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Chapter 1

Curvature on Riemannian manifolds

1.1 Vector bundles and affine connections
Def 1.1 (tensor). V,W are vector spaces, tensor V ∗⊗W is a set of all linear maps f : V →W .

Assume {ei}, {wα} are basis of V,W resp., then linear map f can be represented by

f(ei) = aαi wα,

So
V ∗ ⊗W = span{ei ⊗ wα},

where {ei} are dual basis of {ei}, ei(ej) = δji .

Def 1.2. Symmetric tensor: Sym⊗2V ⊂ V ⊗ V contains all linear maps whose representation
matrix is symmetric.

Skew-Symmetric tensor: ∧2V ⊂ V ⊗V contains all linear maps whose representation matrix
is skew-symmetric.

Def 1.3. Let M be a C∞ manifold, a real vector bundle of rank r over M is a C∞ manifold
E

π−−→M , where π is a submersion, and there exist an open cover {Ui}i∈J of M , such that

(1) for each j, there is a diffeomorphism

ϕj : π
−1(Uj) → Uj × Rr,

such that the restriction

ϕj

∣∣∣∣
π−1({x})

: π−1({x}) → {x} × Rr

is an isomorphism.

(2) for each i, j ∈ J , the map

ϕij = ϕi ◦ ϕ−1
j : (Ui ∩ Uj)× Rr → (Ui ∩ Uj)× Rr

is an isomorphism on each fiber and it can written as

ϕij(x, v) = (x, gij(x)v),

where gij ∈ C∞(Ui ∩ Uj , GL(r)) satisfy{
gij ◦ gji = Id on Ui ∩ Uj

gij ◦ gjk ◦ gki = Id on Ui ∩ Uj ∩ Uk

.

1
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Exam 1.1. (a) E =M × Rr(trivial bundle)

(b) TM(transition:
(

∂xi

∂yα

)
)

(c) T ∗M

Def 1.4 (homomorphisms between vector bundles).

E1 E2

M M

h

h is a homomorphism if for each point p, h
∣∣
p
: E1

∣∣
p
→ E2

∣∣
p
is linear.

h is an endomorphism if the image is E1, and h is isomorphism if h
∣∣
p
are isomorphism.

Def 1.5 (sections of a vector bundle). s :M → E is a smooth map s.t.

M E

M

s

Id π

And s(x) ∈ E
∣∣
x
for every point x ∈M .

Remark 1.1. Let s be a section, consider the its local expression over a chart U of M .
Consider the local trivialization ψ : π−1(U) → U × Rr, and let Rr = span{E1, · · · , Er}.
Then

eα(x)
∆
=== ψ−1(x,Eα)

is a local basis and
s(x) = sα(x)eα(x), x ∈ U.

The space of C∞ section of E π−−→M is denoted by Γ(M,E).

Def 1.6 (Affine connection). Connection is a rule of taking derivative.
An affine connection ∇ of E →M is a map

∇ : Γ(M,TM)× Γ(M,E) → Γ(M,E), (X, s) 7→ ∇Xs

such that for every s, t ∈ Γ(M,E), X, Y ∈ Γ(M,TM), f ∈ C∞(M), we have:

(1) Linearly:
∇fX+Y s = f∇Xs+∇Y s.

(2) Leibniz rule:
∇X(fs+ t) = X(f)s+ f∇Xs+∇Xt.

Remark 1.2. Over a chart U , let X = Xi ∂
∂xi , s = sαeα.

We then have
∇Xs = ∇Xi ∂

∂xi
sαeα = Xi

(
∂sα

∂xi
eα + sα∇ ∂

∂xi
eα

)
.

The only unknown term in the expression is

∇ ∂

∂xi
eα = Γβ

iαeβ
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where Γβ
iα are called the Christoffel symbols.

For two different bases,

∇ ∂

∂xi
eα = Γβ

iαeβ ,∇ ∂

∂x̃i
ẽα = Γ̃β

iαẽβ

with
eα = gβαẽβ ,

∂

∂xi
= hji

∂

∂x̃j
,

we have:

∇ ∂

∂xi
eα = hji

(
∂gβα
∂x̃j

ẽβ + gβα∇ ∂

∂x̃j
ẽβ

)

=

(
hji
∂gβα
∂x̃j

+ hjig
γ
αΓ̃

β
jγ

)
ẽβ

So the Christoffel symbols do not transform as tensors under coordinates transformation
since there is an extra term hji

∂gβα
∂x̃j .

Prop 1.1. If ∇1 and ∇2 are two affine connections over E →M , ∇1 −∇2 is a tensor.

Proof.
(∇1)X (fs)− (∇2)X (fs) = f((∇1)Xs− (∇2)X s).

Hence
∇1 −∇2 ∈ Γ(M,T ∗M ⊗ E∗ ⊗ E), (∇1 −∇2)X s ∈ Γ(M,E).

Def 1.7 (curvature of an affine connection).

R(X,Y )s = ∇X∇Y s−∇Y ∇Xs−∇[X,Y ]s

is a well-defined map from Γ(M,TM)× Γ(M,TM)× Γ(M,E) to Γ(M,E).

You may think it is strange why we prefer to define the curvature by this rather than simply
∇X∇Y , this is because we want the curvature to be a tensor(this idea is very important) :

Prop 1.2.
R ∈ Γ(M,∧2T ∗M ⊗ End(E)).

Proof.

R(fX, gY )hs =∇fX∇gY hs−∇gY ∇fXhs−∇[fX,gY ]hs

=fgh∇X∇Y s+ fgX(h)∇Y s+ fgY (h)∇Xs+ fgX(Y (h))s

+fX(g)∇Y hs− fgh∇Y ∇Xs− fgY (h)∇Xs− fgX(h)∇Y s

−fgY (X(h))s− gY (f)∇Xhs− fgh∇[X,Y ]s− fg[X,Y ](h)s

−fX(g)∇Y hs+ gY (f)∇Xhs

=fgh(∇X∇Y s−∇Y ∇Xs−∇[X,Y ]s)

Hence R is a tensor, i.e. R ∈ Γ(M,∧2T ∗M ⊗ End(E)).

Remark 1.3. Consider the local expression, let

R = Rβ
ijαdx

i ⊗ dxj ⊗ eα ⊗ eβ ,R

(
∂

∂xi
,
∂

∂xj

)
eα

∆
=== Rβ

ijαeβ .

Then we have

Rβ
ijα =

∂Γβ
jα

∂xi
−
∂Γβ

iα

∂xj
+ Γµ

jαΓi
β
µ − Γµ

iαΓ
β
jµ.
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Def 1.8. Given s∗ ∈ Γ(M,E∗), we can define a connection ∇∗
Xs

∗ of E∗, such that

X〈s, s∗〉 = 〈∇Xs, s
∗〉+ 〈s,∇∗

Xs
∗〉

for every s ∈ Γ(M,E), which is called the Leibniz rule.

1.2 Levi-Civita connection
Def 1.9 (Riemannian metric). g ∈ Γ(M, Sym⊗2T ∗M) and gp is a positive definite for each
p ∈M .

Thm 1.1. There exists a C∞ Riemannian metrics on every C∞ manifold.

Proof. Let {(Uα, ϕα)} be an open cover of M and {ρα} be a partition of unity subordinate to
it.

Then Let g0 be the canonical metric on Rn and gα = ϕ∗
αg0.

So g =
∑

α ραgα is a Riemannian metric on M .

Thm 1.2 (Existence of Levi-Civita Connection). Let (M, g) be a C∞ Riemannian manifold,
there exists an unique affine connection ∇ on TM →M , such that:

(1) ∇ is compatible with g:

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ).

(2) torsion free(symmetry):
∇XY −∇YX = [X,Y ].

Proof. Consider three equations
Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

Y g(X,Z) = g(∇YX,Z) + g(X,∇Y Z)

−Zg(X,Y ) = −g(∇ZX,Y )− g(X,∇ZY )

Adding them up we can get

Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

=g(∇XY, Z) + g(Y, [X,Z]) + g(X, [Y, Z]) + g(∇XY + [X,Y ], Z)

=2g(∇XY, Z) + g(Y, [X,Z]) + g(X, [Y, Z]) + g([X,Y ], Z)

Hence
g(∇XY, Z) =

1

2
(Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

− g(Y, [X,Z])− g(X, [Y, Z])− g([X,Y ], Z))

Remark 1.4. Since we have
g

(
∇ ∂

∂xi

∂

∂xj
,
∂

∂xk

)
= Γl

ijgkl,

we can obtain that
Γk
ij =

1

2
gkl
(
∂glj
∂xi

+
∂gil
∂xi

− ∂gij
∂xl

)
.
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Def 1.10. Curvature tensor of Levi-Civita connection ∇ is

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

And we define R(X,Y, Z,W )
∆
=== g(R(X,Y )Z,W ).

Remark 1.5. Torsion free tells us that

∇ ∂

∂xi

∂

∂xj
= ∇ ∂

∂xj

∂

∂xi
,

this is very useful.
We have

Rijkl = glpR
p
ijk,R

p
ijk =

∂Γp
kj

∂xi
−
∂Γp

ki

∂xj
− Γp

qjΓ
q
ki + Γp

qiΓ
q
kj

Rijkl =
1

2

(
∂2gjl
∂xi∂xk

+
∂2gik
∂xj∂xl

− ∂2gil
∂xj∂xk

−
∂2gjk
∂xi∂xl

)
+ gpq

(
Γp
ikΓ

q
jl − Γp

ilΓ
q
jk

)
There are some tricks that can help you prove this equation:

gijgik = δjk, g
ij ∂gik
∂xl

= −∂g
ij

∂xl
gik.

And it needs a lot of patience for you to write down the complete proof (:

Prop 1.3. (1) Skew-symmetry:

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = −R(X,Y,W,Z) = R(Z,W,X, Y ).

(2) The first Bianchi identity:

R(X,Y, Z,W ) + R(Y, Z,X,W ) + R(Z,X, Y,W ) = 0

Proof. (2)Let X = ∂
∂xi , Y = ∂

∂xj , Z = ∂
∂xk .

R(X,Y )Z +R(Y, Z)X = ∇X∇Y Z −∇Y ∇XZ +∇Y ∇ZX −∇Z∇YX

= ∇X∇ZY −∇Z∇XY

= R(X,Z)Y

So
R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

1.3 Sectional curvature and Ricci curvature
Def 1.11 (section curvature).

K(X,Y )
∆
===

R(X,Y, Y,X)

|X|2|Y |2 − g(X,Y )2

where X,Y are linearly independent.
We say that sectional curvature K ⩾ k if for any linearly independent X,Y ∈ Γ(M,TM),

K(X,Y ) ⩾ k.

Similarly, we can define K ⩽ k,K = k.
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Remark 1.6.
R0(X,Y, Z,W ) = 〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉

also satisfy the skew-symmetry and first Bianchi identity properties, and

R0(X,Y, Y,X) = |X|2|Y |2 − |〈X,Y 〉|2.

Lemma 1.1. If span{X,Y } = span{Z,W} = Σ is a plane, then

K(X,Y ) = K(Z,W ) = K(Σ).

Proof. Let Z = aX + bY,W = cX + dY .

R(Z,W,W,Z) = R(aX + bY, cX + dY, cX + dY, aX + bY )

= (ad− bc)2R(X,Y, Y,X)

So
|z|2|w|2 − |〈z, w〉|2 = (ad− bc)2

(
|x|2|y|2 − |〈x, y〉|2

)

Thm 1.3. The sectional curvature K determines the full curvature tensor.

Proof. Given X,Y, Z,W ∈ Γ(M,TM), define

F : R2 → C∞(M), (s, t) 7→ R(x+ sz, y + tw, y + tw, x+ sz)

Then
∂2F

∂s∂t

∣∣∣∣
s=t=0

=
∂2

∂s∂t
(R(sZ, tW, Y,X) + R(sZ, Y, tW,X) + R(X, tW, Y, sZ) + R(X,Y, tW, sZ))

∣∣∣∣
s=t=0

− ∂2

∂s∂t
(R(sW, tZ, Y,X) + R(sW, Y, tZ,X) + R(X, tZ, Y, sW ) + R(X,Y, tZ, sW ))

∣∣∣∣
s=t=0

=R(Z,W, Y,X) + R(Z, Y,W,X) + R(X,W, Y, Z) + R(X,Y,W,Z)

−R(W,Z, Y,X)− R(W,Y,Z,X)− R(X,Z, Y,W )− R(X,Y, Z,W )

=− R(X,Y, Z,W ) + R(Y, Z,X,W ) + R(Y, Z,X,W )− R(X,Y, Z,W )

−R(X,Y, Z,W ) + R(Z,X, Y,W ) + R(Z,X, Y,W )− R(X,Y, Z,W )

=− 6R(X,Y, Z,W )

Prop 1.4. Let (M, g) be a Riemannian manifold and p ∈M , TFAE:

(1) For a plane Σ ⊂ TpM , Kp(Σ) is independent of Σ

(2) ∃some constant kp, such that

Rijkl = kp(gilgkj − gikgjl)

(3) ∃some constant kp, such that

R(X,Y, Y,X)

|X|2|Y |2 − |〈X,Y 〉|2
= kp

for every X,Y ∈ TpM and span{X,Y } is a plane.



CHAPTER 1. CURVATURE ON RIEMANNIAN MANIFOLDS 7

Proof. (2) ⇒ (3):
R(X,Y, Y,X) = Rijklx

ixlyjyk

|X|2|Y |2 − |〈X,Y 〉|2 = (gilgkj − gikgjl)x
ixlyjyk

(3) ⇒ (2): Consider {
F (s, t) = R(X + sZ, Y + tW, Y + tW,X + sZ)

F0(s, t) = R(X + sZ, Y + tW, Y + tW,X + sZ)

Then  ∂2F
∂s∂t

∣∣∣
s=t=0

= −6R(X,Y, Z,W )

∂2F0
∂s∂t = −6R(X,Y, Z,W )

Hence R(X,Y, Z,W ) = kpR0(X,Y, Z,W ).

Def 1.12 (Ricci curvature).
Ric = Rijdx

i ⊗ dxj

where
Rij = gklRiklj = gklRkijl = Rk

kij .

We say that Ricci curvature Ric(g) ⩾ C if for any X ∈ Γ(M,TM),

Ric(X,X) ⩾ C.

Similarly, we can define Ric(g) ⩽ C.
Def 1.13 (scalar curvature).

s = gijRij = trg Ric.

Def 1.14 (curvature operator).

R : Γ(M,∧2TM) → (M,∧2TM),

satisfying
g(R(X ∧ Y ), Z ∧W ) = R(X,Y,W,Z).

Exam 1.2.
f : Sn(K) ↪→ (Rn+1, gcan), gK = f∗gcan.

f(x1, · · · , xn) =

x1, · · · , xn,
√√√√K2 −

n∑
i=1

(xi)2

 , gij = δij +
xixj√

K2 −
∑

(xi)2
.

Then
Rijkl =

1

K2
(gilgkj − gikgjl),Rij =

n− 1

K2
gij , S =

n(n− 1)

K2

Prop 1.5. Let (M, g) be a Riemannian manifold, prove that the scalar curvature s(p) at p ∈M
is given by

s(p) =
n

ωn−1

ˆ
Sn−1

Ricp(x, x)dS.

Proof. Assume (x1, · · · , xn) is an orthogonal coordinate of TpM .
n

ωn−1

ˆ
Sn−1

Ricp(x, x)dS =
n

ωn−1

ˆ
Sn−1

Rijx
ixjdS

=
n

ωn−1
Rij

δijωn−1

n

=tr (Ricp) = s(p)
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Prop 1.6. Let (M, g) be a Riemannian n-manifold and p ∈M . For each unit vector v ∈ TpM ,
prove that

Ricp(v, v) =
n− 1

vol(Sn−2)

ˆ
w∈S⊥

v

sec(v, w)dVĝ

where S⊥
v denotes the set of unit vectors in TpM that are orthogonal to v and ĝ denotes the

Riemannian metric on S⊥
v induced from the flat metric gp on TpM .

