L
(4) Z J 2= axlj 2 =0
7j

(5) ZFinxj =0
Z'7j

(6) V.0, =0 over U\{p}.

Proof. (1) ‘ ‘
Uaii = =0, = ‘/I’i 0
I O vr=2o r Ozt
Zgijxi = xj, i.e. Zgijxj =z
i J
(2)
3% o
zm axm Z + glm7
agl] J 89m]
= 6 im = 5mz mi — = 1
Z ﬁmm —9 g - ox’
(3) 5 5
gZJ j % T T () — gmj J ,.m
9@ = D _Oim = gim)a’ =2 =} gmia > o
,] 1 (3 ,]
(4)
i 9 0gik Q%k 89ij i g
ZF iy = Z(@xﬂ D Dk 'z = 0.
(5)

2 (0 [\ 0 I 0 2t (6;r% — 2i2t) 0
r = — —_— — —_— 7]:1]{;7 = Y — = U.
Vo9 Z r <8xl (r ) 0xJ + r Y 81"“) Z r4 OxJ 0

.3 ]

Thm 9.2. Let (M,g) be a complete Riemannian manifold, p € M,U = M\cut(p) and v €
2(p)\{0}, then

(1) The differential of exp, satisfies
(dexpy)ew(v) = 7, (1),

where v € Ty, (TyM) = T, M, v, (t) € Ty M
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(2) For any € € T,M = Ty,(T,M), we have
g ((dexpp)ew(v), (dexpy )i (€)) = g(v, )
In particular,
(1) For any t € 0,1], we have |(dexp,)w(v)| = [v].
(2) If € L v, then (dexp,)w(v) L (dexp,)w(£).

Proof. (1)

Yot +5) =7, (8).
s=0

(dexpy)n(v) = %

exp,,(tv, sv) = T

s=0 s

(2) Consider the variation
a(t, s) = exp,(t(v + 5§))

Then its variation field is the Jacobi field

- (8)

with J(0) =0, J(0) =&, so

= (dexp,)iw(t€)
b=0

(J(£),7' (1)) = £(J'(0),7(0)) = (&, v).

Hence the proof is completed.

Prop 9.2. (M, g) is complete, p € M,U = M\cut(p).
Let J(t) be the Jacobi field with J(0) = 0, J'(0) = a, then in normal coordinates (z*,--- ,2™),

0 .0
J(t) = oy <8s) . ;ta B

And o(t, s) = exp,(t(v + sa)) = (t(v + sa'), -, t(v™ + sa™)).

§= 'Vv(t)
Proof. Trivial. O
Def 9.2. Define #; € I'(M, T*M @ TM) as

9(#;(X),Y) = (Hess f)(X,Y).

Prop 9.3. For X e I'(M,TM),
A (X)=VxVf.

In particular, we have
#-(0r) =V, Vr =Vpy.0, =0.

Proof. For any X, Y € I'(M,TM),
Xg(V1Y)=g9(VxVLY)+g(VfVx])

So
g(VxVLY)=X(Yf) - (VxY)f = (Hess [)(X,Y) = g(Z;(X),Y).
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Prop 9.4. Locally,
H; = ¢V, V,fda’ ®

oxk’
Proof. let

o o
%f (2 L ® ax‘j
Then by definition,

0 0
Mg, = — ), == ) =W,V .
915 =9 <%’} <8x2) , (W) if
This concludes the desired formula. O

Prop 9.5. Let (M,g) be a complete Riemannian manifold, p € M,U = M\cut(p) and r is the
radial distance function on U, suppose J is a normal Jacobi field along ~y, with J(0) =0, then

(1) For any t € (0,b],
Z(J(t) = J'(t), 2 (7,(t)) = 0.

(2) In particular, for any W (t) along v with W(0) = 0,
(Hess 7)(J(s), W(s)) = (I5,), (J; W) :/O (J',W') = R(J,5/', v/, W)dt.

0
Oxt p'

In normal coordinates {z!,--- 2"} centered at p € M,

Proof. (1) Suppose J'(0) = a = a’

J(t) = ta’

ozt ()

Then we have

. . J
+ta'V a ai =|d"+ tazFfj dy 8k
X Yo (t) dt ax Yo (t) dt 8$

(t)
-, tv™) and
r((t)) = d(p,(t) = |exp, ' (1(£))| = |tv] = t.

So

x) 0
0=V s00 = Ty, (25

ozt

tat  tatzizd 0 ] 0
(1 Dtk (1) <2
< r 7-3 > s + a r (’Y'U( ))6xk

And since J(t) is normal Jacobi field
So (J(t),7'(t)) = t(a,v) = 0.

Hence we have
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(2)
(Hess r)(J(s), W (s)) = (J (), W(s)) = (J'(s), W(s)) — (J'(0), W(0))
_/0 (1), W (1)) dt
=Alﬂmﬂw»+uwmvat
—1,+(J, W)

9.2 Metrics on manifolds with constant sectional curvature

Thm 9.3. Let U be a geodesic ball around p € Sit, v be the radial distance function, ¢ € U and
(x',--- ,2™) is normal coordinates centered at p, then

gr = dr @ dr 4 sni(r)g,
where § is the induced form by U\{p} — R™\{0} — S"~L.

Proof. We set
ge = dr @ dr + sni (r)g.

For ¢ € U\{p} and w € T, M, we shall show that
gk (w, w) = ge(w, w).
For w = Vr = Or, we have
ge(w, w) = 1, ge(w, w) = (dr ® dr) (9, &) + sng(r)§(dr, 0y) = 1.

For w L O, o (dr)(w) = g(0r,w) = 0 and so (dr @ dr)(w,w) = 0.
Let b = d(p, q), then

glw,w sn? ;
gel, ) = s 0)g(, ) = sz () 205120 = L 52

Assume 7 : [0,b] — U is a unit-speed geodesic connecting p and ¢ and J is a Jacobi field
along v with J(0) =0, J(b) = w.
By proposition 7.3, let J(t) = ¢ - sng(t)E(t), then
gr(w,w) = [T (b)]5, = *sni(b) = [J'(0)]

9k

sn2 (b).

And let J'(0) = a' , therefore

9
oxt

Hence




CHAPTER 9. RADIAL DISTANCE FUNCTION 86

Prop 9.6. Let U be a geodesic ball in Si, around p and r be the radial distance function, then

_ swy(r)
sng(r)

T

where m. : T,ST — W C T,S and W is the orthogonal complement of 8T|q.
In particular,
Hess 7 = snj,(r)sng(r)g,

. (n sny,(r)
A ( 1 sn(r)’

/
Ar? =24 2(n — 1)Tsnk(r).
sny(r)

Proof. Consider the parallel vector field E(t) along v : [0,b] — M with (E,+) =0, |E| = 1.
Then J(t) = c¢-sng(t)E(t) is the Jacobi field with J(0) = 0 and J'(0) = cE(0).
By proposition 9.5,

H(J(t) = J(t) = ¢ snf()Et), i.e. H(E(t)) = ) .

sy (1)
And by theorem 9.3,
sny (1) / X
(Hess r)(X.Y) = g((X).¥) = SE gl (X).¥) = snf (r)sni (1) (X.Y)
Moreover, in orthonormal basis (E1 (t), -, En_1(t), 5%), trm,. =n — 1 and so
B _ snp.(t)
Ar=trZ = (n 1)snk(t)’

Ar? = 2rAr +29(Vr, Vr) = 2rAr + 2.
U

Prop 9.7. Let (M, g) be a complete Riemannian manifold, p € M,U = M\cut(p) and r be the
radial distance function on U, if
()
sng(r) "

holds on U\{p}, then (M, g) has constant sectional curvature k.

Proof. Let ~ : [0,b] — U be a unit-speed curve with v(0) = p,J is a normal Jacobi field with
J(0) =0, then

= () = )
sng ()

So is a parallel vector field, let

J
sny(t)
J
snk(t)

Similar to the proof of theorem 9.3, we have ¢ = dr ® dr + sni (r)

= cE(t).