Proof. Let {e1, · · · , en−1} be an orthogonal basis of S⊥
v , en = v.

Then {e1, · · · , en} is an orthogonal basis of TpM , so

Ricp(v, v) = δijRinnj =

n−1∑
i=1

sec(ei, v).

So we can obtain

n− 1

vol(Sn−2)

ˆ
S⊥v

sec(v, w)dVĝ =
n− 1

vol(Sn−2)

ˆ
S⊥v

Rinnjw
iwjdVĝ

=

n−1∑
i=1

n− 1

vol(Sn−2)
Rinni

vol(Sn−2)

n− 1

=Ricp(v, v)

Prop 1.7. Let (M, g) be a Riemannian n-manifold with sectional curvature K ⩾ k, then

Ric(g) ⩾ (n− 1)k.

Proof. Follows by proposition 1.61.6.

Remark 1.7. In general, we can not get any information about sectional curvature from Ricci
curvature, but in 3-dimensional case, we have the following theorem:
Thm 1.4. Let (M, g) be a connected Einstein manifold, i.e. Ric(g) = cg for some c ∈ R,
suppose dimM = 3, then (M, g) has constant sectional curvature c

2 .
Proof. Consider the orthogonal frame {e1, e2, e3} such that (gij) = I, then

R11 = −R1212 − R1313,R22 = −R2323 − R2121,R33 = −R3131 − R3232,

R12 = −R3132,R23 = −R1213,R31 = −R2321.

So we deduce

R1212 = R1313 = R2323 = R11 −
R11 +R22 +R33

2
= −1

2
c, i.e.K ≡ 1

2
c.

Remark 1.8. This theorem allow us to research 3-dimensional manifold more easily. The struc-
ture of most of manifolds with dimension bigger than 3 are unclear, e.g. whether there is a
Ricci-flat metric on S4 or not. We will discuss these question in the last chapter.

Here are some big theorem and conjugate in Riemannian geometry:
Thm 1.5 (Hamilton 1982). Let (M, g) be a simply connected compact 3-dim Riemannian man-
ifold, if Ric > 0, then M is diffeomorphic to S3.
Thm 1.6 (Böhm-Wilking 2008). Let (M, g) be a simply connected compact Riemannian mani-
fold for n ⩾ 4, and curvature operator> 0 ⇒M is diffeomorphic to Sn.
Conj 1.1. dimRM = 4, sectional curvature > 0 and Einstein Rij = kgij, then it is S4 or CP2.



Chapter 2

Basic concepts in Riemannian
geometry

2.1 Pullback vector bundles & connections
Def 2.1. For a smooth mapM f−−→ N and a vector bundle E π−−→ N , f∗E is called the pullback
vector bundle, defined as

f∗E = {(p, v) ∈M × E|π(v) = f(p)}.

So the following diagram commutes.

(f∗E)p = π̃−1({p}) ∼= Ef(p) = π−1({f(p)}).

f∗E E

M N

π̃ π

f

Remark 2.1. If {eA} → E is a local basis, then define

(f∗eA)(p) = eA(f(p)),

so {f∗eA} is a local basis of f∗(E).

Def 2.2. The pullback connection ∇̂ on Ê = f∗E is a map

Γ(M,TM)× Γ(M, Ê) → Γ(M, Ê),

satisfying the following commutative diagram:

(f∗E, ∇̂) (E,∇)

M N

π̂ π

f

Remark 2.2. If we have
∇ ∂

∂yα
eA = ΓB

αAeB,

then
∇̂ ∂

∂xi
êA = Γ̂B

iAêA = ΓB
αA

∂fα

∂xi
êA.

9
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Def 2.3. define the pullback metric

ĝ(êA, êB)(p) = g(eA, eB)(f(p)), ĝ = f∗g.

It satisfy the commutative diagram below:

(f∗E, ĝ) (E, g)

M N

π̂ π

f

Remark 2.3. For g = gABe
A ⊗ eB, we have

f∗g = f∗(gAB)f
∗eA ⊗ f∗eB

= gAB(f)f
∗eA ⊗ f∗eB

Prop 2.1. suppose ∇ is a metric compatible affine connection on (E, g), i.e.

Xg(s, t) = g(∇Xs, t) + g(s,∇Xt).

Then ∇̂ is a compatible with (Ê, ĝ), so the diagram below commutes.

(f∗E, ∇̂, ĝ) (E,∇, g)

M N

π̃ π

f

Def 2.4. For
RE = RB

αβAdy
α ⊗ dyβ ⊗ eA ⊗ eB,

we define the pullback curvature:

RÊ = R̂B
ijAdx

i ⊗ dxj ⊗ êA ⊗ êB,

where
R̂B

ijA(p) = RB
αβA(f(p))

∂fα

∂xi
∂fβ

∂xj
.

2.2 Parallel transport
Prop 2.2. If γ : [a, b] → (M, g) is a C∞ curve, v ∈ Tγ(a)M , then there exists a unique vector
field V ∈ Γ([a, b], γ∗TM) such that {

∇̂V ≡ 0

V (a) = v

Remark 2.4. ∇̂V is actually ∇̂ ∂
∂t
V since [a, b] is a 1-dimensional manifold.

Proof. Choosing basis {ei(t)} in Tγ(t)M for t ∈ [a, b].
For V ∈ Γ([a, b], γ∗TM), let

V = V i(t)ei(t)

and we write
∇̂ei(t) = ωj

i (t)ej(t).

So (
dV i

dt
+ ωi

jv
j

)
ei = ∇̂V = 0.

Hence V is unique by the uniqueness of solution of ODE.
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Def 2.5. For γ : [a, b] → (M, g), define

Pt0,t,γ : Tγ(t0)M → Tγ(t)M, v 7→ V (t)

called the parallel transport along γ.

Thm 2.1. γ : I → (M, g), then

(1)
Ps,t,γ : Tγ(s)M → Tγ(t)M

is linear

(2)
Pt2,t3,γ ◦ Pt1,t2,γ = Pt1,t3,γ , Pt1,t1,γ = Id

(3) Ps,t,γ is a linear isometry

(4)
F : I × γ∗TM → γ∗TM,F (t, (s, v)) = (t, Ps,t,γv)

(5) For any V ∈ Γ([a, b], γ∗TM), t, t0 ∈ I,

d

dt
(Pt,t0,γ(V (t))) = Pt,t0,γ(∇̂ d

dt
V (t))

Proof. (1) Let V1, V2 be the unique parallel vector field along γ such that V1(s) = v0, V2(s) = w0.
Then

∇̂(cV1 + V2) ≡ 0, (cV1 + V2)(s) = cv0 + w0.

So
Ps,t,γ(cv0 + w0) = (cV1 + V2)(t) = cPs,t,γv0 + Ps,t,γw0.

(2) Let V be the unique parallel vector field along γ such that V1(t1) = v0.
Then

Pt1,t2,γ(v0) = V (t2), Pt2,t3,γ(V (t2)) = V (t3).

(3) Let V1, V2 be the unique parallel vector field along γ such that V1(s) = v0, V2(s) = w0.
Then 〈

∇̂V1, ∇̂V2
〉
=

d

dt
〈V1, V2〉 = 0,

i.e. 〈V1, V2〉 is constant.
Therefore

d(Ps,t,γ(v0), Ps,t,γ(w0)) = d(v0, w0).

(4) Since Ps,t,γ : (γ∗T )sM → (γ∗T )tM is a linear isometry.
So F : I × γ∗TM → γ∗TM is smooth, because γ∗TM is vector bundle over I.

(5) Let V (t) = V i(t)ei(t), where {ei(t)} is a basis of parallel vector fields along the curve.
Then

Pt,s,γ

(
∇̂V (t)

)
= Pt,s,γ

(
dV i(t)

dt
ei(t)

)
=

dV i(t)

dt
ei(s).

∇̂(Pt,s,γ(V (t))) = ∇̂(V i(t)ei(s)) =
dV i(t)

dt
ei(s)
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2.3 Hessian of smooth functions
Def 2.6. By the definition 1.8, for ω ∈ Γ(M,T ∗M), we define

(∇Y ω)(X)
∆
=== Y (ω(X))− ω(∇YX).

Remark 2.5. Assume
∇ ∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk
,∇ ∂

∂xi
dxj = Γ̃j

ildx
l.

Then we have the relation

Γ̃j
il = 0− dxj

(
Γt
il

∂

∂xt

)
= −Γj

il, i.e.∇ ∂

∂xi
dxj = −Γj

ildx
l.

Def 2.7. For a smooth function f :M → R, the Hessian of f is

Hess (f) = ∇2f = ∇df ∈ Γ(M,T ∗M ⊗ T ∗M).

Lemma 2.1.
Hess (f) =

(
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

)
dxi ⊗ dxj

Hess (f)(X,Y ) = g(∇X∇f, Y ) = X(Y (f))− (∇XY )(f)

So Hess (f) ∈ Γ(M, Sym⊗2T ∗M).

Proof.
Hess (f)(X,Y ) = X(df(Y ))− df(∇XY )

= X(Y (f))− (∇XY )(f)

= Xg(∇f, Y )− g(∇f,∇XY )

= g(∇X∇f, Y )

So

Hess (f)(aX, bY ) = aX(bY (f))− (∇aXbY )(f)

= abX(Y (f)) + aX(b)Y (f)− ab(∇XY )(f)− aX(b)Y (f)

= abHess (f)(X,Y )

= ab(Y (X(f)) + [X,Y ]f − (∇YX)(f)− [X,Y ]f)

= abHess (f)(Y,X)

Therefore Hess is a symmetric tensor.
And

Hess (f)

(
∂

∂xi
,
∂

∂xj

)
=

∂

∂xi
∂

∂xj
f −

(
∇ ∂

∂xi

∂

∂xj

)
(f)

=
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

Another method:

Hess (f) =∇
(
∂f

∂xj
dxj
)

=

(
∂2f

∂xi∂xj
dxj − ∂f

∂xj
Γj
ikdx

k

)
⊗ dxi

=

(
∂2f

∂xi∂xj
− ∂f

∂xk
Γk
ij

)
dxi ⊗ dxj
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Def 2.8. Laplace of function is defined as

∆gf = trg Hess (f) = gij
(

∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

)
.

Prop 2.3.
∆gf =

1√
det(g)

∂

∂xi

(
gij
√
det(g)

∂f

∂xj

)
Proof.

∆gf =gij
(

∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

)
=gij

∂2f

∂xi∂xj
− 1

2
gijgkl

(
∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
∂f

∂xk

=gij
∂2f

∂xi∂xj
+

1

2
gijgkl

∂gij
∂xl

∂f

∂xk
− 1

2
gijgkl

(
∂gil
∂xj

+
∂gjl
∂xi

)
∂f

∂xk

=gij
∂2f

∂xi∂xj
+

1

2det g
gkl

∂ det g

∂xl
∂f

∂xk
+ gilg

kl ∂g
ij

∂xj
∂f

∂xk

=gij
∂2f

∂xi∂xj
+

1√
det g

gkl
∂
√
det g

∂xl
∂f

∂xk
+
∂gkj

∂xj
∂f

∂xk

=
1√
det g

∂

∂xi

(
gij
√

det g
∂f

∂xj

)

Thm 2.2. Let f :M → R be a C∞ function on a Riemannian manifold (M, g).

(1) If p ∈M is a local maximum or local minimum, then (∇f)(p) = 0

(2) If p ∈M is a local maximum, then (Hess (f))(p) ⩽ 0, (∆f)(p) ⩽ 0

(3) If p ∈M is a local minimum, then (Hess (f))(p) ⩾ 0, (∆f)(p) ⩾ 0

Proof. Consider a local chart (U,ϕ, xi), xi = ri ◦ ϕ,ψ = ϕ−1.
So for F = f ◦ ϕ−1 : ϕ(U) → R,

∂f

∂xi
=
∂F

∂ri
= 0.

And

∂2F

∂ri∂rj
=

∂

∂ri

(
∂F

∂rj

)
=

∂

∂ri

(
∂f

∂xk
∂ψk

∂rj

)
=

∂2f

∂xk∂xl
∂ψk

∂ri
∂ψl

∂rj
+

∂f

∂xk
∂2ψk

∂ri∂rj

Since ∂f
∂xk = 0 at the extreme point.

So Hess F = dψ ·Hess f · (dψ)T = dψ ◦Hess f ◦ (dψ)−1.
Hence Hess (f) ⩾ 0 ⇔ Hess (F ) ⩾ 0 and Hess (f) ⩽ 0 ⇔ Hess (F ) ⩽ 0.

2.4 The second fundamental form
Def 2.9. For f : (M, g) → (N,h) and given X,Y ∈ Γ(M,TM), we define

B(X,Y ) = ∇̂Xf∗Y − f∗(∇g
XY )

is the second fundamental form.
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Exam 2.1. If (N,h) = (R, gcan), then B(X,Y ) is the Hessian.

Remark 2.6. For X = Xi ∂
∂xi , Y = Y j ∂

∂xj , we can obtain that

B(X,Y ) =

(
∂2fα

∂xi∂xj
+ Γα

βγ

∂fβ

∂xi
∂fγ

∂xj
− Γk

ij

∂fα

∂xk

)
XiY j ∂

∂yα

Prop 2.4. B(X,Y ) = B(Y,X), i.e.B ∈ Γ(M, Sym⊗2T ∗M ⊗ f∗TN)

Coro 2.1.
∇̂Xf∗Y − ∇̂Y f∗X = f∗(∇XY )− f∗(∇YX) = f∗([X,Y ]).

Remark 2.7. Define
∇̃ = ∇∗g ⊗ ∇̂,

which is the connection on T ∗M ⊗ f∗TN
Then B = ∇̃df , where

df ∈ Γ(M,T ∗M ⊗ f∗TN)

is the induced map of f .

Lemma 2.2. Consider an immersion f : M → (M̄, ḡ), there is an induced metric g on TM ,
g = f∗ḡ.

Then there are two system over M :

(f∗TM̄, ∇̂, ĝ) (TM̄, ∇̄, ḡ) (TM,∇, g) (TM̄, ∇̄, ḡ)

M M̄ M M̄
f f

Show that f∗(TM) is a subbundle of f∗TM̄ .
Moreover, there exists a subbundle T⊥M , s.t.

f∗TM̄ = f∗(TM)⊕ T⊥M.

Prop 2.5. f is an immersion, then

B ∈ Γ(M, Sym⊗2T ∗M ⊗ T⊥M), i.e.ĝ(B(X,Y ), f∗(Z)) = 0

Proof.
ĝ(B(X,Y ), f∗Z) =ĝ(∇̂Xf∗Y − f∗(∇XY ), f∗(Z))

=ĝ(∇̂Xf∗Y, f∗(Z))− ĝ(f∗(∇XY ), f∗Z)

=ĝ(∇̂Xf∗Y, f∗Z)− g(∇XY, Z)

Take X = ∂
∂xi , Y = ∂

∂xj , Z = ∂
∂xk .

Then
ĝ(B(X,Y ), f∗Z) =ĝ

(
∇̂ ∂

∂xi

∂fα

∂xj
∂

∂yα
,
∂fβ

∂xk
∂

∂yβ

)
− Γl

ijgkl

=ḡαδ
∂f δ

∂xk

(
∂2fα

∂xi∂xj
+
∂fβ

∂xi
∂fγ

∂xj
Γα
βγ(f)−

∂fα

∂xl
Γl
ij

)
By rank theorem, F̂ is the representation of f such that

F̂ (x1, · · · , xm) = (x1, · · · , xm, 0, · · · , 0).