Na)Y
I

N

x
|



Chapter 10

Comparison theorem and
applications

10.1 The Rauch comparison theorems and applications

Thm 10.1 (Rauch comparison theorem). Let (M, g), (M, §) be two Riemannian manifolds and
peM,pe M,U= M\cut(p),U = M\cut(p),2 < dim M < dim M.
Consider unit-speed geodesics 7y : [0,1] — M and 7 : [0,1]] — M, suppose

(1) for any t € [0,1] and any planes ¥ C T, )M, ¥ C Tﬁ(t)M such that +/'(t) € ,7'(t) € 3,
Ks(v(1) < Kg(3(1))-
(2) 4(0) has no conjugate point along ’y|[07l].
Then for any two Jacobi fields J, J along v,5 resp. such that
19(J'(0),7'(0)) = 3(J(0),7(0)),

J(0) = ¢y/(0), J(0) = ¢¥/(0), |J'(0)| = |J'(0)

we have ‘j(t)‘ < |J(t)| fort €[0,1].

Proof. We first assume J(0) = J(0) = 0, g(J'(0),~'(0)) = §(J'(0),7(0)) = 0.
Since 7 has no conjugate points along Yo -

So 72 is well-defined on (0,1] and

|77

P (L)

= lim = lim

P—If(l) /]2 =0 <j7 j,> -0 <j, j//> n

Therefore it suffices to show that

/ ~12 - o~
g2 J| (I Ty = (T DI
Y,

=

~|2 ~14
g 7

We want to show

i
2 )

87
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For fixed s € (0,1], we assume J(s) # 0 and define

Then |W,(s)| = ’Ws(s)’ —1 and

LTy WLWY L) VL)
P S

Moreover,

t=s

_ / (W, W) — R(Wa, A, We)dt
0

(J'O, T [ s s
w _/0 <WS,WS>—R<WS,7,7,WS>dt

t=s

Choose parallel orthonormal frames {e1(t) = 7'(t),e2(t) = Wi(t), -+ ,en(t)} along v and
{er(t) = 7'(t), ea(t) = Wi(t), -+, ém(t)} along 7.

Let "
t)=> X(t)ei(t)
i=1
and define a vector field V along 4 with
V()= XN(t)el(t
i=1

Then V (s) = é3(s) = Wy(s) and so by corollary 7.7,

(J'(1), J (1))
(1))

_ /O ) (v, V’}g — R(Ws, 7/, Wy)dt

> /0 ) (7.7) R (V. V) i

> [ (W)~ R (W' a

t=s

For the general cases, let

J(8) = Ju(t) + (Lo (O (1), () = Ji(t) + (1.7 (£)7'(t).

So
T2 = |12+ (A ()]

(J(£),7' (1) = {J ( )7 (0)) + t(J(0),7(0)) = (J(0),7'(0)) + t{J"(0),7'(0)) = (J(t),7'(2)).
Hence |J|? > ‘

[
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Coro 10.1 (Jacobi field comparison). Let (M,g) be a complete Riemannian manifold p €
M,U = M\cut(p), v :[0,b] = U be a unit-speed geodesic with v(0) = p and J be any normal
Jacobi field along v with J(0) = 0.

(1) If the sectional curvature Ky; < k, then
[ T(8)] = sng(t)|J'(0)]
for all t € [0,b1], where by = b if k <0 and by = min(7R,b) if k = R~2 > 0.
(2) If the sectional curvature Ky; > k, then
|J(t)| < snk(t)‘J'(O)‘.
Coro 10.2 (conjugate comparison). Let (M, g) be a Riemannian manifold with sectional cur-
vature Ky < k, then
(1) If k <0, then M has no conjugate point.
(2) If k = #, then there is no conjugate point on any geodesic shorter than wR.
Proof. (1) See proposition 7.4.

(2) Let v :[0,b] = M be a unit-speed geodesic and J be a nontrivial normal Jacobi field along
v with J(0) = 0.

By corollary 10.1,
t
|J(t)] = sng(t)[J'(0)| = Rsin(R) |J'(0)].

So if t € (0,7R), then J(t) # 0.
g

Coro 10.3 (metric comparison). Let (M, g) be a Riemannian manifold with dim M = n and
(U, z") be a geodesic ball for g around some point p € M.
Consider the constant sectional curvature metric g, = dr @ dr + sn2(r)g on U\{p}.

(1) If Ky < k, then for any ¢ € U\{p} and W € T,M,
gW, W) = gi(W, W).
Here if k = % > 0, we need the condition dy(p,q) < TR.

(2) if Ky >k, then for any ¢ € U\{p} and W € T, M,
gW, W) < gi(W, W).

Proof. (1) Since 0, is a unit vector w.r.t. both g, and g.
So we only consider w € T, M with w L 0,.

Consider a unit-speed geodesic v : [0,b] — U with v(0) = p,v(b) = g and Jacobi field J
along v with J(0) =0, J(b) = W.

By corollary 10.1, )

g(W, W) = [J(0)[5 > sz (v)]J'(0)], .

And since 7 is also a geodesic for gi

Hence by proposition 7.3,
g (W, W) = |k (0)[2, = s} (b)]J' ()2 < g(W, W).
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Coro 10.4. Let (M, g),(M,§) be two Riemannian manifold with Ky < K.

Fizpe M,p € M and a linear isometry ®o : T,M — T5M.

Suppose 0 < § < min(inj, M, inj; M), then for any curve a : [0,1] — exp,(B(0,6)) and
& = expj 0Py o exp, ! o 1 [0,1] — M,
we have |o/| > |&'| and so L(a) > L(&).
Proof. Let ¢(s) = exp;l(a(s)) and é(s) = expgl(d(s)), then
&(s) = Po(c(s))-
And we have geodesic variants
Blt,s) = exp,(te(s)), B(t, 5) = expj(te(s))

For fixed sg € [0, 1], consider geodesics vy, (t) = B(t, s0) and s, (t) = B(t, s0).

Then 74, (0) = c(s0), 74, (0) = &(s0)-
Consider their Jacobi fields

Jal) = B, (;’)

Iso (O) =0, J;O (0) - CI(SO)v Jso(l) = (d epr)c(so)(C/(so)) = a/(SO)
jSo(O) =0, jso(o) = 6/(50)7 jso(l) = 6/(50)
T4, (0)

Then

So we have |J} (0)| = and

(J00/(0) 75, (0)) = (& (s0), &(s0)) = {J4,(0), 75, (0)).-

Hence |J,, (1)] > |J4, (1)

Li.e]d!(so)| = |& (s0)]- O

Coro 10.5. Let (M, g) be a complete Riemannian manifold and suppose there exist C1,Cy > 0
such that C1 < Ky < Cs.
Let v be any geodesic in M and | be the distance between two consecutive conjugate points

along v, then
™

™
< —.
Vs Nen

) — M has no critical point.

<l

s

In particular, exp, : B (O, o

Proof. Let p,q be the consecutive conjugate points along ~y : [0,I]] — M and J be the normal
Jacobi field along v and J(0) = 0.

WLOG, we assume + is a unit-speed geodesic.

For (M,g) = (S™(72), gean), Where ro = \/C’;l, Ky < K.

Let 5 : [0,7r2] — M be a unit-speed geodesic connecting poles and J be a normal Jacobi
field along 7 with J(0) = 0, ‘j'(())] = |7(0)].

Since 4 has no conjugate point.

So by theorem 10.1, |J(¢)| > ‘j(t)‘ for t € (0,7r2),.e.l > 7ra.

For (M, §) = (8™(r1), gean), where 71 = \/C7 !, Ky > Jip-
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Let 4 : [0,7r] — M be a unit-speed geodesic connecting poles and J be a normal Jacobi
field along 7 with J(0) = 0, ‘j/(())] — |7(0)].

Suppose [ > 7ry.

Then « has no conjugate points.

So by theorem theorem 10.1 ‘j(t)‘ > [J(t)| but J(mry) = 0.
Therefore J(7wr) = 0, contradiction! O

Lemma 10.1. Let (M, g) be a complete Riemannian manifold and p € M, then for any closed
geodesic ~yy passing p, we have

L(v0) = 2d(p, cut(p)).
Moreover, suppose Iq € cut(p) such that d(p,q) = d(p, cut(p)).

(1) Then either q is conjugate to p along some minimizing geodesic connecting p and q, or there
are ezactly two minimizing geodesic y1, 72 : [0,b] — M from p to q, such that v} (b) = —~4(b),
where b= d(p, q).

(2) If in addition that inj,M = inj(M), and q is not conjugate to p along any minimizing
geodesic, then there is a closed unit-speed geodesic vy : [0,2b] — M such thaty(0) = ~v(2b) = p
and y(b) = q where b = d(p,q).

Proof. (1) Suppose ¢ ¢ conj(p) and 71,72 : [0,b] = M are two different minimizing geodesics
from p to g such that v (b) # —~+5(b).

WLOG, let b = 1.
Then there exists w € T; M, such that

(w,71(1)) <0, (w, (1)) <0.

And since q is a regular value for exp,), i.e.d exp,, is nonsingular at v;(0),v5(0).

So for small s, there exists smooth curves v;(s) € T,M, such that
03(0) = 74(0), exp, (vi(s)) = exp, (sw).

Consider the variations
a;i(t, s) = exp,(tvi(s)).

Then similar to corollary 7.1, we have

% _ Haafe,s)) = <(‘“)* (085)

Therefore for small s, L(c;(e,s)) < L(v;) = d(p, q) and vi(s) # va(s).
Hence exp,, is not bijective in ¥(p), contradiction!

9) Since ini M — ini(M) — inf ini M.

(2) Since inj,, inj(M) qlélMlnjq

So d(p,cut(p)) < d(q,cut(q)), and there are two minimizing geodesics from p to ¢, say
1,72 1 [0,0] = M, s.t.41(b) = —~4(b).
On the other hand p € cut(q), i.e.d(q, cut(q)) < d(q,p) = d(p, cut(p)).
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Therefore d(q, p) = d(g, cut(q)), i.e.71(0) = —3(0).
Consider (t) = 1 - 75 *, then

7(0) =7(2) = p,7(b) = ¢.7'(0) = 71(0) = =3(0),7'(b) = 71(b) = —72(D).

Hence 7 is a closed unit-speed geodesic.

Thm 10.2 (Klingenberg’s estimate for injective radius). Let (M, g) be a compact Riemannian
manifold with Ky < C where C > 0, we define

I(M,g) =inf{L(v)|y is a smooth closed geodesic in M}
Then inj(M) > TG Oor inj(M) = %_
Proof. Consider p,q € M such that d(p,q) = d(p, cut(p)) = inj(M).

If p, ¢ are conjugate to each other, then by corollary 10.5, d(p, q) > %

If ¢ is not a conjugate point to p, then by lemma 10.1, there is a closed geodesic 7 : [0, 2b] —
M with y(0) = p,~v(b) = q.

So (M, g) < 2b = 2inj(M).

And since every closed geodesic contains a cut point.

Hence inj(M) = “219), O

Exam 10.1. In (S' x S, gean), Ky =0 < C for any C > 0.
So inj(M) = 2F = .

10.2 Hessian comparison and Laplacian comparison theomem

Thm 10.3. Let (M,g) and (M,g) be two Riemannian manifolds with dim M = dim M,

peM,pe M and U = M\cut(p),U = M\cut (p).

Suppose v : [0,b] = U and 7 : [0,b] — U are two unit-speed geodesics with v(0) = p,v(b) = ¢
and 5(0) = 5,5(5) = 7. S

If for any t € [0,b] and any planes ¥ C TyyM and X C TypyM with +'(t) € ¥,7'(t) € X,
the corresponding sectional curvatures satisfy

Then for any X € T,M,X € T;M with | X| = ‘)N(’ =1and X L ~(b), X LA(),
Hess r(X, X) < Hess 7 (X,X) .
In particular, for t € (0,5,
(An) () < (A7) (1)

Moreover, if the identity holds for all t € (0,b], then Kx(v(t)) = Kg (3(t)).

Proof. Let (e1(t), -+ ,en— 1() en(t) = 4'(t)) be a parallel orthonormal frame along v and
(e1(t), - ,en_1(t), € ( ) =4(t)) be a parallel orthonormal frame along 7.

We assume at point (b ) 3(b), (X, es(b)) = (X,&;(b)) fori=1,--- ,n—1.

Let J be the Jacobi ﬁeld along v with J(0) = 0,.J(b) = X and J be the Jacobi field along
7 with J(0) = 0, .J(b) =
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Then J(t) L +/(t), j(t)
1

7' (t) for every t € [0, b].
)é

If we write J(t) = ' NE()€;(t), then
n—1 n—1 n
X =Y (Xe®ed) = Y- (X.ab)) eib) = > X ()ei(b).

Set Z(t) = Z Ai(t)e;(t) along 7.
Then Z(0 )—0 Z(b) = J(b) = Z and

n—1 n—1
70| = | an)| = 0| =2
i=1 i=1

So by proposition 9.5 and corollary 7.7,

(Hess 1r)y(X, X) =1,(J,J) < I,(Z, Z)

,j) (Hess 7) (

><

|
5
VS
N

O]

Coro 10.6. Let (M, g) be a complete Riemannian manifold, p € M,U = M\cut(p) and r is the
radial distance function.

(1) If Ky < k, then on Ug\{p},

where Uy = U if k <0 and Uy = U N Byr(0) if k = R~2 > 0.

Moreover, if the identity holds on Uy\{p}, then g has constant sectional curvature k on

Uo\{p}-
(2) If Kpr > k, then on U\{p},

Moreover, if the identity holds on U\{p}, then g has constant sectional curvature k on

U\{p}-

Proof. The result follows from proposition 9.6 and theorem 10.3. O
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Thm 10.4 (Laplacian comparison theorem). Let (M, g) be a complete Riemannian manifold,
p € M,U = M\cut(p) and r is the radial distance function.
If there exists some constant k € R such that

Ric(g) = (n — 1)kg,

then the following inequality holds on U\{p}

~—

/
Ar < (n — 1)

~—

sny(r
Moreover, if the identity holds on U\{p}, then (M, g) has constant sectional curvature k.

Proof. Let ¢ € U\{p}, 7 :[0,b] = U be a unit-speed minimal geodesic with v(0) = p,v(b) = ¢
and (e1(t), -+ ,en—1(t),en(t) =+(t)) be a parallel orthonormal frame along ~.
By proposition 9.5,

Ar(q) = i(Hess ) (ei(b), ei(b)) = ZIW(Ji, Ji),

where J; are Jacobi fields on v such that J;(0) = 0, J;(b) = e;(b).

Let M = SP',p € M,U = SP\cut(p), 7 be the radial distance function on U, 7 : [0,] — U
be a unit-speed geodesic with (0) = p,5(b) = ¢ and (é1(t),-- ,€n(t) = 7'(t)) be a parallel
orthonormal frame along 7.

Similarly, we define Jacobi fields .J; along 4 such that .J;(0) = 0, J;(b) = e;(b), then

n—1 n—1
A#(@) = Y (Hess 5)(@(b), &) = 1 (Ji, )
i=1 1=1

And by proposition 9.6, Ji(t) = f(£)&(t) where f(t) = 2L so

Af(d)zgfob<

We set Z; = f(t)e;(t), by corollary 7.7,

b
| - & (jz-(t)ﬂ’(t)ﬂ'(t),Z(ﬂ)) at=(n=1) [ (rO]=kr)

n—1 n—1
Ar=>"1(Ji, Ji) <Y I(Zi, Zi)

=1 =1
n—1

=X [ (1208 - Rz0.4/ 0.7 0. 20)) a
i

=3 [ (10 - 1#OP R0, 0,7 0),000)
=1

b 9 b
= / (n— D]/ at - / fPRic(y'(£),7'(t))
0 0

b 9 B
<(n—1) / (@) - k£t = Ar()

Moreover, if Ar = (n — 1)Sn;’:(r) then
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On the other hand, by Bochner formula,
1
0= §A|V7‘]2 = |Hess r|? + Ric(Vr, Vr) + 0.Ar = 8,(Ar) + |Hess 7|* + (n — 1)k.