So
ĝ(B(X,Y ), f∗Z) = Γ̄α

βγ ḡαδδ
β
i δ

γ
j δ

δ
k − gklΓ

l
ij = 0
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Remark 2.8. We can also compute this without using rank theorem, but the equation is a little
bit long. It is a very good exercise (:

Def 2.10. Given η ∈ Γ(M,T⊥M), define

Bη(X,Y ) = ĝ(B(X,Y ), η) ∈ Γ(M, Sym⊗2T ∗M),

called the second fundamental form along η.

Def 2.11 (Weingarten map). Wη : Γ(M,TM) → Γ(M,TM) such that

g(Wη(X), Y ) = Bη(X,Y ), i.e.(Bη)ij = (Wη)
k
i gkj .

Thm 2.3 (Gauss). For X,Y, Z,W ∈ T (M,TM),

R(X,Y, Z,W )− R̂(X,Y, f∗Z, f∗W ) = ĝ(B(Y, Z), B(X,W ))− ĝ(B(X,Z), B(Y,W ))

In particular,

R(X,Y, Y,X)− R̂(X,Y, f∗Y, f∗X) = ĝ(B(Y, Y ), B(X,X))− ĝ(B(X,Y ), B(X,Y )).

Proof.

ĝ
(
∇̂X∇̂Y f∗Z, f∗W

)
=ĝ(∇̂X(B(Y, Z) + f∗(∇Y Z)), f∗W )

=X(ĝ(B(Y, Z), f∗W ))− ĝ(B(Y, Z), ∇̂Xf∗W ) +X(ĝ(f∗(∇Y Z), f∗W ))− ĝ(f∗∇Y Z, ∇̂Xf∗W )

=− ĝ(B(Y, Z), B(X,W )) +Xg(∇Y Z,W )− g(∇Y Z,∇XW )

=g(∇X∇Y Z,W )− ĝ(B(Y, Z), B(X,W ))

And
ĝ(∇̂[X,Y ]f∗Z, f∗W ) =ĝ(f∗(∇[X,Y ]Z), f∗W )

=g(∇[X,Y ]Z,W )

So

R(X,Y, Z,W )− R̂(X,Y, f∗Z, f∗W )

=R(X,Y, Z,W )− ĝ
(
∇̂X∇̂Y f∗Z, f∗W

)
+ ĝ

(
∇̂Y ∇̂Xf∗Z, f∗W

)
+ ĝ(∇̂[X,Y ]f∗Z, f∗W )

=ĝ(B(Y, Z), B(X,W ))− ĝ(B(X,Z), B(Y,W ))

Coro 2.2 (Gauss’ Theorema Egregium). sectional curvature equals to Gauss curvature.



Chapter 3

Completeness and the Hopf-Rinow
theorem

3.1 Geodesics and exponential maps
Def 3.1. Consider a C∞ curve γ : [a, b] → (M, g), define

γ∗

(
d

dt

)
∆
=== γ′(t) ∈ Γ([a, b], γ∗TM), ∇̂ d

dt
γ′(t)

∆
=== γ′′(t).

Remark 3.1.
∇̂ d

dt

(
dγi

dt

∂

∂xi

)
=

(
d2γk

dt2
+ Γk

ij

dγi

dt

dγj

dt

)
∂

∂xk
, i.e.B = ∇̂γ′.

Def 3.2. γ : [a, b] → (M, g) is called a geodesic if

∇̂γ′ = 0, i.e.d
2γk

dt2
+ Γk

ij(γ)
dγi

dt

dγj

dt
= 0.

Prop 3.1. If γ is a geodesic, then |γ′| is a constant.

Proof.
d

dt
〈γ′, γ′〉ĝ = 2

〈
∇̂ d

dt
γ′, γ′

〉
ĝ
= 0

Thm 3.1. Let (M, g) be a Riemannian manifold. For any p ∈ M, v ∈ TpM and t0 ∈ R, there
exist an open interval I ⊂ R with t ∈ I, and a geodesic γ : I →M , such that

γ(t0) = p, γ′(t0) = v.

Proof. Let (U,ϕ, xi) be a local chart around p ∈M and T k = dγk

dt .
So we have the ODE

dT k

dt
+ Γk

ijT
iT j = 0, T k(t0) = vk.

Hence using the theory of ODE, we can prove the existence an uniquene of solutiaon.

Def 3.3. A geodesic γ : I → (M, g) is said to be maximal, if it can not be extended to a
geodesic on a larger interval.

16
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Remark 3.2. On a Riemann manifold (M, g), given p ∈M, v ∈ TpM .
The maximal interval is

Ip,v =
⋃{

I ⊂ R|0 ∈ I and there exist a geodesic
γ : I → (M, g), γ(0) = p, γ′(0) = v

}
.

We denote γv(t) : Ip,v → (M, g) is the maximal geodesic.

Prop 3.2. γcv(t) = γv(ct).

Proof. Let F (t) = γv(ct).

F ′′ = ∇̂ d
dt
F∗

(
d

dt

)
= ∇̂ d

dt
cγ′v(ct) = c2γv(ct) = 0, F∗

(
d

dt

) ∣∣∣∣
t=0

= cv.

Hence F (t) = γcv(t).

Def 3.4. ∀p ∈M , define the set

Ep = {v ∈ TpM |1 ∈ Ip,v}.

Def 3.5 (Exponential map).
expp : Ep →M, v 7→ γv(1).

And for
E =

⊔
p∈M
Ep ⊂

⊔
p∈M

TpM = TM,

we can define exp : E →M .

Thm 3.2. (1) E ⊂ TM is open and exp : E →M is C∞

(2) If p ∈M and v ∈ Ep ⊂ TpM , then

Ip,v = {t ∈ R|tv ∈ Ep}

(3) Each set Ep ⊂ TpM is star-shaped w.r.t. 0 ∈ TpM

(4) For each p ∈M ,
d
(
expp

)
0
: T0(TpM) ∼= TpM → TpM

is identity.

Proof. (1) Consider a local vector field on TM around (p, v):

G = vi
∂

∂xi
− Γi

jkv
jvk

∂

∂vi

The integral curve of G passing through (p, v) satisfying that

dφi

dt
= φn+i,

dφn+i

dt
= −Γi

jkφ
n+jφn+k,

where i ∈ [1, n] ∩ Z.
So let γ = π◦φ : R →M be a curve passing through p, where π is the projection TM →M .
Then

d2γi

dt2
+ Γk

ij(γ)
dγi

dt

dγj

dt
= 0,
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i.e.γ(t) = expp(tv) is the geodesic.
By Theorem 9.12 of J.Lee’s Introduction to smooth manifolds, there is a neighborhood
Vp,v ⊂ TM around (p, v) such that 1 ∈ Iq,w for every (q, w) ∈ TM .
Hence E =

⋃
v∈Ep

Vp,v is open.

And exp(p, v) = expp(v) = γv(1) = π(φ(p,v)(1)) is smooth.

(2) Let t satisfying that tv ∈ Ep.
Then 1 ∈ Ip,tv, i.e. t ∈ Ip,v.
So we have

Ip,v = {t ∈ R|tv ∈ Ep}.

(3) By (2), ∀t ∈ Ip,v, tv ∈ Ep and [0, 1] ⊂ Ip,v.
So Ep is star-shaped w.r.t. 0.

(4) Given v ∈ TpM , we also regard v ∈ T0(TpM).
We choose a curve τ in TpM such that

τ(t) = tv ⊂ TpM, i.e.τ ′(0) = v ∈ T0(TpM) ∼= TpM

And let γ = expp ◦τ

Then d
(
expp

)
0
(v) = γ′(0) = d

dt

∣∣
t=0

(expp ◦τ(t)) = d
dt

∣∣
t=0

expp(tv) =
d
dt

∣∣
t=0

γv(t) = v

Def 3.6. Let p ∈M , for γ > 0, denote

Br(0) = {v ∈ TpM ||v| < r}.

If r << 1, then Br(0) ⊂ Ep, define

Br(p) = expp(Br(0))

is an open subset of M , and expp : Br(0) → Br(p) is a diffeomorphism.
The supremum of such r is called the injective radius at p ∈M , denoted by injp(M, g).

Def 3.7. Let {ei} be any orthonormal basis of (TpM, gp), there exists an isomorphism

B : Rn → TpM, (r1, · · · , rn) 7→
n∑

i=1

riei.

By using diffeomorphsim expp : V → U on small neighborhoods, we obtain a C∞ coordinate
map ϕ : U → Rn given by

U
exp−1

p−−−→ TpM
B−1

−−→ Rn.

Remark 3.3. (1) B−1
∗ : T (TpM) → TRn, B−1

∗ (0, ei) =
∂
∂ri

∣∣
0

(2) ϕ∗

(
∂
∂xi

∣∣
p

)
= ∂

∂ri

∣∣
0

(3) d
(
expp

)
0
: T0(TpM) ∼= TpM → TpM, v 7→ v

So ∂
∂xi

∣∣
p
= ei

Coro 3.1. (U,ϕ, x) given by the previous setting
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(1) ϕ(p) = (0, · · · , 0) ∈ Rn

(2) gij(p) = g
(

∂
∂xi

∣∣
p
, ∂
∂xj

∣∣
p

)
= δij

(3) For every v = vi ∂
∂xi

∣∣
p
∈ TpM , we have

riv(t) = xi ◦ γv(t) = tvi, t ∈ Ip,v.

(4) ∂gij
∂xk

∣∣∣
p
= 0, in particular, Γk

ij(p) = 0.

Proof. (1) ϕ(p) = B−1(exp−1
p (p)) = B−1(0) = 0

(2) Since ei = ∂
∂xi

∣∣
p
is orthonormal basis of (TpM, gp).

So gij(p) = δij

(3)
γiv(t) =x

i ◦ γv(t)
=γi ◦ ϕ ◦ expp(tv)
=γi ◦B−1 ◦ exp−1

p ◦ expp(tv)
=γi ◦B(tviei)

=γi ◦ (tv1, · · · , tvn)
=tvi

.

(4) For any v ∈ TpM , consider the geodesic equivalent for γv(t).

d2γkv
dt2

+ Γk
ij(γv(t))

dγiv
dt

drjv
dt

= 0.

So Γk
ij(rv(0))v

ivj = 0, i.e.Γk
ij(p)v

ivj = 0.

Hence Γk
ij(p) = 0, and

∂gij
∂xk

∣∣∣∣
p

=
∂

∂xk

〈
∂

∂xi
,
∂

∂xj

〉
=

〈
∇ ∂

∂xk

∂

∂xi
,
∂

∂xj

〉
+

〈
∂

∂xi
,∇ ∂

∂xk

∂

∂xj

〉
= 0

Thm 3.3. Let (M, g) be a Riemannian manifold and (U,ϕ, x) be any normal coordinate chart
centered at p ∈M .

Then we can obtain that

gij(x) = δij −
1

3
Riklj(p)x

kxl +O(|x|3)

det(gij) = 1− 1

3
Rkl(p)x

kxl +O(|x|3)

Proof. For any v ∈ TpM , since γv(t) = expp(vt) is geodesic.
So Γk

ij(expp(vt))v
ivj = 0.

Take a derivative of this equation at p, we obtain

∂Γk
ij

∂xl
(p) vivjvl ≡ 0.
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Therefore

∂Γk
ij

∂xl
+
∂Γk

il

∂xj
+
∂Γk

jl

∂xi
= 2

∂2gik
∂xj∂xl

+ 2
∂2gjk
∂xi∂xl

+ 2
∂2gkl
∂xi∂xj

− ∂2gij
∂xk∂xl

− ∂2gil
∂xj∂xk

−
∂2gjl
∂xi∂xk

= 0.

Sum the similar cyclic equations:

∂2gik
∂xj∂xl

+
∂2gjk
∂xi∂xl

+
∂2gkl
∂xi∂xj

+
∂2gij
∂xk∂xl

+
∂2gil
∂xj∂xk

+
∂2gjl
∂xi∂xk

= 0

Moreover, by some simple calculation, we have

∂2gij
∂xk∂xl

=
∂2gkl
∂xi∂xk

.

And notice that Γk
ij(p) = 0 and remark 1.51.5,

∂2gij
∂xk∂xl

=
1

3
(Rilkj +Riklj)

Hence the proof is complete by Taylor’s expansion.

Coro 3.2. When r is small enough, show that

Vol(B(p, r)) = ωnr
n

(
1− s(p)

6(n+ 2)
r2 +O(r3)

)
and

Area(S(p, r)) = nωnr
n−1

(
1− s(p)

6
r2 +O(r3)

)
.

Proof. Consider a normal coordinate chart (U,ϕ, xi) that is centered at p.

Vol(B(p, r)) =

ˆ √
det gdx1 ∧ · · · ∧ dxn

=

ˆ √
1− 1

3
Rij(p)xixj +O(|x|3)dx1 ∧ · · · ∧ dxn

=

ˆ (
1− 1

6
Rij(p)x

ixj +O(|x|3)
)
dx1 ∧ · · · ∧ dxn

=Vol(B0(r))−
Rij(p)

6

ˆ
xixjdx1 ∧ · · · ∧ dxn +O(rn+3)

=ωnr
n − δijRij(p)

6n

ˆ
|x|2dx1 ∧ · · · ∧ dxn +O(rn+3)

=ωnr
n − s(p)

6n

(
r2Vol(B0(r))−

ˆ r

0
2tVol(B0(t))dt

)
+O(rn+3)

=ωnr
n − s(p)

6n

(
ωnr

n+2 − 2ωn

ˆ r

0
tn+1dt

)
+O(r3)

=ωnr
n

(
1− s(p)

6(n+ 2)
r2 +O(r3)

)

Area(S(p, r)) =
d

dr
Vol(B(p, r)) = nωnr

n−1

(
1− s(p)

6n
r2 +O(r3)

)
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3.2 Completeness and the Hopf-Rinow theorem
Def 3.8. Let (M, g) be a connected Riemannian manifold, we define the distance function

dg :M ×M → R, (p, q) 7→ inf
γ∈L

ˆ
|γ′|dt,

where L is the set of piecewise smooth curves connecting p and q.

Remark 3.4. Actually, piecewise is not necessary, since we are considering the inf.

Lemma 3.1 (Gauss). Let (M, g) is a Riemannian manifold, and fix p ∈M, r < injp(M, g).
Let I ⊂ R be an open interval and suppose:

(1) w : I → TpM, |w(s)| ≡ r

(2) α(t, s) = expp(tw(s)) for (t, s) ∈ R× I and tw(s) ∈ Ep.

Then 〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂s

)〉
≡ 0.

Proof. Let ∇̂ be the induced connection on α∗TM .
Fixed any s ∈ I, then α(t, s) is a geodesic.
And we deduce

∇̂ ∂
∂t
α∗

(
∂

∂t

)
= 0.

So
∂

∂t

∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2
g

=
∂

∂t

〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂t

)〉
=2

〈
∇̂ ∂

∂t
α∗

(
∂

∂t

)
, α∗

(
∂

∂t

)〉
=0

Therefore ∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2(t, s) =∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2(0, s)
=|w(s)|2 = r2

Moreover, we have

∂

∂t

〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂s

)〉
=

〈
∇̂ ∂

∂t
α∗

(
∂

∂t

)
, α∗

(
∂

∂s

)〉
+

〈
α∗

(
∂

∂t

)
, ∇̂ ∂

∂t
α∗

(
∂

∂s

)〉
=

〈
α∗

(
∂

∂t

)
, ∇̂ ∂

∂s
α∗

(
∂

∂t

)〉
=
1

2

∂

∂s

〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂t

)〉
=0

Hence 〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂s

)〉
(t, s) =

〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂s

)〉
(0, s) = 0
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Remark 3.5. The geometric intuition behind this lemma is that the meridian and the parallel
are perpendicular.