So we have

[\

(Ar)
n—1

> [Hess r|*.
And by Cauchy-Scharwz inequality,

(Ar)? < (n — 1)[Hess r)°.
Since

g(g,dr @ dr) = ]dr\2 = 1,¢g(Hess r,dr ® dr) = Hess r(9;,0,) = 0.

Therefore we obtain

/ 2 / /
Hess r — su (r) (g —dr@dr)| = |Hess r|* + (n — 1)snk(7“) - 2snk(T)Ar = 0.
sny(r) sng(r) sng ()
Hence ' ()
sn} (7 .
Hess r = sn:(r) (g — dr @ dr) = snj(r)sng(r)g.

O

Coro 10.7. Let (M, g) be a complete Riemannian manifold with nonnegative Ricci curvature,
p € M,U = M\cut(p) and r is the radial distance function, then on U\{p},

n—1

Ar < ,Ar2 < 2n.

Proof. directly follows from the Laplacian comparison theorem. O
Lemma 10.2 (Ricatti comparison principle). If f: (0,b) — R is a smooth function satisfying
f(t) =1+ 0(1) and for some k > 0 with b < %,

fr+ P+ k<0,

then for any t € (0,b),

Proof. Let fi(t) A0

sng(t)
Then fi(t)

1 +0(1) and
it fA+k=0.

Consider a smooth function F : (0,b) — R such that F(t) = 2log(t) + O(1) and
F'=f+ fi

Since
S 1) = " it £ D) <0

So efi(f — fi) is decreasing and

lim e (£(t) — fi(t)) = 0.

t—0

Hence f(t) < fi(t) for t € (0,b). O
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Lemma 10.3. Let (M, g) be a Riemannian manifold, (U,x%) be a geodesic ball chart around a
point p € M with normal coordinates {z'} and r be the radial distance function, then on U\{p},

Ar = 0, log (r”fl\/(th) .

Moreover, for unit-speed geodesic v : [0,b] — U with v(0) = p, let f(t) = (Ar)(y(t)), then

n—1
t

£(t) = +0(1).

Proof. In normal coordinates (z!,---,2"), by corollary 4.4 and corollary 9.1,
1 0 y or 1 0 y xJ
— ij ij il

ar \/78xi (9 det(g)ay') Waxz (9 det(9)= )

o i
—/det E — E det
\/ det 8331 ( ‘ > o’ ( > \/det e ( ¢ (g))
_n-1 + ! Orr/det(g) = 0, log <rn_1\/detg>

r det(g)

Let 4/(0) = v, then

So

n—1 d n—1 1 ..0g;dy"
t) = + —log +/det(g) = 4 ogi L
f®) r(y(t)) dt 0g /det(g) t 29" 9k at

Alternative proof of Laplacian comparison theorem. By Bochner formula,
1
= §A|V7’| |Hess r|* + Ric(Vr, Vr) + 8,Ar > 8,Ar + |Hess r|> + (n — 1)k.

And by Cauchy-Scharwz inequality,
(Ar)? < (n — 1)[Hess 7)°.

So

Oy (Ar) + (nA?f +(n—1)k<0.

For any unit-speed geodesic v : [0,b] — U with v(0) = p, let
(AnG(D)

n—1

ft) =

Then by lemma 10.3 and Ricatti comparison principle,
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10.3 Volume comparison theorems and applications

Def 10.1. The metric ball of radius ¢ is defined as
B(p,6) = {q € M|d(p,q) < d}.
Lemma 10.4. Let (M, g) be a complete and connected manifold, p € M, then for any § > 0,
exp,(B(0,6) N X(p)) C B(p,d) C exp,(B(0,9) N X(p)) Ucut(p).
In particular, under the trivialization map
P S R0} = T,M\{0) = B(p.8)\{p}.

where ®(p,w) = pw, we have

0
Vol (B(p5) = [ [ s/t exp (0(p,0))" dpavolg
Proof. Since cut(p) is of measure zero, so

Voly(B(p, 6)) =Voly(exp,(B(0,6) N X(p)))

= / exp,,(dvoly)
B(0,6)nX(p)

= / XE(p) exp; (dVOlg)
B(0,

5)
6
= /S » /0 Xx(p) vV det(g) exp, (®(p, w))p"~ dpdvolgn—

O

Coro 10.8. Letp € S};.

(1) If k <0, then for any 6 > 0,

Vol, (B / / snk p)dpdvolgn-1.
S§n—1
(2) If k= R=2 > 0, then for any § > 0,
Voly, (B /S » / XB(0,xR) * S0 L(p)dpdvolgn-1.
Proof. directly follows from lemma 10.4. O

Lemma 10.5. Let (M, g) be a complete Riemannian manifold, (U, z') be a geodesic ball chart
of radius b with normal coordinates {x'}.
For each fized w € S*~Y, the volume density ratio is defined as

de oexp,(P(p,w
Mpow) =" t:n;; l(pl)ap( (p,w))

(1) If Ky < k, then A(p,w) is increasing in p € (0,by), where

b k<0
bo = :
min{b, TR} k= gz

Moreover, lim A(p,w) = 1.

p—0
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(2) If Ky > k or Ric(g) > (n—1)kg, then A(p,w) is decreasing in p € (0,b) and lin}) AMp,w) =1.
p—>

Proof. By lemma 10.3 and corollary 10.6,
s (r) _
sng(r)

Or log (7“"_1 det(g)) =Ar>(n-1)

So along each radial geodesic v = exp,(®(e,w)),

rn=ty/de
< (los(A »w=i<Mg(Eﬂ$i§”)own>>u

Hence A(p,w) is increasing in p € (0, bp).
And when p — 0,
p .
——— — 1,4/det(g) — 0,i.e.\(p,w) — 1.
e @ (p,)

The proof of (2) is similar.

Lemma 10.6. Let f : [0,+00) — [0,400) and g : [0,4+00) — (0,400) be two integrable
functions, if

]
= & : [0, 4+00) — [0, 400)

F(t) = Jo F(7)dr [0, +00) — [0, +00)

18 nonincreasing.
Moreover, if there exists 0 < t; <ty such that
F(t) = F(ta),
show that A(t) = A\(t1) for all t € [0, t3].
Proof. Since for 0 < t,

f(r) _ f(t)

9~ g’
So .

F(t) fo T fo );(t)g( )dr — (1)
fo T fo g(T)dr

And for t <7 < s,

Fr) _ 1)

g(r) ~ g(t)
Therefore
F(s) = BI04 y F0dr A ﬁ \k mdr + F(t ﬁ "~ F).

Jo g(r)dr fo T)dr + [ g( fo T)dr + [} g(

Hence F'(t) is nonincreasing.
And assume there exists 0 < ¢; < t9 such that

F(t1) = F(t2),

then f(7) = A(t1)g(7),i.e.A(t) = A(t1) for every T € [0, t2].
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Thm 10.5 (Bishop-Gromov). Let (M, g) be a complete Riemannian manifold with
Ric(g) > (n — 1)kg

for some k € R.
Suppose p € M, B(p, ) is a metric ball and gy, is metric with sec =k on B(p,)\{p}.

Then the volume ratio
Voly(B(p, d))

Voly, (B(p, 9))

is monincreasing for § € RT and

lim VO]!](B(p7 5))

— 5 = 1.
5—0 Volg, (B(p,9))

In particular,

Voly(B(p, ) < Volg, (B(p,d)),

Moreover, if there exist 0 < 61 < 2 such that

VOlg(B(p,(Sl)) _ VOIg(B(p752))
Voly, (B(p,61))  Volg, (B(p,d2))’

then
Voly(B(p, 8)) = Voly, (B(p. 5))

for any ¢ € [0,062] and g has constant sectional curvature k on B(p,d2).

Proof. If k < 0, by lemma 10.4 and corollary 10.8,

Voly(B(p,d)) _ 1 Sy X2) V/det(g) © exp, (®(p, w))p"Ldp

dVOlSnf 1.

By lemma 10.5 and lemma 10.6, it is nonincreasing.
If k=R >0, then

Voly(B(p,d)) 1 Jo Xsp) v/det(g) o exp, (@ (p,w))p"dp
VOlgk (B(p, 5)) VOI(Sn_l) §n—1 f()é XB(O,T(R) . Snzil (p)dp

dVOlSnf 1.

By Myers’ theorem, diam(M,g) < 7R, i.e. X(p) C B(0,7R).
So the volume ratio is nonincreasing.
Assume there exist 0 < §7 < d2 such that

Vol,(B(p, 61)) _ Voly(B(p, 2))
Voly, (B(p,61))  Volg, (B(p,d2))’

If £ <0, by lemma 10.6, for any p € (0, d2),

n—1

Xs(p) vV det(g) o exp,(®(p,w))p
s (p)

Il
=

So B(0,8,) € S(p).

By lemma 10.3 and Laplacian comparison theorem,

sy, (7)

Ar=(n-— l)snk(r)

99
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and so g has constant sectional curvature k on B(p, d2).
Suppose k = R™2 > 0, if 3 < 7R, then for p € (0,d5),

n—1

Xz (p) vV det(g) o exp,(®(p,w))p
XB(o.xR) SN} (p)

Il
—

So B(0,02) C X(p) and so g has constant sectional curvature k& on B(p, J2).
If 69 > mR, then

Vol (B(p, d2)) = Voly(B(p, mR)), Volg, (B(p, d2)) = Volg, (B(p,7R)).
Hence we obtain the same conclusion. O

Thm 10.6 (Giinther). Let (M, g) be a complete Riemannian manifold with
sec(g) < k

for some k € R.
Suppose p € M, B(p, ) is a metric ball and gy, is metric with sec =k on B(p,)\{p}.
Then the volume ratio

Voly(B(p,9))
Voly, (B(p, 9))

is nondecreasing for 6 € R* and

Voly(B(p, 9))

=1.
5250 Vo, (B(p, 0))

In particular,

Voly(B(p,8)) = Volg, (B(p,d)),

Moreover, if there exist 0 < 61 < 2 such that

VOlg(B(p,(Sl)) _ VOlg(B(p762))
Voly, (B(p, 1))~ Volg, (B(p,62))’

then
Voly(B(p, d)) = Volg, (B(p,d))

for any ¢ € [0, 02] and g has constant sectional curvature k on B(p,d2).
Proof. Similar to theorem 10.5. O

Coro 10.9. Let (M,g) be a complete Riemannian manifold, p € M, B(p,d) be the metric
ball centered at p with radius § and gi be the metric with constant sectional curvature k on

B(p,0)\{p}-
If Ric(g) = (n — 1)kg, then for any 0 < §; < min(d2,d3) < max(de,d3) < dq,

Voly(B(p, r4)) = Voly(B(p,73)) _ Voly, (B(p,4)) — Voly, (B(p,73))
Voly(B(p,r2)) — Volg(B(p,71)) h Volg, (B(p,r2)

Proof. Let
_ VOIQ(B(pa T))

1) = ol (B, 1)

By Bishop-Gromov theorem, f(r) is nonincreasing and liH(l) f(r)=1.
r—

h(r) = Volg, (B(p,1)).
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If r3 > 79, then

If r3 < ro, then since

f(ra)h(ra) = [(r2)h(ra) _ f(r2)h(r2) = f(r3)h(rs)

h(rs) — h(rz) h h(rz2) — h(rs) h(rs) — h(r1) ’
we have
f@ra)h(ra) = f(rs)h(rs) _ f(r2)h(r2) = f(ri)h(r1)
h(rs) — h(rs) h h(ra) — h(r1) '
Hence we obtain the desired formula. O

Prop 10.1 (Gromov). Let (M, g) be a complete Riemannian manifold with Ric(g) > (n—1)kg
for some constant k > 0, then

Vol, (M) < Vol,, (s” (\}E» .

If the identity holds, then (M, g) is isometric to (S” (ﬁ) ,gcan>.

Proof. Let k= R™2.
Then by Myers’ theorem, diam(M, g) < 7R.
So for any p € M, ¥(p) C B(0,7R) and therefore

Voly(B(p, 7R)) = Voly(M),

where B(p, mR) is a metric ball in M.
And since

VOlgk (Sn(R)) = VOle (B(p, WR))‘
Hence by Bishop-Gromov theorem,
Voly (M) < Volg, (S™(R)).

Moreover, if the identity holds, then g has constant sectional curvature on B(p, mR).
Since B(p,7R) = M.

So (M, g) has constant sectional curvature k.

Suppose 7 : S*"1(R) — M is the universal covering, then

Volg(M) = [m1(M)] - Volg, (S"(R)).
Hence |m (M)| = 1,4.e.(M, g) is isometric to (S"(R), gean)- O
There is a generalized quantitive rigidity theorem.

Thm 10.7 (Cheeger-Colding). For any integer n > 2, there exists 6(n) € (0,1) such that if
(M, g) is a compact Riemannian manifold with Ric(g) > (n — 1)g and

Volg(M) = (1 = 6(n))Vol(S"™, gean),
then M is diffeomorphic to S™.

Proof. This is difficult and need some analytic tools so we are not going to prove it. O
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Thm 10.8 (Myers-Cheng). Let (M,g) be a complete Riemannian manifold with Ric(g) >
(n — 1)kg for some constant k = R=2 > 0.
If diam(M, g) = wR, then (M, g) is isometric to (S"(R), gean)-

Proof. There exist points p,q € M such that d(p,q) = 7R.

Then for any § € (0,7R), B(p,0) N B(g, TR — ) = .

And since for any z,y € M, Voly(B(xz,7R)) = Volg(M), Volg, (B(z,mR)) = Volg, (S*(R)),
and Volg, (B(p,d)) + Volg, (B(¢, TR — §)) = volg, (S"(R)).

So by Bishop-Gromov theorem,

Voly (M) >Voly(B(p,d)) + Volg(B(g, TR — 9))

‘ Vol (B(p,mR))
Voly, (B(p, 7R))

Vol,(B(¢q, 7R))
Vol, (B(q,mR))

>Volg, (B(p,9)) + Volg, (B(q, 7R —6)) -
—Vol,(M)
Therefore for any ¢ € (0,7R),

Voly(B(p,0)) _ Vol (B(p,mR)) _ Voly (M)
Vol,, (B(p,0))  Volg, (B(p,7R))  Volg, (S*(R))

Let 6 — 0, we deduce Voly(M) = Volg, (S*(R)).
By proposition 10.1, (M, g) is isometric to (S"(R)), gean)- O

Thm 10.9. Let (M, g) be a compact orientable Riemannian manifold with Ric(g) > Ag, A > 0.

(1) (Lichnerowicz)The first nonzero eigenvalue A1 of A = dd* + d*d satisfies

n

A1 2=
! n—1

(2) (Obata)lf A\1 = ;"5\, then (M, g) is isometric to (S” < ”T_1> ,gcan>.

Proof. (1) Suppose f is a nonzero eigenfunction,i.e. Ayf = —Af = -\ f.

Then by Bochner formula, Cauchy-Scharwz inequality and divergence theorem,

0:/ ;Ag|Vf|2:/ |Hess f|2—I-Ric(Vf,Vf)‘*‘g(vAgf’vf)
M M

>/M Bafl® oy a1

n

—— [ T rAer+ = M)A
M n
= [ VR4 0=l

Hence \; > A

=
(2) If Ay = ;"5\, then

1 A A
SAVIE > A A AP = A (A e,

And since $A,f2 = fA,f + IV f|?, we obtain

1 A

2 2
- A >
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which implies |V f]? + % f? is constant.
WLOG, we assume sup f2 = 1, since Vf = 0 at the extremal point, we deduce

A
-1

f?= A ,sup f = 1,inf f = —1.

2

Let f(p) =1, f(q) = —1, v be a unit-speed minimal geodesic from p to ¢ and u(t) = f(y(t)).
Then outside the measure zero set V = {z € M|f*(z) = 1}, one has

Wl |V

< =1.