Thm 3.4. Let M, g be a Riemannian manifold, and fix p ∈M, r < injp(M, g).
Then for every v ∈ Br(0) ⊂ TpM , we have

dg(p, expp(v)) = |v|.

Moreover, for any q ∈ Br(p) ⊂ M , a C∞-curve γ : [0, 1] → M has minimal length L(r) =
dg(p, q) iff there is a C∞ function f : [0, 1] → [0, 1] satisfying f(0) = 0, f(1) = 1, f ′ ⩾ 0 and
γ(t) = expp(f(t)v).

Proof. Let q = expp(v), ε = |v|.
Suppose γ : [0, 1] → Bε(p) ⊂M be a curve connecting p and q.
We claim that L(γ) ⩾ |v|.
Indeed, since expp : Bε(0) → Bε(p) is a diffeomorphism.
So there exists an unique function v(t) : [0, 1] → Bε(0), s.t.γ(t) = expp(v(t)).
Consider

I = {t ∈ [0, 1]|γ(t) 6= p} = {t ∈ [0, 1]|v(t) 6= 0} ⊂ (0, 1]

and let
β : [0, 1] → [0, 1], t 7→ |v(t)|

ε
, w : I → TpM, t 7→ v(t)

β(t)

Then for t ∈ I,
|w(t)|g = ε, γ(t) = expp(β(t)w(t)).

Consider α(s, t) = expp(sw(t)) : [0, 1]× I →M .
Then γ(t) = α(β(t), t) and

γ′(t) = β′(t) α∗

(
∂

∂s

) ∣∣∣∣
(β(t),t)

+ α∗

(
∂

∂t

) ∣∣∣∣
(β(t),t)

.

∣∣∣∣α∗

(
∂

∂s

)∣∣∣∣ = |w(t)| = ε.

By Gauss Lemma,

∣∣γ′(t)∣∣2 = ∣∣β′(t)∣∣2∣∣∣∣α∗

(
∂

∂s

)∣∣∣∣2 + ∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2 ⩾ ∣∣β′(t)∣∣2ε2.
Hence

L(γ) =

ˆ 1

0

∣∣γ′(t)∣∣dt ⩾ ˆ
I

∣∣γ′(t)∣∣dt ⩾ |v|
ˆ
I

∣∣p′(t)∣∣dt ⩾ |v|
ˆ
I
β′(t)dt = |v|

And L(γ) = |v| iff β′(t) ⩾ 0, β(t) = v(t), β′(t) = 0.

Lemma 3.2. (M,dg) is a metric space, i.e.

(1) dg(p, q) = dg(q, p)

(2) dg(p, q) = 0 ⇔ p = q

(3) dg(p1, p2) ⩽ dg(p1, p3) + dg(p3, p2).

Proof. (1) ∀γ ∈ L(p,q), γ
−1 ∈ L(q,p).

So dg(p, q) = dg(q, p).
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(2) If p = q, then dg(p, q) = 0.
If p 6= q, then ∃r, s.t.q /∈ Br(p).
By theorem 3.43.4, for every γ ∈ L(p,q),

ˆ ∣∣γ′∣∣dt ⩾ dg(p, expp(v)) =
r

2
,

where |v|g = r
2 and expp(v) ∈ Im γ.

So d(p, q) ⩾ r
2 .

Hence d(p, q) = 0 ⇔ p = q.

Remark 3.6. theorem 3.43.4 is also true for piecewise smooth curve, so the identity of triangle
inequality holds iff p2 is on the minimal geodesic from p1 to p3.

In other word, the minimal curve has no corner.
Remark 3.7. The topology determined by local charts is the same as the topology determined
by the metric.

Def 3.9. A Riemannian manifold (M, g) is called geodesically complete, if for all p ∈M , expp
is defined for all v ∈ TpM , i.e. every geodesic γ(t) starting from p is defined for t ∈ R.

Lemma 3.3. Let (M, g) be a Riemannian manifold, if expp : TpM → M is well-defined, then
∀q ∈M, ∃a C∞ minimal geodesic connecting p and q, such that

γv(1) = expp(v) = q, dg(p, q) = |v| = L(γ).

Proof. For any q ∈M , let r = dg(p, q) and ε < r.
Then if q ∈ B̄ε(p), then this is trivial.
If q /∈ B̄ε(p), then consider p0 ∈ ∂Bε(p) such that d(p0, q) = d(∂Bε(p), q) and a unit-speed

geodesic γ passing through p and p0.
We claim that γ(r) = q.
Indeed, let

A = {t ∈ [ε, r]|dg(γ(t), q) = r − t},

which is closed.
And for t ∈ A, let p1 = γ(t), p2 ∈ ∂Bε(p1) such that d(p2, q) = d(∂Bε(p1), q).
Then

d(p1, p2) + d(p2, q) = d(p1, q) = r − d(p, p1),

d(p, p2) ⩾ r − d(p2, q) = d(p, p1) + d(p1, p2).

So ∃t0, s.t.p2 = γ(t0), i.e.t0 ∈ A.
Hence A is also open, i.e. A = [ε, r] and γ(r) = q.

Thm 3.5 (Hopf-Rinow). TFAE:

(1) (M, g) is geodesically complete

(2) ∃p ∈M, s.t. expp : TpM →M is well-defined

(3) The closed and bounded sets of M are compact

(4) (M, dg) is metrically complete
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Proof. (1) ⇒ (2), (3) ⇒ (4) are trivial.
(2) ⇒ (3): Let K be a closed and bounded set and r = sup

q∈K
dg(p, q).

Then by lemma 3.33.3, K ⊂ B̄r(p), i.e. exp−1
p (K) is closed and bounded in Rn.

So exp−1
p (K) is compact,i.e. K is compact since expp is smooth.

(4) ⇒ (1): Let γ : [0, ε] →M be a C∞ unit-speed geodesic starting at p, γ(0) = p.
By ODE theory, the maximal defining interval of γ is an open interval (a, b).
We claim that a = −∞, b = +∞.
Indeed, if b < +∞, then there exists Cauchy sequence {bi} → b.
So ∀ε > 0, ∃Nε, s.t.∀k > l > Nε, |bk − bl| < ε.
On the other hand, dg(γ(bk), γ(bl)) ⩽ L

(
γ
∣∣
[bl,bk]

)
= |bk − bl| < ε.

Therefore {γ(bi)} is Cauchy sequence in (M, dg), i.e.γ(bk) converges to a point q ∈M .
By the basic proposition of the exponential map, there exists small δ ∈ (0, ε), such that any

two points in B̄δ(q) can be connected by a unique smooth geodesic.
Choose Ñε such that if k ⩾ Ñε, we have

|bk − b| < δ

2
, dg(γ(bk), q) <

δ

2
.

So in Bδ(r(bk)), there is a geodesic γ̃ :
[
bk, bk +

δ
2

]
→M such that

γ̃(bk) = γ(bk), γ̃
′(bk) = γ′(bk).

Gluing γ
∣∣
[a,bk]

and γ̃
∣∣
[bk,bk+ δ

2 ]
together, we extend γ to bk + δ

2 > b, contradiction!
Similarly, we have a = −∞.

Coro 3.3. If (M, g) is complete, ∀p, q ∈M , there exists a minimal geodesic γ, such that

γ(t) = expp(tv), dg(p, q) = |v|, q = expp(v).

Proof. Directly by Hopf-Rinow theorem and lemma 3.33.3.

Coro 3.4. If (M, g) is compact, then (M, g) is complete.

Proof. When (M, g) is compact, every closed subset of M is compact.
So by Hopf-Rinow theorem, (M, g) is complete.



Chapter 4

The Hodge decomposition

Lemma 4.1. ϕ ∈ Ωk(M) = Γ(M,
∧k T ∗M) and write ϕ as

ϕ =
∑

i1,··· ,ik

fi1···ikdx
i1 ∧ · · · ∧ dxik .

We define
ϕi1···ik =

∑
σ∈Pk

(−1)|σ|fiσ(1)···σ(k)
.

Then ϕi1···ik is skew-symmetric, and

ϕ =
∑

i1<···<ik

ϕi1···ikdx
i1 ∧ · · · ∧ dxik =

1

k!

∑
i1,··· ,ik

ϕi1···ikdx
i1 ∧ · · ·xik .

Proof.
dxiσ(1) ∧ · · · ∧ dxiσ(k) = (−1)|σ|dxi1 ∧ · · · ∧ dxik .

So we can obtain that

ϕ =
∑

i1,··· ,ik

fi1···ikdx
i1 ∧ · · · ∧ dxik

=
∑

i1<···<ik

∑
σ∈Sk

fiσ(1)···iσ(k)
dxiσ(1) ∧ · · · ∧ dxiσ(k)

=
∑

i1<···<ik

ϕi1···ikdx
i1 ∧ · · · ∧ dxik

=
∑

i1<···<ik

∑
σ∈Sk

(−1)σ
ϕi1···ik
k!

dxiσ(1) ∧ · · · ∧ dxiσ(k)

=
1

k!

∑
i1,··· ,ik

ϕi1···ikdx
i1 ∧ · · · ∧ dxik

Remark 4.1. We simply denote∑
I

fIdx
I ∆
===

∑
i1,··· ,ik

fi1···ikdx
i1 ∧ · · · ∧ dxik .

Def 4.1. There is a local inner product on Ωk(M) such that

〈ϕ,ψ〉 = 1

k!
g(ϕ,ψ).

25
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Lemma 4.2. Let ϕ,ψ ∈ Ωk(M) and ϕ =
∑
I

ϕIdx
I , ψ =

∑
J

ψJdx
J .

Then
〈ϕ,ψ〉 = gIJϕIψJ ,

where

gIJ =
1

k!
g(dxI , dxJ) =

∣∣∣∣∣∣∣
gi1j1 · · · gi1jk

... . . . ...
gikj1 · · · gikjk

∣∣∣∣∣∣∣ .
In particular, if ϕ = 1

k!

∑
ϕIdx

I , ψ = 1
k!

∑
ψJdx

J and ϕI , ψJ are skew-symmetric.
Then

〈ϕ,ψ〉 = 1

k!

∑
gi1j1 · · · gikjkϕi1···ikψj1···jk

Proof.

〈ϕ,ψ〉 = 1

k!
g

(∑
I

ϕIdx
I ,
∑
J

ψJdx
J

)
=

1

k!
g(dxI , dxJ)ϕIψJ = gIJϕIψJ .

1

k!
g(dxI , dxJ) =

1

k!
g

∑
σ∈Sk

(−1)|σ|dxiσ(1) ⊗ · · · ⊗ dxiσ(k) ,
∑
τ∈Sk

(−1)|τ |dxjτ(1) ⊗ · · · ⊗ dxjτ(k)


=

1

k!

∑
σ,τ∈Sk

(−1)|σ|+|τ |giσ(1)jτ(1) · · · giσ(k)jτ(k)

=
1

k!

∑
σ,τ∈Sk

(−1)|τ◦σ−1|gi1jτ◦σ−1(1) · · · giljτ◦σ−1(l)

=
∑
σ∈Sk

(−1)|σ|gi1jσ(1) · · · gikjσ(k) = det
((
gipjq

)
1⩽p,q⩽k

)
In particular, when ϕ = 1

k!

∑
ϕIdx

I , ψ = 1
k!

∑
ψJdx

J and ϕI , ψJ are skew-symmetric,

〈ϕ,ψ〉 = 1

(k!)2

∑∑
σ∈Sk

(−1)|σ|gi1jσ(1) · · · gikjσ(k)

ϕi1···ikψj1···jk

=
1

(k!)2

∑∑
σ∈Sk

gi1jσ(1) · · · gikjσ(k)ϕi1···ikψjσ(1)···jσ(k)

=
1

k!

∑
gi1j1 · · · gikjkϕi1···ikψj1···jk

Def 4.2. dvolg =
√

det(gij)dx
1 ∧ · · · ∧ dxn is a volume form.

Prop 4.1. 〈dvolg, dvolg〉 = 1.

Proof.
〈dvolg, dvolg〉 = det

(
gij
)
det(gij) = 1.

Def 4.3. Let (M, g) be an oriented Riemannian manifold.
The global inner product on Ωk(M) is

(ϕ,ψ) =

ˆ
M
〈ϕ,ψ〉dvolg =

1

k!

ˆ
M
g(ϕ,ψ)dvolg.
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Def 4.4. Let (V, g) be a vector space with an inner product and {e1, · · · , er} be an orthonormal
basis of V .

The Hodge-∗ star operator is a linear map

∗ : ∧kV → ∧r−kV, eI 7→ sign(I, Ic)eIc ,

where I = (i1, · · · , ik) with 1 ⩽ i1 < · · · < ik ⩽ r.

Def 4.5. Let (M, g) be an oriented Riemannian manifold and dimRM = n.
Let {ξ1, · · · , ξn} be an orthonormal frame of TM over an open patch U .
The Hodge-* operator on Ω·(M) is defined as

∗ : Ωk(M) → Ωn−k(M), v 7→
∑
|I|=k

sign(I, Ic)vIξ
Ic ,

where v =
∑

|I|=k

vIξ
I .

Prop 4.2. (1) ∗1 = dvolg, ∗(dvol)g = 1.

(2) ∗ ∗ v = (−1)k(n−k)v for v ∈ Ωk(M)

(3) If u ∈ Ωk(M), v ∈ Ωn−k(M), then ∗(u ∧ v) = (−1)k(n−k)〈u, ∗v〉

(4) u, v ∈ Ωk(M), then u ∧ ∗v = v ∧ ∗u = 〈u, v〉dvolg and 〈∗u, ∗v〉 = 〈u, v〉.

(5) If u ∈ Ωk(M), v ∈ Ωn−k(M), then 〈u, ∗v〉 = (−1)k(n−k)〈∗u, v〉.

Proof. (1) ∗1 = ξ1 ∧ · · · ∧ ξn.
And since gij = g(ξi, ξj) = δij .
So ∗1 = dvolg and ∗(dvolg) = ∗(ξ1 ∧ · · · ∧ ξn) = 1.

(2)

∗ ∗ v = ∗

∑
|I|=k

sign(I, Ic)vIξ
Ic


=
∑
|I|=k

sign(I, Ic)vI · sign(Ic, I)ξI

=
∑
|I|=k

(−1)k(n−k)vIξ
I = (−1)k(n−k)v

(3)

∗(u ∧ v) = ∗

∑
|I|=k

∑
|J |=n−k

uIvJξ
I ∧ ξJ


= ∗

∑
|I|=k

uIvIcsign(I, I
c)

 ξ1 ∧ · · · ∧ ξn


=
∑
|I|=k

sign(I, Ic)uIvIc

=

〈∑
|I|=k

uIξ
I ,
∑
|I|=k

sign(I, Ic)vIcξ
I

〉
=(−1)k(n−k)〈u, ∗v〉



CHAPTER 4. THE HODGE DECOMPOSITION 28

(4) u ∧ ∗v = (−1)k(n−k)〈u, ∗ ∗ v〉dvolg = 〈u, v〉dvolg
So v ∧ ∗u = 〈v, u〉dvolg = 〈u, v〉dvolg.
And 〈∗u, ∗v〉 = (−1)k(n−k) ∗ (∗u ∧ v) = ∗(v ∧ ∗u) = (−1)k(n−k)〈v, ∗ ∗ u〉 = 〈u, v〉.