2 (1—u?) 21— f2)

n—1

So integral over [0, 1], we have

1 / _
/)|““”<h: n—loci<d
0

Hence by theorem 10.8, (M, g) = (Sn ( "Tfl> 7gcan)-
O

Thm 10.10 (Bishop-Yau). Let (M™,g) be a complete non-compact Riemannian manifold
Ric(g) = 0, then the volume growth of (M, g) satisfies

o n—1
nVol(B(p, 1))r < Vol (B(p.)) < Vol(B(p,r)) = “ )

,,,,Tl

n

for some constant ¢, = ¢(n,r) > 0 depending only on n and large .

Proof. Let x € 0B(p,1+r), then
B(p,1) € B(x,2 + r\B(,7), Bz, r) C B(p,1+2r).
So by corollary 10.9,

Voly(B(p,1)) <Voly(B(z,2+r)) — Volyg(B(x,r))
<V010(B(3:, 2+41r)) — Volg(B(zx,r))
= Volp(B(z,r))

(r+2)"—r"

Voly(B(z, 1))

< Vol(B(z, 1))

QQVOI(B(]), 1+ 2r))
,

Prop 10.2. Let (M™,g) be a complete Riemannian manifold with Ric(g) > 0, if

n—I1
lim Voly(B(p,r)) > Vol(S")

r—00 rn n

Y

then (M, g) is isometric to (R™, gean)-
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Proof. By Bishop-Gromov theorem, the volume ratio

Voly(B(p, 1))
Volg, (B(p, 7))

is nonincreasing and

i Voly(B(p,1))

— = =1.
r—0 VOlgo (B(p, 7’))

And since

Voly, (B(p,7)) = / Vol,, (0B (p, x))dz = Vol(S™™1) / s %VOI(S"_I).
0 0

So we obtain
VOIQ(B(p’ T))

lim > 1.
r=oc Volg, (B(p, 1))
Therefore for every r > 0,
VOlg(B(pa T)) = 1

Volg, (B(p, 7))

Hence (M, g) has constant sectional curvature 0 and similar to proposition 10.1, we deduce
that |m (M)| = 1,i.e.(M, g) is isometric to (R™, gean)- O

Prop 10.3. Let (M,g) be a Cartan-Hadamard manifold with Ric(g) < —kg for some k > 0,
then for any q € M,

Vol(B(p, 7)) = cpe¥*

Proof. T don’t know how to prove this ):, maybe you can work it out and teach me! O

10.4 Cheeger-Gromoll’s splitting theorem

Def 10.2. A geodesic ray is a unit-speed geodesic 7 : [0,4+00) — M such that for any s,¢ > 0,

d(y(s), (1)) = s — t|.
Lemma 10.7. Let (M, g) be a complete Riemannian manifold, TFAE

(1) M is noncompact
(2) For any p € M, there exists a geodesic ray =y : [0, +00) — M,~(0) = p.

Proof. (2) = (1) is trivial.

(1) = (2): Let {p;} be the points such that d(p,p;) = i and 7; = exp,(tv;) be the unit-speed
minimal geodesic from p to p;.

By passing to a subsequence, we assume v; — v.

We claim that y(t) = exp,(tv) is a unit speed geodesic ray.

Indeed, for any s,t > 0 and k > max{s, ¢}, we have

d(vk(8), k(1)) = |s — .
So by continuity of exp,,

d(7(s),7(t)) = d(exp,(sv), exp,(tv)) = lim d(exp,(svk), expy(tog)) = |s — ¢

k—4o00
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Def 10.3. Let v : [0,400) — M be a geodesic ray starting from p € M, we define

B () = d(a, (1)) — ¢ = d(w,1(1) — d(3(0), (1)
Prop 10.4. Given t € [0,+00), the function bf/ : M — R has the following properties:
(1) For any fized x € M, bé‘ s monincreasing in t.
(2) For any x € M andt >0, ’bf/(:v)‘ < d(z,7v(0)).
(8) For any x,y € M andt >0, ‘bi,(:n) - btv(y)| <d(z,y)
Proof. (1) fort > s >0,

b (x) — by (2) =d(z, (1) — t — d(z,7(s)) + s

<d(y(t),7(s)) +5 — t
=[t—s|+s—t=0

(2) and (3) follows from the triangle inequality.

Def 10.4. The Busemann function w.r.t. a geodesic ray r : [0, +00) is defined as

by(z) = lim b (z).

t—+00 v

Prop 10.5. The Busemann function by : M — R is Lipschitz continuous with Lip(b,) < 1.

Proof. Follows by Ascoli-Arezla theorem.

Def 10.5. Let v : [0,400) — M be a geodesic ray and p € M\ Im~.

105

O]

According to the proof of lemma 10.7, the unit-speed minimal geodesics from p to c¢(t) is

converges to a geodesic ray 7 : [0, +00) — M with 4(0) = p by passing to a subsequence.

Such geodesic ray 7 is called the asymptote for v from p.

Lemma 10.8. Let v be a geodesic ray and 7 is the asymptote for v from p € M, then

(1) by (3(t) = bv(p) — 1.
(2) by(z) < by(p) + b3(z).

Proof. (1) Let ~; be the unit-speed minimal geodesics from p to ¢(t;) that converge to 7, then

d(p, c(ti)) — ti = d(p, 0i(s)) + d(oi(s), c(ts))-
So when i — oo,
by(p) =lim (d(p, y(t:)) — i)
=lim (d (p,7(s)) + d ((s),v(t:)) — t:)
=5+ by (3(s))

(2) when s — oo,

by(x) =1lim (d(z,7(s)) — s)
<lim (d (2,7(t)) + d (3(2),7(s)) — 5)
=lim (d (z, () — t) + by (p)
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Def 10.6. Let (M, g) be a Riemannian manifold, f € C°(M) and f, is a C? function defined
in a neighborhood of U of ¢ € M.

(1) fqis called a upper barrier function of f at g if

fola) = f(q), fo(x) = f(z),z € U.

(2) We say
Af(g) <c

in the barrier sense if for any € > 0, there exists a upper barrier function f, . of f at ¢ such
that
Afgelq) Scte.

Prop 10.6. Let (M, g) be a complete noncompact Riemannian manifold with Ric(g) > 0 and v
be a geodesic ray starting from p € M, then

Ab, <0
in the barrier sense.

Proof. By lemma 10.8(2), we only need to prove that Ab,(z) < 0 for z = (0).
By Laplacian comparison theorem,

n—1
AL (x =Ad(z,y(t) < —.
U A FT0)
And by proposition 10.4, b,ty is a upper barrier function of b,.
So for fix x and large ¢, we deduce Ab, < 0 in the barrier sense. O

Def 10.7. A geodesic line is a unit-speed geodesic v : (—o0,+00) — M such that for any
s,t € R,
d(v(s),7(t)) = |s —1|.

Lemma 10.9. Let (M, g) be a connected, complete, noncompact Riemannian manifold.
If M contains a compact subset K such that M\ K has at least two unbounded components,
then M contains a geodesic line passing through K.

Proof. Since M\ K has at least two unbounded components.
So there are two unbounded sequences of points {p;} and {¢;} in different components such
that any curve from p; to ¢; passes through K.
Let v; : [—a;,b;) — M be the unit-speed minimal geodesics from p; to ¢; with v;(0) € K.
Then by passing to a subsequence, -; converges to a geodesic line yqo. O

Lemma 10.10. Let (M, g) be a connected Riemannian manifold, f € CO(M) such that Af(z) <
0 in the barrier sense for every x € M.

If f has a local minimum at p € M, then f is constant on a neighborhood of p.

In particular, f has global minimum if and only if f is constant.

Proof. Suppose p is a local minimum of f and f is not constant on any neighborhood of p.
Then there exists € > 0 and x € B, (p) such that f(p) > f(z).

Let (x!,---,2") be an normal coordinate containing B.(p) and = = (&, 0, ,0), consider

o=t = CL(@ ot (")) = e -1,
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So for sufficiently large C7, we have ¢(y) < 0 for every y € 0B(p) with f(y) = f(p) and
A = (C2|V|* + CaAg)e®2¥ > 0

for sufficiently large Cj.

Therefore there exists A > 0 such that (f — A\¢)(y) > f(p) for every y € dB:(p).
Let ¢ be the minimum of f — Ay inside B.(p).