(5) 〈u, ∗v〉 = (−1)k(n−k)〈∗ ∗ u, ∗v〉 = (−1)k(n−k)〈∗u, v〉.

Coro 4.1. Let (M, g) be a compact oriented Riemannian manifold, then

(u, v) =

ˆ
M
u ∧ ∗v.

Proof.
(u, v) =

ˆ
M
〈u, v〉dvolg =

ˆ
M
u ∧ ∗v.

Def 4.6. Let (M, g) be a compact oriented Riemannian manifold.
The formal adjoint operator of d is, denoted by d∗, defined as

(dϕ,ψ) = (ϕ, d∗ψ)

where ϕ ∈ Ωk(M), ψ ∈ Ωk+1(M).
Thm 4.1. d∗ = (−1)nk+n+1 ∗ d∗.
Proof. If u ∈ Ωk−1(M), v ∈ Ωk(M), then

d(u ∧ ∗v) = du ∧ ∗v + (−1)k−1u ∧ d ∗ v.

So by Stokes’ theorem,

0 =

ˆ
M

d(u ∧ ∗v) =
ˆ
M

du ∧ ∗v + (−1)k−1

ˆ
M
u ∧ d ∗ v.

Therefore
(du, v) =

ˆ
M
〈du, v〉dvolg

=

ˆ
M

du ∧ ∗v

=(−1)k
ˆ
M
u ∧ (d ∗ v)

=(u, (−1)nk+k+1 ∗ d ∗ v)

Coro 4.2. For ω = ωidx
i ∈ Ω1(M),

d∗ω = −gij
(
∂ωi

∂xj
− Γk

jiωk

)
= −gij (∇jω)i = −

(
∇iω

)
i
.

Proof. WLOG, let
{

∂
∂xi

}
be an normal frame.

We then have

d∗ω =− ∗d ∗ ω = − ∗

((
n∑

i=1

∂ωi

∂xi

)
dx1 ∧ · · · ∧ dxn

)

=−
n∑

i=1

∂ωi

∂xi
= −

(
∇iω

)
i
= −gij

(
∂ωi

∂xj
− Γk

ijωk

)
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Def 4.7. The operator ∆ = dd∗ + d∗d : Ωk(M) → Ωk(M) is called the Laplacian-Beltrami
operator.

Prop 4.3. (∆ϕ,ψ) = (ϕ,∆ψ).

Proof.
(∆ϕ,ψ) =(dd∗ϕ,ψ) + (d∗dϕ,ψ) = (d∗ϕ, d∗ψ) + (dϕ, dψ)

=(ϕ, dd∗ψ) + (ϕ, d∗dψ) = (ϕ,∆ψ)

Def 4.8. u ∈ Ωk(M) is called harmonic if ∆u = 0 and the space of harmonic k-form is denote
H k(M).

Remark 4.2. f ∈ Ω0(M), then ∆f = −∆gf = − trHess f .

Coro 4.3. ∀u ∈ Ωk(M),∆u = 0 ⇔ du = 0, d∗u = 0.

Proof.
(∆u, u) = (dd∗u+ d∗du, u) = (du, du) + (d∗u, d∗u) = |du|2 + |d∗u|2

So ∆u = 0 iff du = 0, d∗u = 0.

Thm 4.2 (Hodge decomposition). Ωk(M) = H k(M)⊕ d
(
Ωk+1(M)

)
⊕ d∗(Ωk+1(M))

Proof. The proof of this theorem need some technique about functional analysis. If you are
really interested about this, you can search for the proof on Google by yourself :)

Def 4.9. If α ∈ Ωk(M) satisfies dα = 0, then α is called a d-closed form.
If α = dα1 for some α1 ∈ Ωk−1(M), then α is called an exact form.

Def 4.10.
Z r(M) = ker(d : Ωr(M) → Ωr+1(M)) = {closed r-form on M},

B r(M) = im(d : Ωr−1(M) → Ωr(M)) = {exact r-form on M}.

Then we define the de Rham cohomology group in degree r to be

Hr
dR(M) = Z r(M)/B r(M).

Exam 4.1. H1
dR(R2 − {0},R) 6= 0 since ω = xdy−ydx

x2+y2
is closed but not exact.

Thm 4.3 (Hodge). Hr
dR(M,R) ∼= H r(M,R).

Proof. Let α ∈ Ωk be a closed form and H be the projection Ωk(M) → H k(M).
By Hodge decomposition,

α = H (α) + dα1 + d∗α2

for α1 ∈ Ωr−1(M), α2 ∈ Ωr+1.
So dd∗α2 = dα = 0, i.e.(d∗α2, d

∗α2) = (dd∗α2, α2) = 0.
Therefore α = H (α) + dα1, i.e.[α] = [H (α)] ∈ Hr

dR(M,R).
Hence Hr

dR(M,R) ∼= H r(M,R).

Def 4.11. X ∈ Γ(M,TM), then the divergence of X is

div(X)dvolg
∆
=== LX(dvolg).

Prop 4.4. div(X) = ∇iX
i =

n∑
i=1

(
∂X i

∂xi
+ Γi

ikX
k

)
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Proof.
LX(dvolg) =(iX ◦ d + d ◦ iX)(dvolg) = d(iX(dvolg))

=d
(
Xii ∂

∂xi

(√
det gdx1 ∧ · · · ∧ dxn

))
=

∂

∂xi

(
Xi
√
det(g)

) dvolg√
det g

=

(
∂X i

∂xi
+

1

2

∂ log det g

∂xi
Xi

)
dvolg

(∗)
=

(
∂X i

∂xi
+ Γs

siX
i

)
dvolg

=(∇iX
i)dvol(g).

The (∗) is given by

1

2

∂ log det g

∂xi
=

1

2det g

∂ det g

∂xi
=

1

2det g

∂gjk
∂xi

(
det g · gjk

)
=
1

2
gjk

∂gjk
∂xi

=
1

2
gjk
(
∂gjk
∂xi

+
∂gji
∂xk

− ∂gki
∂xj

)
=Γk

ki

Coro 4.4. ∆gf =
1√
det g

∂

∂xi

(
gij
√
det g

∂f

∂xi

)
.

Proof.

∆gf =gij
(

∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

)
=

∂

∂xi

(
gij

∂f

∂xj

)
− ∂gij

∂xi
∂f

∂xj
− gijΓk

ij

∂f

∂xk

=
∂

∂xi

(
gij

∂f

∂xj

)
+ gijgkl

∂gjl
∂xi

∂f

∂xk
− 1

2
gijgkl

(
∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
∂f

∂xk

=
∂

∂xi

(
gij

∂f

∂xj

)
+

1

2
gijgkl

(
∂gij
∂xl

+
∂gjl
∂xi

− ∂gil
∂xj

)
∂f

∂xk

=
∂

∂xi

(
gij

∂f

∂xj

)
+ Γi

il

(
gkl

∂f

∂xk

)
= div

(
gij

∂f

∂xj
∂

∂xi

)
=

1√
det g

∂

∂xi

(
gij
√
det g

∂f

∂xi

)

Prop 4.5 (divergence theorem).
ˆ
M

div(X)dvolg = 0.

Proof. ˆ
M

div(X)dvolg =

ˆ
M
LXdvolg =

ˆ
M

d(iXdvolg) = 0

Prop 4.6. If ω is a 1-form, then ˆ
M

d∗ωdvolg = 0.

Proof. Consider Xi = gijωj .
Then d∗ω = −gij∇iωj = −∇iX

i = −div(X).
So the integral is 0 by divergence theorem.
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Prop 4.7.
ˆ
M
(∆gf1)(f2)dvolg = −

ˆ
M
g(∇f1,∇f2)dvolg =

ˆ
M
(∆gf2)f1dvolg

Proof.
div(f1∇f2) = g(∇f1,∇f2) + f1∆gf2.



Chapter 5

Covariant derivatives

Def 5.1.
∇X : Γ (M, (⊗rT ∗M)⊗ (⊗sTM)) → Γ(M, (⊗rT ∗M)⊗ (⊗sTM))

is defined by

∇XT (X1, · · · , Xr;W1, · · · ,Ws) =X(T,X1, · · · , Xr;W1, · · · ,Ws)

−
r∑

i=1

T (X1, · · · ,∇XXi, · · · , Xr;W1, · · · ,Ws)

−
s∑

j=1

T (X1, · · · , Xr;W1, · · · ,∇XWj , · · · ,Ws)

Def 5.2. Let T ∈ Γ(M, (⊗rT ∗M)⊗ (⊗sTM)), the covariant derivative

∇T ∈ Γ(M, (⊗r+1T ∗M)⊗ (⊗sTM))

is defined by
(∇T )(X; •, · · · , •) = (∇XT )(•, · · · , •)

Prop 5.1. ∇T can be written locally as

∇T =W j1···js
ii1···irdx

i ⊗ dxi1 ⊗ · · · ⊗ dxir ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjs
.

Where

W j1···js
ii1···ir =

∂T j1···js
i1···ir
∂xi

+ Γ
jp
miT

j1···jp−1mjp+1···js
i1···ir − Γt

iiqT
j1···js
i1···iq−1tiq+1···ir

Proof.

W j1···js
ii1···ir =

∂

∂xi
T

(
∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)
−

s∑
m=1

T

(
∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · ,∇ ∂

∂xi
dxjm , · · · , dxjs

)

−
r∑

l=1

T

(
∂

∂xi1
, · · · ,∇ ∂

∂xi

∂

∂xil
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)

=
∂T j1···jr

i1···ir
∂xi

−
s∑

m=1

(
−Γjm

iq

)
T
j1···jm−1qjm+1···js
i1···ir −

r∑
l=1

Γp
iil
T j1···js
i1···il−1pil+1···ir

32
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Remark 5.1. We also write ∇iT
j1,··· ,js
i1···ir =W j1,··· ,js

ii1···ir .
If you are confused with these tensor notation, you can read the appendix AA first.

Def 5.3. we define ∇2T
∆
=== ∇(∇T ) ∈ Γ(M,⊗r+2T ∗M ⊗⊗sTM).

And we also write

∇2T =
(
∇k∇iT

j1···js
i1···ir

)
dxk ⊗ dxi ⊗ dxi1 ⊗ · · · ⊗ dxir ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjs

You may think that
∇k∇i = ∇ ∂

∂xk
∇ ∂

∂xi

but it is not true. The second covariant derivative ∇k is actually taken on a (r+1, s)-tensor,
that is we need to calculus the covariant derivative over the ‘i’-component.

Lemma 5.1.

∇k∇iT
j1···js
i1···ir =(∇2T )

(
∂

∂xk
,
∂

∂xi
,
∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)
=
(
∇ ∂

∂xk
∇ ∂

∂xi
T
)( ∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)
−

(
∇∇ ∂

∂xk

∂

∂xi
T

)(
∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)
Proof.

∇2T =∇
(
∇iT

j1···js
i1···ir dx

i ⊗ dxi1 ⊗ · · · ⊗ dxir ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjs

)
=

(
∇k

(
∇ ∂

∂xi
T
)j1···js
i1···ir

− Γp
kiT

j1···js
pi1···ir

)
dxk ⊗ dxi ⊗ dxi1 ⊗ · · · ⊗ dxir ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjs

So

∇k∇iT
j1···js
i1···ir =

(
∇ ∂

∂xk
∇ ∂

∂xi
T − Γp

ki∇ ∂
∂xp

T
)( ∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)
=

(
∇ ∂

∂xk
∇ ∂

∂xi
T −∇∇ ∂

∂xk

∂

∂xi
T

)(
∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)

Coro 5.1. Let T ∈ Γ(M, (⊗rT ∗M)⊗ (⊗sTM)).
Then for ω1, · · · , ωs ∈ Γ(M,T ∗M) and Y, Z,X1, · · · , Xr ∈ Γ(M,TM), we have

(∇2T )(Y, Z;X1, · · · , Xr, ω1, · · · , ωs) = (∇Y ∇Z −∇∇Y Z)T (X1, · · · , Xr, ω1, · · · , ωs)

Proof.

(∇Y ∇fZT −∇∇Y fZT ) (X1, · · · , Xr, ω1, · · · , ωs)

=
(
∇Y f∇ZT −∇f∇Y ZT −∇Y (f)ZT

)
(X1, · · · , Xr, ω1, · · · , ωs)

= (f∇Y ∇ZT + Y (f)∇ZT − f∇∇Y ZT − Y (f)∇ZT ) (X1, · · · , Xr, ω1, · · · , ωs)

=f (∇Y ∇ZT −∇∇Y ZT ) (X1, · · · , Xr, ω1, · · · , ωs)

So ∇Y ∇ZT −∇∇Y ZT is linear.
Hence by lemma 5.15.1,

(∇2T )(Y, Z;X1, · · · , Xr, ω1, · · · , ωs) = (∇Y ∇ZT −∇∇Y ZT ) (X1, · · · , Xr, ω1, · · · , ωs).
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Thm 5.1 (Ricci identity).

∇k∇lT
j1···js
i1···ir −∇l∇kT

j1···js
i1···ir =

s∑
m=1

Rjm
klpT

j1···jm−1pjm+1···js
i1···ir −

r∑
t=1

Rq
klit
T j1···js
i1···it−1qit+1···ir

In particular, we have

∇k∇lX
i −∇l∇kX

i = Ri
klpX

p,∇k∇kωi −∇l∇kωi = −Rq
kliωq.

Proof.

∇k∇lT
j1···js
i1···ir −∇l∇kT

j1···js
i1···ir

=

(
∇ ∂

∂xk
∇ ∂

∂xl
T −∇∇ ∂

∂xk

∂

∂xl
T −∇ ∂

∂xl
∇ ∂

∂xk
T +∇∇ ∂

∂xl

∂

∂xk
T

)(
∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)
=
(
∇ ∂

∂xk
∇ ∂

∂xl
T −∇ ∂

∂xl
∇ ∂

∂xk
T
)( ∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)
And since

∇ ∂

∂xk
∇ ∂

∂xl
T

(
∂

∂xi1
, · · · , ∂

∂xir
, dxj1 , · · · , dxjs

)
=
∑
n ̸=b

Γjb
ldΓ

jn
kqT

j1···jb−1djb−1···jn−1qjn+1···js
i1···ir +

∑
m ̸=a

T c
liaΓ

p
kim

T j1···js
i1···ia−1cia+1···im−1pim+1···ir

−
∑
a,n

Γjn
kqΓ

c
liaT

j1···jn−1qjn+1···js
i1···ia−1cia+1···ir −

∑
b,m

Γp
kim

T jb
ld T

j1···jb−1qjb+1···js
i1···im−1pim+1···ir

+
s∑

n=1

Γjn
kqΓ

q
ldT

j1···jn−1djn+1···js
i1···ir +

r∑
m=1

Γp
kim

Γc
lpT

j1···js
i1···im−1cim+1···ir

+
∂2T j1···js

i1···ir
∂xk∂xl

+

s∑
n=1

Γjn
kq

∂T
j1···jn−1qjn+1···js
i1···ir

∂xl
−

r∑
m=1

Γp
kim

∂T j1···js
i1···im−1pim+1···ir

∂xl

+

s∑
b=1

Γjn
ld

∂T
j1···jb−1djb+1···js
i1···ir

∂xk
−

r∑
a=1

Γc
lia

∂T j1···js
i1···ia−1cia+1···ir

∂xk

+
s∑

b=1

∂Γjn
ld

∂xk
T
j1···jb−1djb+1···js
i1···ir −

r∑
a=1

∂Γc
lia

∂xk
T j1···js
i1···ia−1cia+1···ir

So
∇k∇lT

j1···js
i1···ir −∇l∇kT

j1···js
i1···ir

=

s∑
n=1

(
∂Γjn

ld

∂xk
−
∂Γjn

kd

∂xl
+ Γjn

kqΓ
q
ld − Γjn

lq Γ
q
kd

)
T
j1···jn−1djn+1···js
i1···ir

+
r∑

m=1

(
∂Γc

kim

∂xl
−
∂Γc

lim

∂xk
+ Γp

kim
Γc
lp − Γp

lim
Γc
kp

)
T j1···js
i1···im−1cim+1···ir

=

s∑
n=1

Rjn
kldT

j1···jn−1djn+1···js
i1···ir +

r∑
m=1

Rc
lkimT

j1···js
i1···im−1cim+1···ir

Def 5.4. For S = Sijdx
i ⊗ dxj , T = Tkldx

k ⊗ dxl, their inner product is

〈S, T 〉 = g(S, T ) = SijTklg(dx
i ⊗ dxj , dxk ⊗ dxl) = SijTklg

ikgjl.