Consider the upper barrier function f, s of f at ¢ for some small J.

Then f, s — A is also a upper barrier function of f — A\ at q.

So for sufficiently small §, we have

A(fgs — M) <6 — AAY <0.
But ¢ is also a local minimum of f, s + A, which deduce

A(fqs + M) (q) =0,

contradiction!
Hence f is constant on a neighborhood of p. O

Prop 10.7. Let (M, g) be a complete, noncompact Riemannian manifold Ric(g) > 0.

If M has a geodesic line, then by, ,b,_ : M — R are smooth harmonic function with

|Vb,, | = 1,Hess by, =0,
where v+ = y(£t) : [0,4+00) — M.

Proof. Let b(x) = by, (x) + b,_(x), then
b(z) = tim_d(x,74(1) + d(x, (1) ~ 2 = lim_d(z.9()) +d(z.(~5)) ~ 22> 0.

And since b(~(t)) = 0.
By proposition 10.6 and lemma 10.10, b(z) = 0.
So by proposition 10.6 again, we obtain that b,, = —b,_ are harmonic and smooth.

Let f = b,,, the Bochner formula shows

1
SAIVII? = [Hess f* + Ric(Vf, Vf) + g(VAS, V) > [Hess f* > 0.

Therefore |V f|* is superharmonic.
On the other hand, by proposition 10.5, Lip(f) < 1 and so |V f| < 1, for z = v4(t)

f(@) = lim_ d(y(0),74(s) —s = lim [t —s| —s=—t

s—+400 s$—+400
IVFl(x) = VA ()| = (VAL ®)] = 1.
Hence |V f| =1,Hess f = 0. O

Prop 10.8. Let (M, g) be a complete noncompact Riemannian manifold, suppose f € C*°(M,R)
satisfies
IVfl=1,Hess f =0.

We set N = f~40) and h = g‘N, then:

(1) (N,h) is totally geodesic in (M, g)
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(2) the map
F:(RxN,dt@dt®h) — (M,g), F(p,t) = exp,(tVyf)

18 an isometry.

Proof. Let B be the second fundamental form of the map ¢ : (N, h) — (M, g).
Since for any X € I'(N,TN),

(V0 X)y = (V£ X)y = X(f) =0,

So for any X,Y € I'(N,TN),

(B(X,Y), "V f); = <?X(L*Y) _ (VQL(Y) ,L*Vf>

=X (1Y, L*Vf>§ — <L*Y, Vi (L*vf)>g
(Y, V() = —(Hess F)(X,Y) =0

Let .*TM = T+N @ 1,(TN) be the orthonormal decomposition.

Then T+ N = spang {t*V f}.

Therefore B=0¢€ I'(N,T*N @ T*N @ T+ N),i.e.(N, h) is a totally geodesic in (M, g).

Let X = Vf and y,(t) = exp,(tXp).

Since VX = 0.

So Ep(t) = X, (1) and 7,(t) are two parallel vector fields along 7, with the same initial value
E,(0) = 4,(0) = X,.

Therefore v, (t) = X o ,(t), i.e.y, is an integral curve of X.

And since | X| =1 is a complete vector field.

Thus F' is well-defined diffeomorphism.

It remains to prove that F' is an isometry.

For v € T, N, let J be the Jacobi field along -, with J(0) =0 and J'(0) = v.

By the radial curvature equation corollary 6.1,

R(e,Vf,Vf, o) = Hess (;\Vf\Q) (o,0) — (VysHess f) (e,@) —Hess f(V Vf,0)=0
So the Jacobi equation is

J'(t) + R(J )y, = J"() =0

It implies that J'(t) is a parallel vector field and so |J/(1)| = |J'(0)| = |v|
By the uniqueness of Jacobi field, we deduce

J(t) =tJ'(t).
On the other hand, J is given by the geodesic variation a(t, s) = exp,,(¢(X, + sv)) and
J(1)=(d expp)Xp (v) = (dF)pv.

Therefore we have
[(dF)pv| = [J(1)] = |J'(1)] = |v].

Hence F' is an isometry. O

Thm 10.11 (Cheeger-Gromoll’s splitting theorem). Let (M, g) be a complete Riemannian man-
ifold of dimension n with Ric(g) > 0, if there is a geodesic line in M, then (M, g) is isometric
to (R x N, gr ® gn) where Ric(gn) = 0.
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Proof. 1t follows by proposition 10.7 and proposition 10.8. O
Coro 10.10. Let (M,g) be a compact Riemannian manifold with Ric(g) > 0, then

(1) there exist a nonnegative k and a compact Riemannian manifold (N, gn) with Ric(gn) = 0
such that N does not contain a geodesic line and (M, g) = (Rk X N, gpr © gN).

(2) Iso(M, g) = Iso(R¥) x Iso(N, gn).
Proof. (1) follows from Cheeger-Gromoll’s splitting theorem

(2) Let F: R¥ x N — R*¥ x N be an isometry.

If v(t) = (71(t),72(t)) : R — M is a geodesic line, then ~; and v, are geodesic in (R¥, ggr)
and (N, gn) resp.

And since (N, gn) has no geodesic line.
So vy2(t) = po € N.
Therefore we can find F»(p) € N such that

F:RF x {p} = RF x {F(p)}

since F' maps geodesic line to geodesic line.

This implies that F(v,p) = (Fi(v,p), F2(p)) and for any (v,p) € R* x N, the tangent map
(dF),p) is an isometry that preserves T,R*.

Thus (dF),,,) also preserves T,N, i.e. (dF} 0.

Hence F(v,p) = Fi(v) and so Iso(M, g) = Iso(R¥) x Iso(N, gn)

)va’TpN =

O]

Def 10.8. A subgroup B, of Iso(R™) = O(n) x R" is called a Bieberbach group it acts freely
on R™ and R"/B,, is a compact manifold.

Thm 10.12 (Bieberbach). (1) FEvery Bieberbach group By, is torsion free and contains Z" as
finite index subgroup.

(2) Every compact quotient of R™ by a discrete group G of isometries of R™ is finitely covered
by a flat torus R™/T".

Proof. The proof need some technology from geometric group theory, go see the paper of Bieber-
bach written in 1911 if you want. 0

Thm 10.13 (Structure theorem for manifold with Ric > 0). Let (M, g) be a compact Rieman-
nian manifold with Ric(g) > 0 and 7 : (M,g) — (M, g) be its universal covering with the
pullback metric.

(1) There exists some k > 0 and a compact Riemannian manifold (N, gn) with Ric(gn) = 0
such that (M,g) is isometric to (R* x N, g ® gn).

(2) The isometry group splits

Iso (M,g) >~ Iso(R”, ggi) x Iso(N, g ).

(8) There exists a finite normal subgroup G of Iso(N, h), a Bieberbach group By and an exact
sequence
0—-G—m(M)— B —0.



CHAPTER 10. COMPARISON THEOREM AND APPLICATIONS

110

Proof. By corollary 10.10, (M , g) is isometric to (Rk X N, gpr @ gN), where N does not contain

a geodesic line and Ric(gy) > 0, we only need to show that N is compact.

Suppose N is noncompact, by lemma 10.7, fix some xg € N, there exists a geodesic ray

v : [0, +00) — N starting from xg.
Since M is compact. 3 5
Then there exists a compact subset K C M such that
Auty (A7) - K = M.

Let 7k, mn be the projections of M to R¥ and N resp.

Since Aut, (]\;I) is a subgroup of Iso (M,g) >~ Tso(R¥, ggr) x Iso(NN, h), so we have

Auty (0T) - mge (K ) = RE, Auty (31) -7y (K) = .
Moreover, there exists a sequence {3,,} in Aut, (M ), such that

Bn(y(m)) € my (K) -
By passing to a subsequence, we assume
lim B (7(m)) = p, lim(dB) (7 (m)) = v € T,M.
Let vy, : [-m,+00) — N be the geodesic rays defined by
() = B ((m +1)).
Then ~,, converges to the geodesic line
7 :R = N,o(t) = exp,(tv),

contradiction!
For (3), consider the projection

Auty (M) — Tso (Rk)

and let By, G be its image and kernel resp.
By construction, By, G acts freely and properly on RF and N resp.
Hence By, is a Bieberbach group and G is finite since N is compact.