And for T ∈ Γ(M,T ∗M ⊗ T ∗M), the trace operator is defined as

trg T = g(g, T ) = gijTij .
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Lemma 5.2. For any S, T ∈ Γ(M,T ∗M ⊗ T ∗M), X ∈ Γ(M,TM), we have

Xg(S, T ) = g(∇XS, T ) + g(S,∇XT ).

In particular, let S = g, then

X(trg T ) = trg(∇XT ).

And locally we have

∇ ∂

∂xi
(gklTkl) = ∇ ∂

∂xi
(trg T ) = gkl(∇iTkl)

Proof.

∇kg

(
∂

∂xi
,
∂

∂xj

)
=
∂gij
∂xk

− Γp
kigpj − Γp

kjgip

=
∂gij
∂xk

− 1

2

(
∂gij
∂xk

+
∂gkj
∂xi

− ∂gik
∂xj

)
− 1

2

(
∂gji
∂xk

+
∂gki
∂xj

−
∂gjk
∂xi

)
=0

So

X(g(S, T )) = (∇Xg)(S, T ) + g(∇XY, Z) + g(S,∇XT ) = g(∇XY, Z) + g(S,∇XT ).

Remark 5.2. This lemma tell us if we have some gij inside the connection, then we can simply
exchange its position with ∇.

Thm 5.2 (second Bianchi identity). ∇iRklpq +∇kRlipq +∇lRikpq = 0

Proof. WLOG, let
{

∂
∂xi

}
be a normal local frame.

∇iRjkpq +∇jRkipq +∇kRijpq

=∇i

(
gqlR

l
jkp

)
+∇j

(
gqlR

l
kip

)
+∇k

(
gqlR

l
ijp

)
= gql

(
∇iR

l
jkp +∇jR

l
kip +∇kR

l
ijp

)
=gql

(
∂

∂xi

(
∂Γl

kp

∂xj
−
∂Γl

jp

∂xk

)
+

∂

∂xj

(
∂Γl

ip

∂xk
−
∂Γl

kp

∂xi

)
+

∂

∂xk

(
∂Γl

jp

∂xi
−
∂Γl

ip

∂xj

))
=0

Thm 5.3 (Shur). Suppose (M, g) is a connected Riemannian manifold and dimM ⩾ 3. If
Ric(g) = fg(n− 1), then f is a constant.

Proof. Let
S = trg Ric(g) = n(n− 1)f

Then
∂S

∂xk
= n(n− 1)

∂f

∂xk
.

On the other hand,
∂S

∂xk
=

∂

∂xk
(
gijRij

)
=

∂

∂xk
(
gijgpqRpijq

)
=gijgpq∇kRpijq = gijgpq (−∇pRikjq −∇iRkpjq)

=gijgpq(∇pRikqj +∇iRpkjq) = gpq∇pRkq + gij∇iRkj

=2gpq∇pRkq = 2(n− 1)
∂f

∂xk



CHAPTER 5. COVARIANT DERIVATIVES 36

Therefore
(n− 2)

∂f

∂xk
= 0.

Hence f is constant.



Chapter 6

Curvature and topology of
Riemannian manifolds I

6.1 Curvature and Killing vector fields
Lemma 6.1 (Bochner). If (M, g) is a Riemannian manifold and f ∈ C∞(M,R), then

1

2
∆g|∇f |2 = |Hess f |2 +Ric(∇f,∇f) + g(∇∆gf,∇f).

Proof. We denote
∇jf

∆
===

∂f

∂xj
,∇jf

∆
=== gij

∂f

∂xi

Then
|∇f |2 = gij∇if∇jf = gij

∂f

∂xi
∂f

∂xj

Hess f = ∇2f = (∇k∇lf)dx
k ⊗ dxl

∆gf = gkl∇k∇lf

So
1

2
∆g|∇f |2 =

1

2
gkl∇k∇l(g

ij∇if∇jf) =
1

2
gklgij∇k∇l(∇if∇jf)

=gklgij∇k(∇l∇if · ∇jf) = gklgij(∇k∇l∇if · ∇jf +∇l∇if · ∇k∇jf)

=gklgij∇k∇l∇if · ∇jf + |Hess (f)|2

On the other hand,

gklgij∇k∇l∇if · ∇jf =gklgij∇k∇i∇lf · ∇jf

=gklgij(∇i∇k∇lf − Rs
kil∇sf) · ∇jf

=gij∇i(g
kl∇k∇lf) · ∇jf + gstgijRit∇sf · ∇jf

=g(∇∆gf,∇f) + Ric(∇f,∇f)

Coro 6.1 (radial curvature equation).

Hess

(
1

2
|∇f |2

)
(•, •) = (∇∇fHess f) (•, •) + R(•,∇f,∇f, •) + Hess f(∇•∇f, •)

37



CHAPTER 6. CURVATURE AND TOPOLOGY OF RIEMANNIAN MANIFOLDS I 38

Proof. Follow by Bochner formula and

gij∇l∇if · ∇k∇jf = Hess f

(
∇ ∂

∂xk
∇f, ∂

∂xl

)

gij∇i(∇k∇lf) · ∇jf = (∇∇fHess f)

(
∂

∂xk
,
∂

∂xl

)
gstgijRkitl∇sf · ∇jf = R

(
∂

∂xk
,∇f,∇f, ∂

∂xl

)

Def 6.1. X ∈ Γ(M,TM) is a called a killing field if LXg = 0.

Lemma 6.2.
LXg(Y, Z) = g(∇YX,Z) + g(∇ZX,Y ).

Proof.

LXg(Y, Z) =Xg(Y, Z)− g([X,Y ], Z)− g(Y, [X,Z])

=g(∇XY, Z) + g(Y,∇XZ)− g(∇XY −∇YX,Z)− g(Y,∇XZ −∇ZX)

=g(∇YX,Z) + g(∇ZX,Y )

Coro 6.2. X is killing, g(∇•X, •) is skew-symmetric.

Remark 6.1. {parallel vector field} ⊂ {Killing vector field} ⊂ {divergence free vector field}.
Since ∇X = 0 ⇒ ∇X is skew-symmetric⇒ div(X) = tr(∇X) = 0.

Lemma 6.3. If X is Killing and f ∆
=== 1

2 |X|2g, then

(1) ∇f = −∇XX

(2) For any vector field V ∈ Γ(M,TM),

(Hess f)(V, V ) = |∇VX|2 − R(V,X,X, V ).

In particular,
∆gf = |∇X|2g − Ric(X,X).

Proof. (1)
g(∇f, V ) = V f =

1

2
V 〈X,X〉 = 〈∇VX,X〉 = −〈∇XX,V 〉.

(2)
(Hess f)(V, V ) =V pV q∇p∇qf =

1

2
V pV q∇p∇q(gijX

iXj)

=
1

2
V pV qgij∇p(∇q(X

iXj))

=V pV qgij(∇p∇qX
i ·Xj +∇qX

i · ∇pX
j)

=|∇VX|2 + V pV qgij
(
∇p∇qX

i
)
Xj

=|∇VX|2 − V pV qgiq
(
∇p∇jX

i
)
Xj

=|∇VX|2 − V pV qgiq
(
∇j∇pX

i +Ri
pjsX

s
)
Xj

=|∇VX|2 −R(V,X,X, V )
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The last step follows from that gip∇j∇qX
i = −giq∇j∇pX

i.
Alternative proof:

(Hess f)(V, V ) =− g(∇V (∇XX), V )

=− g(R(V,X)X,V )− g(∇X∇VX,V )− g(∇[V,X]X,V )

=− R(V,X,X, V )− g(∇X∇VX,V ) + g(∇VX, [V,X])

=− R(V,X,X, V )− g(∇X∇VX,V ) + g(∇VX,∇VX)− g(∇VX,∇XV )

=−R(V,X,X, V )−X(g(∇VX,V )) + g(∇VX,∇VX)

=−R(V,X,X, V ) + g(∇VX,∇VX)

Coro 6.3. (M, g) is compact and Ric(g) ⩽ 0, then Killing ⇔ parallel.

Proof. ˆ
|∇X|2 ⩽

ˆ
∆gf = 0

So ∇X = 0 is parallel.

Thm 6.1 (Bochner, 1946). If (M, g) is a compact Riemannian manifold with Ric(g) < 0, then
(M, g) has no nontrivial Killing vector field.

Proof. At the maximal point, ∆gf ⩽ 0, but

|∇X|2g − Ric(X,X) ⩾ 0

So Ric(X,X) = 0,∇X = 0, i.e.X = 0 is trivial.

Thm 6.2. Let (M, g) be a compact Riemannian manifold with sec(g) > 0.
If dimRM = 2m, then every Killing vector field on (M, g) has a zero.

Proof. Suppose X is killing and |X|2g attains its minimum at p ∈M and Xp 6= 0.
Let f = 1

2 |X|2g.
Then

0 = (∇f)(p) = (∇XX)(p)

We claim ∃V ∈ TpM, s.t. ∇VX
∣∣
p
= 0 where V /∈ span{Xp}.

Let TpM = E ⊕ spanR{xp}, where dimE is odd.
Consider the skew-symmetric map

A : E → E∗, V 7→ g(∇VXp, •)

It must have the eigenvalue 0, since detA = detAT = (−1)n−1 detA = 0.
Hence we have

0 ⩽ (Hess f)(V, V ) = |∇VX|2 −R(V,X,X, V ) = −R(V,X,X, V ) < 0,

contradiction!



CHAPTER 6. CURVATURE AND TOPOLOGY OF RIEMANNIAN MANIFOLDS I 40

6.2 Curvature and Betti numbers
Lemma 6.4. If α is a Harmonic 1-form, then

1

2
∆g|α|2 = |∇α|2 +Ric(Xα, Xα),

where Xα is the dual vector field of α.

Proof.
(∇iαj)dx

i ∧ dxj =

(
∂αj

∂xi
− Γk

ijαk

)
dxi ∧ dxj = dα = 0.

So ∇iαj = ∇jαi.
And by d∗α = 0, we have

gij∇jαi = ∇iαi = −d∗α = 0.

Hence
1

2
∆g|α|2 =

1

2
gkl∇k∇l(g

ijαiαj)

=gklgij(∇k∇lαi · αj +∇kαj · ∇lαi)

=|∇α|2 + gklgij∇k∇lαi · αj

=|∇α|2 + gklgij∇k∇iαl · αj

=|∇α|2 + gklgij(∇i∇kαl − Rs
kilαs)αj

=|∇α|2 + gklgijgspgpqR
q
iklαjαs

=|∇α|2 +Ric(Xα, Xα)

Thm 6.3 (Bochner). Let (M, g) be a compact Riemannian manifold with Ric(g) > 0, then
b1(M) = 0.

Proof. At the maximal point of a 1-form α,

0 ⩾ 1

2
∆g|α|2 = |∇α|2 +Ric(Xα, Xα) ⩾ 0

So α ≡ 0, i.e.H1
dR(M,R) ∼= H 1(M,R) is trivial.

Lemma 6.5. If Ric(g) ⩾ 0, then harmonic 1-forms are parallel.

Proof.
0 =

ˆ
1

2
∆g|α|2 =

ˆ
|∇α|2 +

ˆ
Ric(Xα, Xα) ⩾

ˆ
|∇α|2.

So ∇α ≡ 0, i.e.α is parallel.

Thm 6.4. Let (M, g) be a compact Riemannian manifold with Ric(g) ⩾ 0, then b1(M) ⩽
dimRM .

Proof. Consider the evaluation map H 1(M,R) → T ∗
pM,α 7→ αp, it is an embedding.

So b1(M) ⩽ dimRM .
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6.3 Harmonic maps between Riemannian manifolds
Def 6.2. For smooth map f : (M, g) → (N,h), define

∆f = trg B = gij
(
∂2fα

∂xi∂xj
− Γk

ij

∂fα

∂xk
+ Γα

βγ

∂fβ

∂xi
∂fγ

∂xj

)
∂

∂yα
.

If ∆f = 0 , then f is a harmonic map.
And if B = 0, f is called totally geodesic.

Coro 6.4. Let f : (M, g) → (N,h) be a C∞ maps, TFAE:

(1) f is totally geodesic i.e. B = 0.

(2) f maps geodesic in (M, g) to geodesic in (N,h).

Proof. Let γ : [a, b] → (M, g) be a C∞ curve, γ̃ = f ◦ γ and ∇̂, ∇̃ are induced connection on
γ∗TM, γ̃∗TN resp.

∇̃ d
dt
γ̃∗

(
d

dt

)
=

(
d2γ̃α

dt2
+ Γα

βr(γ̃)
dγ̃β

dt

dγ̃r

dt

)
∂

∂yα

=

(
d

dt

(
∂fα

∂xi
dγi

dt

)
+ Γα

βr

∂fβ

∂xi
∂f r

∂xj
dγi

dt

dγj

dt

)
∂

∂yα

=

(
∂2fα

∂xi∂xj
dγi

dt

dγj

dt
+
∂fα

∂xi
d2γi

dt2
+ Γα

βr

∂fβ

∂xi
∂f r

∂xj
dγi

dt

dγj

dt

)
∂

∂yα

=

(
∂fα

∂xk

(
d2γk

dt2
+ Γk

ij

dri

dt

drj

dt

)
+

(
∂2fα

∂xi∂xj
+
∂fβ

∂xi
∂f r

∂xj
Γα
βr − Γk

ij

∂fα

∂xk

)
dγi

dt

dγj

dt

)
∂

∂yα

=f∗

(
∇̂ d

dt
γ∗

(
d

dt

))
+ γ∗B

So r∗B = 0 ⇔ γ is geodesic iff γ̃ is geodesic .

Def 6.3. If f :M → (N,h) is an immersion, consider the induced metric on M , it is

gM = hαβ
∂fα

∂xi
∂fβ

∂xj
dxi ⊗ dxj .

Then f : (M, gM ) → (N,h) is an isometric immersion.
We called f :M → (N,h) totally geodesic if it is totally geodesic w.r.t. gM .

Prop 6.1. γ : [a, b] → (M, g) is a regular curve γ′(t) 6= 0.
If γ is unit speed curve, then γ is totally geodesic⇔ γ is a geodesic.

Proof. consider the induced metric on I, it is

g0 = γ∗g = gij
dγi

dt

dγj

dt
dt⊗ dt =

∣∣γ′(t)∣∣2dt⊗ dt

So g0 = gcan, i.e.γ is totally geodesic iff γ : ([a, b], gcan) → (M, g) maps geodesic to geodesic.
Hence γ is totally geodesic⇔ γ is a geodesic.

We now try to extend the Bochner formula lemma 6.16.1 to the case that f : (M, g) → (N,h).

Prop 6.2. Recall remark 2.72.7,
B = ∇̃df.
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Proof.
df =

∂fα

∂xi
dxi ⊗ ∂

∂yα
∈ Γ(M,T ∗M ⊗ f∗TN).