O]

Coro 10.11. Let (M, g) be a compact Riemannian manifold with Ric(g) > 0 and (M, §) be its

universal cover.

(1) If M is contractible, then (M,g) is isometric to (R™, grn) and (M, g) is flat

(2) If (M,f]) does not contain a geodesic line, then |m1(M)| is finite.
(3) If |71 (M)] is finite, then M is compact and by(M) = 0.

Proof. (1) Since M splits as R¥ x N with compact N and M is contractible.
So N is contractible, i.e. N is a point.

(2) k=0and M = N is compact.
So 71 (M) is finite.
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(3) There is a natural surjection

h:m (M) — H(M,Z)=7" x T,

where T is a finite abelian group.

Hence b1 (M) = 0, and M — M is finite covering, i.e. M is compact.
O

Prob 10.1. Does there exist a compact Riemannian manifold (M, g) with Ric(g) = 0,b1(M) =0
and |m (M)| = +o0.

Proof. Consider the Hantzsche-Wendt manifold M = T3/(Zy x Zs).

r———Q

So the representation of 71 (M) is
<ab_1, ac tad™t ae™t, af_1|ad_1ac_1, bd~toe ™t ae the af tof Tt ef Ttee L, df_lde_1> ,
where a,b,c,d, e, f are red, blue, green, orange, yellow, purple line resp. , then
H{(M) = (ac™t,be™ ) =2 Z/AZ x 7/AZ.
Hence M is flat, by (M) = 0 but |m(M)| = +o0. O
Remark 10.1. Hantzsche-Wendt manifold is the only closed flat 3-manifold with by (M) = 0.

Coro 10.12. Let (M,g) be a compact Riemannian manifold with Ric(g) > 0, if there exists
p € M such that Ric(g)(p) > 0, then |mi1(M)]| is finite and by (M) = 0.
Proof. Let (M , g) be the universal covering of (M, g).

If (M,g) splits as (R* x N, gge @ gn) with k > 0, then Ric (gg) = 0, i.e.Ric(g) = 0, which
is impossible.
Hence M = N is compact, i.e. |1 (M)] is finite and by (M) = 0. O
Coro 10.13. Let (M, g) be a compact Riemannian manifold with Ric(g) > 0, then
b1 (M) < dim M.
If by(M) = dim M, then M is flat.

Proof. By theorem 6.4, b1(M) < dim M.
If by (M) = dim M, then there are n linearly independent parallel 1-forms.
So for any p € M, there exists a parallel local frame on a neighborhood of p.
Hence M is flat. O

Coro 10.14. S? x S' has no Ricci flat metric.

Proof. Suppose S? x S! has a Ricci-flat metric.
Since the universal covering M of S? x S' is homeomorphic to S x R.
So (M, Q) must split as (N x R, h @ gr), where N is simply connected and Ric(h) = 0.

And by theorem 1.4, (N, h) is isometric to (R3, gRs), contradiction! O



Appendix A

Convention of tensor calculus

The reason why I write this appendix is that many people asked me about the rules and
notations of tensor calculus and sometimes I feel confused by these notations too. So I think
should write a “axiom system” of tensor calculus that is true most of the time. It may be not
very rigorous(actually, it is a little bit ridiculous) but it is helpful if you are not familiar with
these calculus I think.

By the way, If you still feel confused while reading this, feel free to contact me, I will try
my best to answer your question and so that I can know where is unclear and need to improve.

A.1 General tensor calculus
Def A.1. Index is a letter that can take a value in a given finite set(mostly the integer 1 ~ n).
Def A.2. A symbol with some upper and lower indices are called tensor:
g
Akl~~~'

The tensor with p upper indices and ¢ lower indices is said to be of type (p, q).

The total number of indices is called the degree of the tensor, e.g. a type-(p,q) tensor has
degree p + q.

If the definition of indices has m elements totally, then we say the tensor is m-dimensional.

Def A.3. A term is the multiplication of some tensors, where these tensors may share the same
indices.

Def A.4. Some terms connected by ‘+’ is called a tensor expression.
Two expressions connected by ‘=’ is called a tensor equation.

Axiom A.1. The indices are replaceable in the tensor expression.
Exam A.1. An example of a correct change is:
A'BFCy + DiE; — A*B!Cy + D3E,,
whereas an erroneous change is:
A'BiCyy + DjE; #» A°B}Cy + D} E|
since ‘s’ does not fully replace ‘i” and ‘t” does not fully replace ‘k’.

Axiom A.2. In one term, the same index symbol can only appear once as an upper or lower
index respectively.

112
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Exam A.2.
.
Aj,.BY;

is incorrect since there are two ‘i’ in the lower index and two §’ in the upper index.

Def A.5. The index that appears as upper and lower index both is called dummy(or summa-
tion) index.
The index that only appears once in the term is called free index.

Axiom A.3. A term with p free upper indices and q free lower indices can be seen as a type-(p, q)
tensor.

Exam A.3. o
AFBic}
Can be regarded as a (1,0)-tensor DJ.

Axiom A.4. The free indices in a tensor expression always appear in the same (upper or lower)
position throughout every term, and in a tensor equation the free indices are the same on each
side.

Exam A .4. ‘ ' ‘
A'BfCy + DiE; =T},

is legal, and as for an erroneous expression:

A'BfCy + DI E".

While j is a free lower index in both terms, the position of ‘i’,‘l” are wrong and ‘k’ is dummy
in the first term but free in the second term.

So far, all the things that we defined are very abstract. Thus, we now try to give you the
specific meaning of tensor.

Axiom A.5. If we take a specific value for every index of a tensor, the result is in a given
R-module.

Axiom A.6. Free indices can freely choose a value in its domain and the dummy indices should
be summed over its domain.

Exam A.5. ‘ ‘
AZ'Bl = ZAzBZ

The summation may occur more than once within a term:
AFBiC] =3 "N AFBCY.
ik
Axiom A.7. A tensor equation of dimension m with n free indices represents m' real-value
equations: each free index takes on every value of the definition.

Exam A.6. Let the definition of indices be {0,1,2,3}, then the tensor equation
A'BfCy + DLE; = Tj,
Then since there are three free indices (i,j,1), there are 43 = 64 real-value equations.
In particular, here are three of them:
AOB?COO + AOB%CH) + AOB%CQO + AOB?Cgo + D?EO = Tloo,
AlBSCOO + AlBéolo + AlBgCQO + AlB(?))030 + DéE@ = Tolo,
A'BYCo + A'BJC1o + A'B3Cos + A'B3Css + DY Ey = T,
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Def A.6. Kronecker delta is a type-(1,1) tensor:
TR
0 i#J

§AT = A

Prop A.1l.

8/B; = B;
Proof.
FIAT = "§lAT = A,

§!B; = 4!B; = B;.
J

Def A.7. For a (2,0)-tensor AY, its inverse 4;; is a (0, 2)-tensor such that

Ay AR = F.

A.2 Ricci calculus

Def A.8. Given an n-dimensional manifold M, we assume the the definition of indices is

{17 . 7n}.
For a element T € I'(M, (T M) @ (®1T*M)), we can define a (p, ¢)-tensor:

i1 0 0 . )
1ty ... Ji ... J
Tj?'l"'jq =T (8.%’11 5 5 axip 5 dx 5 ,d.fL' q) .
Prop A.2. For some elements Ty, -+ ,T,, € T'(M,(®*TM) ® (*T*M)), the product of all
these tensors corresponds to the product of T1,--- , T, as section of vector bundle.
Exam A.7.

. 9 ) 9 )
i — I J k — I J k
A% By, A(axi,dx>B(dx> (A® B) <0xi,dx,dx).

Prop A.3. For covariant derivative, we have the similar property:

VT = (V) (dxi, 9 0

e Ji ... Ja
.71"'.](1 ale ) b 8;6117 b dx b 7dx >

Remark A.1. When you are not sure what a tensor expression mean, just “throw” every index
to the back for every term and be careful that the position(upper or lower) must reverse in this
process.
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