∇̃k

(
∂fα

∂xi
dxi ⊗ ∂

∂yα

)
=
(
∇∗ ⊗ ∇̂

)
∂

∂xk

(
∂fα

∂xi
dxi ⊗ ∂

∂yα

)
=

∂2fα

∂xi∂xk
dxi ⊗ ∂

∂yα
+
∂fα

∂xi

(
∇∗

∂

∂xk
dxi
)
⊗ ∂

∂yα
+
∂fα

∂xi
dxi ⊗

(
∇̂ ∂

∂xk

∂

∂yα

)
=

(
∂2fα

∂xi∂xk
− Γs

ik

∂fα

∂xs
+ Γα

βγ

∂fβ

∂xi
∂fγ

∂xk

)
dxi ⊗ ∂

∂yα

=dxi ⊗B

(
∂

∂xk
,
∂

∂xi

)

Thm 6.5. If f : (M, g) → (N,h) is C∞, then

1

2
∆g|df |2 =

∣∣∣∇̃df
∣∣∣2 + 〈∇̂∆gf, df

〉
+Rijf

α
k f

β
l hαβg

ikgjl − Rαβγδf
α
i f

β
j f

γ
k f

δ
l g

ilgjk.

Proof. We denote
df

∆
=== fαi dx

i ⊗ ∂

∂yα
.

So
1

2
∆g|df |2 =

1

2
gkl∇̃k∇̃l

(
gijhαβf

α
i f

β
j

)
=gklgijhαβ

(
∇̃kf

α
i · ∇̃lf

β
j + ∇̃k∇̃lf

α
i · fβj

)
=
∣∣∣∇̃df

∣∣∣2 + gklgijhαβ∇̃k∇̃lf
α
i · fβj

And by Ricci identity theorem 5.15.1,

∇̃k∇̃lf
α
i = ∇̃k∇̃if

α
l = ∇̃i∇̃kf

α
l − Rs

kilf
α
s +Rα

ikγf
γ
l

gklgijhαβ∇̃i∇̃kf
α
l · fβj = gijhαβ

(
∇̂∆gf

)α
i
fβj =

〈
∇̂∆gf, df

〉
Hence we obtain

1

2
∆g|df |2 =

∣∣∣∇̃df
∣∣∣2 + 〈∇̂∆gf, df

〉
− gklgijhαβR

s
kilf

α
s f

β
j + gklgijhαβR

α
ikγf

γ
l f

β
j

=
∣∣∣∇̃df

∣∣∣2 + 〈∇̂∆gf, df
〉
+ gklgijgpqhαβRiklpf

α
q f

β
j − gklgijRµδγβf

δ
i f

µ
k f

γ
l f

β
j

=
∣∣∣∇̃df

∣∣∣2 + 〈∇̂∆gf, df
〉
+Rijf

α
k f

β
l hαβg

ikgjl − Rαβγδf
α
i f

β
j f

γ
k f

δ
l g

ilgjk

Coro 6.5. f : (M, g) → (N,h) is a harmonic map and

(1) (M, g) is compact and Ric(g) > 0

(2) (N,h) has non-positive sectional curvature.

Then f is a constant map.
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Proof. Consider the maximum point p of |df |2.
WLOG, we let gij(p) = δij , hαβ(f(p)) = δαβ .
Then

Rijf
α
k f

β
l hαβg

ikgjl =
∑
α

Ricg(Vα, Vα) > 0

for Vα = (fαi ) ∈ Γ(M,TM), and

Rαβγδf
α
i f

β
j f

γ
k f

δ
l g

ilgjk =
∑
i,j

Rh(Vi, Vj , Vj , Vi) ⩽ 0

for Vi = (fαi ) ∈ Γ(N,TN).
On the other hand,

∆g|df |2 ⩽ 0,∆gf = 0.

So df ≡ 0, i.e.f is constant.

Remark 6.2. These type of theorem is called Liouville-type theorem.
In complex analysis, we have the famous theorem from Liouville:
f : C → C is entire and bounded, then f is constant.

Coro 6.6. f : (M, g) → (N,h) is harmonic:

(1) M is compact and Ric(g) ⩾ 0

(2) (N,h) has non-positive sectional curvature.

Then:

(1) f is totally geodesic, i.e. ∇̃df = 0.

(2) If Ric(g)(p) > 0 for some point p, then f is constant.

(3) If (N,h) has negative sectional curvature, then f(M) is a point or a closed geodesic.

Proof. Similar as corollary 6.56.5, we have

0 =

ˆ
1

2
∆g|df |2 =

ˆ ∣∣∣∇̃df
∣∣∣2 + ˆ ∑

α

Ricg(Vα, Vα)−
ˆ ∑

i,j

Rh(Vi, Vj , Vj , Vi) ⩾
ˆ ∣∣∣∇̃df

∣∣∣2
(1) So ∇̃df ≡ 0.

And X
(
|df |2

)
= 2

〈
∇̃Xdf, df

〉
= 0.

Therefore |df | is constant.

(2) Vα(p) = 0 for every α, i.e. df(p) = 0.
So f is a constant.

(3) Vi = vj for every i, j.
So rank df ⩽ 1, i.e. f(M) is a point or a curve.
And since f is totally geodesic and M is compact.
Hence f(M) is a point or a closed geodesic.



Chapter 7

Variational formula

7.1 The First Variation
Def 7.1. Given a closed interval [a, b] ⊂ R and two points p, q in (M, g), we denote

L = {γ : [a, b] →M |γ(a) = p, γ(b) = q, γ is smooth}.

For any smooth curve γ ∈ L , the length and energy of γ are

L(γ) =

ˆ b

a
|γ′(t)|dt =

ˆ b

a

√
gij

dγi

dt

dγj

dt
dt,

E(γ) =
1

2

ˆ b

a
|γ′(t)|2dt =

ˆ b

a

(
gij

dri

dt

drj

dt

)
dt.

Def 7.2. Given γ ∈ L , a proper variation of γ is a smooth map

α : [a, b]× (−ε, ε) →M

such that

(1) α(t, 0) = γ(t)

(2) α(•, s) ∈ L

Lemma 7.1. Let X be a C∞ vector field along γ with X(a) = X(b) = 0, then there exists a
proper variation α of γ such that

α∗

(
∂

∂s

) ∣∣∣∣
s=0

= X.

X is called the variational vector field of α.

Proof. We let
α(t, s) = expγ(t)(sXγ(t)).

Since d expγ(t) is identity around 0, so

α∗

(
∂

∂s

) ∣∣∣∣
s=0

= d
(
expγ(t)

)
0

(
Xγ(t)

)
= Xγ(t)

44



CHAPTER 7. VARIATIONAL FORMULA 45

Thm 7.1. Let γ : [a, b] → (M, g) be a C∞ curve and α is a proper variation of γ with variational
vector field V , then

d

ds

∣∣∣∣
s=0

E(α(·, s)) =
ˆ b

a

〈
∇̂ d

dt
V, γ′

〉
dt = −

ˆ b

a

〈
V, ∇̂ d

dt
γ′
〉
dt.

Proof. We put the canonical metric and trivial connection ∇ on (a, b)× (−ε, ε).
∇̄ be the induced connection on α∗TM , ḡ be the induced metric on α∗TM .
∇̂ be the induced connection on γ∗TM , ĝ be the induced metric on γ∗TM .

∂

∂s

〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂t

)〉
ḡ

=2

〈
∇̄ ∂

∂s
α∗

(
∂

∂t

)
, α∗

(
∂

∂t

)〉
=2

〈
B

(
∂

∂s
,
∂

∂t

)
+ α∗

(
∇ ∂

∂t

∂

∂s

)
, α∗

(
∂

∂t

)〉
=2

〈
∇̄ ∂

∂t
α∗

(
∂

∂s

)
, α∗

(
∂

∂t

)〉
=2

∂

∂t

〈
α∗

(
∂

∂s

)
, α∗

(
∂

∂t

)〉
− 2

〈
α∗

(
∂

∂s

)
, ∇̄ ∂

∂t
α∗

(
∂

∂t

)〉
And since

α∗

(
∂

∂s

) ∣∣∣∣
s=0

= V, ∇̄ ∂
∂t
α∗

(
∂

∂t

) ∣∣∣∣
s=0

= ∇̂ d
dt
γ′(t).

So we conclude that

d

ds

∣∣∣∣
s=0

(
1

2

ˆ b

a

∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2dt
)

=

ˆ b

a

d

dt

(〈
α∗

(
∂

∂s

)
, α∗

(
∂

∂t

)〉 ∣∣∣∣
s=0

)
dt

−
ˆ b

a

〈
α∗

(
∂

∂s

)
, ∇̄ ∂

∂t
α∗

(
∂

∂t

)〉
ḡ

∣∣∣∣∣
s=0

dt

=−
ˆ b

a

〈
V, ∇̂ d

dt
γ′
〉
ĝ
dt =

ˆ b

a

〈
∇̂ d

dt
V, γ′

〉
dt

Coro 7.1. Let γ : [a, b] → (M, g) be a unit-speed curve and α is a proper variation of γ with
vector field V , then

d

ds

∣∣∣∣
s=0

L(α(•, s)) = d

ds

∣∣∣∣
s=0

E(α(•, s)) =
ˆ b

a

〈
∇̂ d

dt
V, γ′

〉
dt

Proof.
d

ds

∣∣∣∣
s=0

ˆ b

a

∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣dt =1

2

ˆ b

a

∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣−1
∣∣∣∣∣
s=0

∂

∂s

∣∣∣∣
s=0

∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2dt
=
1

2

ˆ b

a

1

|γ′(t)|
∂

∂s

∣∣∣∣
s=0

∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2dt
=

d

ds

∣∣∣∣
s=0

E(α(•, s))

Thm 7.2. Let [a, b] be a compact interval and γ : I → (M, g) be a C∞ curve, TFAE
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(1) γ is a critical point of E : L → R. That is, for any proper variation of γ,
d

ds

∣∣∣∣
s=0

E(α(·, s)) = 0

(2) γ is parametrized proportional to the arclength, |γ′(t)| ≡ c > 0 and γ is a critical point of
L : L → R.

(3) γ is a geodesic.

Proof. (1) ⇔ (2) by corollary 7.17.1 and (3) ⇒ (1), (2) is trivial.
And by (1), (2), for every vector field along γ with V (a) = V (b) = 0, we haveˆ b

a

〈
V, ∇̂ d

dt
γ′
〉
dt = 0.

Suppose ∃t0 ∈ [a, b], s.t.γ′′(t0) 6= 0.
So there is a neighborhood U around t0, such that for every t ∈ U , |γ′′(t)| > 0.
Moreover, we let

Vγ(t) = f(t)γ′′(t)

where f(t) is a bump function for {t0} supported in U .
Then ˆ b

a
〈V, γ′′〉dt =

ˆ
U
f(t)

∣∣γ′′(t)∣∣2dt > 0,

contradiction!

Thm 7.3. Let γ ∈ L be a C∞ curve TFAE:

(1) γ is parametrized proportional to the arclength and γ minimizes the length, i.e.

L(γ) = inf
γ̃∈L

L(γ̃)

(2) γ minimizes E, i.e.
E(γ) = inf

γ̃∈L
E(γ̃)

Each statements implies γ is a geodesic, and it is called a minimal geodesic.
Proof. (1) ⇒ (2): For any γ̃ ∈ L ,

L(γ̃)2 ⩽ 2(b− a)E(γ̃).

And
L(γ) =

ˆ b

a
|γ′|dt = (b− a)

∣∣γ′∣∣, E(γ) =
1

2

ˆ b

a
|γ′|2dt = (b− a)

2

∣∣γ′∣∣2
In this case,

2(b− a)E(γ) = L(γ)2 = L(γ̃)2 ⩽ 2(b− a)E(γ̃).

(2) ⇒ (1): Since γ is a critical point of E.
So γ is parametrized proportional to the arclength.
Suppose there is γ̃ ∈ L such that L(γ̃) < L(γ).
WLOG, assume γ̃ is regular, and by reparametrize, we can get γ̂.
Then we conclude that

(b− a)
∣∣γ̂′∣∣ = L(γ̂) = L(γ̃) < L(γ) = (b− a)|γ̂|.

But on the other hand,
b− a

2

∣∣γ̂′∣∣2 = E(γ̂) = E(γ̃) ⩾ E(γ) =
b− a

2

∣∣γ′∣∣2,
contradiction!



CHAPTER 7. VARIATIONAL FORMULA 47

7.2 The Second Variation
Def 7.3. An second variation of a smooth curve γ : [a, b] →M is

α(t, s1, s2) : [a, b]× (−ε1, ε1)× (−ε2, ε2) →M, (t, 0, 0) 7→ γ(t)

with variational vector fields V,W such that

V = α∗

(
∂

∂s1

) ∣∣∣∣
s1=s2=0

,W = α∗

(
∂

∂s2

) ∣∣∣∣
s1=s2=0

Thm 7.4. If α is an arbitrary second variation of γ, then

∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

E(α(•, s1, s2)) =
ˆ b

a

〈
∇̂ d

dt
V, ∇̂ d

dt
W
〉
dt−

ˆ b

a
R(V, γ′, γ′,W )dt

+

ˆ b

a

〈
∇̂ d

dt

(
∇̄ ∂

∂s1
α∗

(
∂

∂s2

)) ∣∣∣∣
s1=s2=0

, γ′

〉
dt

.

Proof.
∂

∂s2

〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂t

)〉
= 2

〈
∇̄ ∂

∂t
α∗

(
∂

∂s2

)
, α∗

(
∂

∂t

)〉
.

1

2

∂2

∂s1∂s2

〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂t

)〉
=

∂

∂s1

〈
∇̄ ∂

∂t
α∗

(
∂

∂s2

)
, α∗

(
∂

∂t

)〉
=

〈
∇̄ ∂

∂s1

∇̄ ∂
∂t
α∗

(
∂

∂s2

)
, α∗

(
∂

∂t

)〉
+

〈
∇̄ ∂

∂t
α∗

(
∂

∂s2

)
, ∇̄ ∂

∂s1

α∗

(
∂

∂t

)〉
=

〈
∇̄ ∂

∂t
∇̄ ∂

∂s1

α∗

(
∂

∂s2

)
, α∗

(
∂

∂t

)〉
+

〈
R̄

(
∂

∂s1
,
∂

∂t

)
α∗

(
∂

∂s2

)
, α∗

(
∂

∂t

)〉
+

〈
∇̄ ∂

∂t
α∗

(
∂

∂s2

)
, ∇̄ ∂

∂t
α∗

(
∂

∂s1

)〉
And since 〈

∇̄ ∂
∂t
α∗

(
∂

∂s1

)
, ∇̄ ∂

∂t
α∗

(
∂

∂s2

)〉 ∣∣∣∣
s1=s2=0

=
〈
∇̂ d

dt
V, ∇̂ d

dt
W
〉

〈
∇̄ ∂

∂t
∇̄ ∂

∂s1

α∗

(
∂

∂s2

)
, α∗

(
∂

∂t

)〉 ∣∣∣∣
s1=s2=0

=

〈
∇̂ ∂

∂t

(
∇̄ ∂

∂s1

α∗

(
∂

∂s2

)) ∣∣∣∣
s1=s2=0

, γ′

〉
〈
R̄

(
∂

∂s1
,
∂

∂t

)
α∗

(
∂

∂s2

)
, α∗

(
∂

∂t

)〉 ∣∣∣∣
s1=s2=0

= R(V, γ′,W, γ′).

So the proof is completed.

Def 7.4. a second variation α of γ is called proper if

α(a, s1, s2) = γ(a), α(b, s1, s2) = γ(b).

Thm 7.5. Let γ : [a, b] → (M, g) be a geodesic and α is a proper second variation of γ with
variational vector fields V and W , then

∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

E(α(•, s1, s2)) =
ˆ b

a

〈
∇̂ d

dt
V, ∇̂ d

dt
W
〉
dt−

ˆ b

a
R(V, γ′, γ′,W )dt
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Proof. Since α is proper, so 〈
∇̄ ∂

∂s1

α∗

(
∂

∂s2

) ∣∣∣∣
s1=s2=0

, γ′

〉∣∣∣∣∣
b

a

= 0

By the integration by parts argument,
ˆ b

a

〈
∇̂ ∂

∂t

(
∇̄ ∂

∂s1

α∗

(
∂

∂s2

)) ∣∣∣∣
s1=s2=0

, γ′

〉
=

ˆ b

a

〈(
∇̄ ∂

∂s1

α∗

(
∂

∂s2

)) ∣∣∣∣
s1=s2=0

, ∇̂ ∂
∂t
γ′

〉
= 0

Hence by theorem 7.47.4, the proof is completed.

Remark 7.1. In particular, if sec(M, g) ⩽ 0, then
∂2

∂s2

∣∣∣∣
s=0

E ⩾ 0.

And the integration by parts argument shows thatˆ b

a

〈
∇̂ d

dt
V, ∇̂ d

dt
W
〉
dt = −

ˆ b

a

〈
∇̂ d

dt
∇̂ d

dt
V,W

〉
dt

So
∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

E = −
ˆ b

a

〈
∇̂ d

dt
∇̂ d

dt
V +R(V, γ′)γ′,W

〉
dt

Coro 7.2. For a unit-speed curve γ and proper second variation α of γ,
∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

L(α(•, s1, s2)) =
ˆ b

a

〈
∇̂ d

dt
V, ∇̂ d

dt
W
〉
dt−

ˆ b

a
R(V, γ′, γ′,W )dt

−
ˆ b

a

〈
∇̂ d

dt
V, γ′

〉〈
∇̂ d

dt
W,γ′

〉
dt

Moreover, if γ is a geodesic,
∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

L(α(•, s1, s2)) = −
ˆ b

a

〈
∇̂ d

dt
∇̂ d

dt
V ⊥ +R

(
V ⊥, γ′

)
γ′,W⊥

〉
dt,

where V ⊥,W⊥ are the normal components of V,W w.r.t. γ′.
Proof.

∂2L(α(•, s1, s2))
∂s1∂s2

=

ˆ b

a

(
1

2
∣∣α∗
(
∂
∂t

)∣∣ ∂2
∣∣α∗
(
∂
∂t

)∣∣2
∂s1∂s2

− 1

4
∣∣α∗
(
∂
∂t

)∣∣3 ∂
∣∣α∗
(
∂
∂t

)∣∣2
∂s1

·
∂
∣∣α∗
(
∂
∂t

)∣∣2
∂s2

)
And since γ is unit-speed and

2
〈
∇̂ d

dt
V, γ′

〉
=

∂

∂s1

∣∣∣∣
s1=s2=0

∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2, 2〈∇̂ d
dt
W,γ′

〉
=

∂

∂s2

∣∣∣∣
s1=s2=0

∣∣∣∣α∗

(
∂

∂t

)∣∣∣∣2
we can obtain that

∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

L(α(•, s1, s2)) =
∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

E(α(•, s1, s2))

−
ˆ b

a

〈
∇̂ d

dt
V, γ′

〉〈
∇̂ d

dt
W,γ′

〉
dt

And if γ is a geodesic, notice that

∇̂ d
dt

〈
V, γ′

〉
γ′ =

(
d

dt

〈
V, γ′

〉)
γ′ =

〈
∇̂ d

dt
V, γ′

〉
γ′,

R(V ⊥, γ′, γ′,W⊥) = R(V, γ′, γ′,W⊥).

Hence we can easily obtain the desired formula.
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7.3 Jacob Field and Conjugate points
We now want to consider the variation α through geodesic with variation field V . Recall

that the geodesic has locally minimal energy, so for any variation field W , the variation of
energy along geodesic α(•, s) is zero. Then if we take a variation along α, the second variation
of energy is still zero. By remark 7.17.1,〈

∇̂ d
dt
∇̂ d

dt
V +R(V, γ′)γ′,W

〉
≡ 0.

Hence we obtain the definition of Jacobi field:

Def 7.5. Let γ : [a, b] → (M, g) be a geodesic, a vector field V ∈ Γ(γ∗TM) is called a Jacobi
field if

∇̂ d
dt
∇̂ d

dt
V +R(V, γ′)γ′ = 0.

A Jacobi-field V with 〈V, γ′〉 = 0 is called normal Jocobi field.

Exam 7.1. V = γ′, tγ′ are Jacobi field, but V = t2γ′ is not Jacobi field.

Prop 7.1. Let γ : [a, b] → (M, g) be a geodesic

(1) If α : [a, b]× (−ε, ε) → (M, g) be a family of geodesics and α(t, 0) = γ(t), then

V = α∗

(
∂

∂s

) ∣∣∣∣
s=0

is a Jacobi field.

(2) Given v1, v2 ∈ Tγ(a)M, ∃!Jacobi field J around γ, such that

J(a) = v1, J
′(a) = v2.

Proof. (1)

∇̄ d
dt
∇̄ d

dt
α∗

(
∂

∂s

)
= ∇̄ ∂

∂t
∇̄ ∂

∂s
α∗

(
∂

∂t

)
= ∇̂ ∂

∂s
∇̄ ∂

∂t
α∗

(
∂

∂t

)
+ R̄

(
∂

∂t
,
∂

∂s

)
α∗

(
∂

∂t

)
.

And since α(•, s) is a geodesic for any s.
So when t = 0,

∇̂ d
dt
∇̂ d

dt
V = R(γ′, V )γ′.

(2) By ODE.

Thm 7.6. Let (M, g) be a Riemannian manifold and γ : [0, 1] → (M, g) be a geodesic , then the
Jacobi field J along γ with J(0) = 0, J ′(0) = v is the variational vector field of α, where

α(t, s) = expγ(0)(t(γ
′(0) + sv))

Proof.
J(t) = α∗

(
∂

∂s

) ∣∣∣∣
s=0

=
(
d expγ(0)

)
tγ′(0)

(tv)

So we can obtain
J(0) = (d expγ(0))0(0) = 0

J ′(0) = ∇̄ ∂
∂s
α∗

(
∂

∂t

) ∣∣∣∣
s=0

= ∇̄ ∂
∂s
(d expγ(0))0(γ

′(0) + sv)

∣∣∣∣
s=0

= ∇̄ ∂
∂s
(γ′(0) + sv)

∣∣∣∣
s=0

= v.
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Coro 7.3. Prove the Taylor expansion formula for Riemannian metric in theorem 3.33.3.

Proof. Consider the geodesic
γ(t) = (tx1, · · · , txn)

and the Jacobi field J along γ with J(0) = 0, J ′(0) = v with norm f = ‖J‖2.
We denote

RX = R(γ′, X)γ′,R′X =
(
∇̂tR

)
(γ′, X)γ′

So we can conclude that

J(0) = 0, J ′(0) =W,J ′′(0) = RJ(0) = 0,

f(0) = 0, f ′(0) = 0, f ′′(0) = 2‖W‖2, f (3)(0) = 0

f (4)(0) =8〈(RJ)′(0),W 〉 = 8〈(R′J)(0),W 〉+ 8〈RW,W 〉
=8〈R′W,J(0)〉+ 8〈RW,W 〉 = 8〈RW,W 〉

On the other hand,

f = ‖J‖2 = 〈tW, tW 〉g(γ(t)) = t2gij(tx)W
iW j .

So by Taylor expansion,

t2gij(tx) = t2δij −
t4

3
Riklj(p)x

kxl + o(t4)

Hence we complete the proof.

Remark 7.2. Using this method, we can compute higher degree terms of gij(x), the first four
terms are

`ij −
1

3
Riklj(p)x

kxl − 1

6
∇mRikljx

kxlxm +

(
2

45
Rk

ilmRjpqk −
1

20
∇q∇pRilmj

)
xlxmxpxq

Prop 7.2. Let J be a Jacobi-field along geodesic γ : [a, b] → (M, g).

(1) 〈J(t), γ′(t)〉 = t〈J ′(0), γ′(0)〉+ 〈J(0), γ′(0)〉.

(2) If γ is a unit-speed geodesic, then

J⊥ = J − 〈J, γ′〉γ′ = J(t)− t〈J ′(0), γ′(0)〉γ′ + 〈J(0), γ′(0)〉γ′

is a normal Jacobi field.

Proof. (1)
〈J, γ′〉′ = 〈J ′, γ′〉+ 〈J, γ′′〉 = 〈J ′, γ′〉

〈J ′, γ′〉′ = 〈J ′′, γ′〉+ 〈J ′, γ′′〉 = 〈J ′′, γ′〉 = −〈R(J, γ′)γ′, γ′〉 = 0

So 〈J ′, γ′〉 is a constant, this concludes the desired formula.

(2) (
J⊥
)′′

= J ′′ − 〈J, γ′〉′′γ′ = J ′′,R
(
J⊥, γ′

)
= R(J, γ′)

So J⊥ is also a Jacobi field and moreover, it is normal.
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Prop 7.3. Let (M, g) be a Riemannian manifold with constant sectional curvature K and
γ : [0, b] → M be a unit-speed geodesic, then a normal Jacobi field J with J(0) = 0 is of the
form

J(t) =


mtE(t) K = 0
m sin(

√
Kt)√

K
E(t) K > 0

m sinh(
√
−Kt)√

−K
E(t) K < 0

Where E(t) is any parallel vector field along γ such that

(1) 〈E(t), γ′(t)〉 = 0

(2) |E(t)| = 1

(3)
(
∇̂ d

dt
J
) ∣∣∣

t=0
= mE(0)

Proof.
R(J, γ′, γ′,W ) = K(g(J,W )g(γ′, γ′)− g(J, γ′)g(W,γ′)) = Kg(J,W ).

So R(J, γ′)γ′ = KJ , and the Jacobi field equation reduces to

J ′′ +KJ = 0.

Let E(t) be a parallel vector field along γ satisfying (1) and (2).
Suppose J(t) = u(t)E(t) for some function u.
Then we have the differential equation

u′′ +Ku = 0, u(0) = 0

And the solution are

u(t) =


mt K = 0
m sin(

√
Kt)√

K
K > 0

m sinh(
√
−Kt)√

−K
K < 0

where m is given by
m =

J ′(0)

E(0)
.

And since the dimension of space of normal Jacobi field with J(0) = 0 is n− 1.
Hence every normal Jacobi field with J(0) = 0 is of the form we desired.

Def 7.6. Let γ : [a, b] → (M, g) be a geodesic with γ(a) = p, γ(b) = q for some a, b ∈ I.

(1) We say p and q are conjugate along γ if there exists some non-trivial Jacobi field J , such
that J(a) = J(b) = 0.

(2) The maximum of such linearly independent Jacobi field is called the multiplicity of the
conjugate point q, denoted by mγ(q).

(3) the conjugate set of p is conj(p) = {q ∈M |∃γ(a) = p, γ(b) = q is geodesic, J(a) = J(b) = 0}.

Lemma 7.2. Let γ : [a, b] → (M, g) be a geodesic with γ(a) = p, γ(b) = q for some a, b ∈ I,
then there are at most (n− 1) linearly independent Jacobi fields along γ with J(a) = J(b) = 0.

Proof. By ODE theory, there are at most n linearly independent Jacobi fields with J(a) = 0.
But the Jacobi field J(t) = (t− a)γ′(t) does not vanish at b.
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Exam 7.2. Consider the n-sphere (Sn, gcan) and let γ : [0,+∞) → Sn be a unit-speed geodesic
in Sn.

Since Sn has constant sectional curvature 1.
So the normal Jacobi field with J(0) = 0 is of the form

J(t) = m sin(t)E(t).

Hence the antipodal point γ(π) is conjugate to γ(0) along γ with multiplicity n− 1.
Moreover, conj(p) = {−p} for every p ∈ Sn.

Exam 7.3. Consider the n-torus (Tn, gcan) and let γ : [0,+∞) → Sn be a unit-speed geodesic
in Tn.

Since Tn is flat.
So the normal Jacobi field with J(0) = 0 is of the form

J(t) = mtE(t).

Hence conj(p) = ∅ for every p ∈ Tn.

Thm 7.7. Let (M, g) be a Riemannian mainfold, fix p ∈ M and let v ∈ Ep ⊂ TpM,γv(t) =
expp(tv) : [0, 1] →M and q = γv(1).

Then v is a critical point of expp : Ep →M iff q is conjugate to p along γv.

Proof. For any w ∈ Tv(TpM), let α(t, s) = expp(t(v + sw)).
Then the variation vector field is

J̃(t) =
(
d expp

)
tv
(tw), J̃(0) = 0,

(
∇̂ d

dt
J̃
)
(0) = w.

If w 6= 0 and w lies in the kernel (d expp)v, then

J̃(1) = (d expp)v(w) = 0.

So p and q are conjugate along γ.
Conversely, suppose p and q are conjugate along γ by some Jacobi field J such that J(0) =

J(1) = 0, let
w =

(
∇̂ d

dt
J
)
(0).

Then by the uniqueness of Jacobi field with initial conditions, J = J̃ .
Hence (d expp)v(w) = 0, i.e.v is a critical point of expp : Ep →M .

Coro 7.4. Let (M, g) be a complete Riemannian manifold. Fix p ∈M and v ∈ TpM , TFAE:

(1) v is a critical point of expp : TpM →M .

(2) q = expp(v) is conjugate to p along rv(t) = expp(tv) : [0, 1] →M .

Coro 7.5. Let (M, g) be a complete Riemannian manifold, p ∈M .
If q ∈ conj(p), then ∃v ∈ TpM such that expp(v) = q and

(1) v is a critical point of expp : TpM →M .

(2) q is conjugate to p along γv(t) = expp(tv) : [0, 1] →M .

Prop 7.4. If (M, g) is a complete Riemannian manifold with non-positive sectional curvature,
then for every p ∈M , conj(p) = ∅.

Moreover, the exponential map expp : TpM →M is a local diffeomorphism.
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Proof. Suppose q ∈ conj(p) is conjugate to p along geodesic γ : [0, 1] → M by Jacobi field J
such that J(0) = J(1) = 0.

Consider f = ||J ||2, then

f ′′(t) = 〈J ′′, J〉+
∥∥J ′∥∥2 = −R(J, γ′, γ′, J) +

∥∥J ′∥∥2 ⩾ 0.

And since f(t) ⩾ 0, f(0) = f(1) = 0.
So f ≡ 0, i.e. J is trivial, contradiction!

Remark 7.3. Further more, we can prove that the exponential map is covering map, we will
discuss these in next chapter.

7.4 Index form
Def 7.7. Suppose γ : [a, b] → (M, g) is a non-trivial geodesic, the index form Iγ : Γ(γ∗TM)×
Γ(γ∗TM) → R, is defined as

Iγ(V,W ) =

ˆ b

a

〈
∇̂ d

dt
V, ∇̂ d

dt
W
〉
dt−

ˆ b

a
R(V, γ′, γ′,W )dt

Lemma 7.3. V is a Jacobi field iff
Iγ(V,W ) = 0

for every variational vector field W .

Proof. If V is a Jacobi field, then it is trivial.
If Iγ(V,W ) = 0 for every variational vector field W , then

ˆ b

a

〈
∇̂ d

dt
∇̂ d

dt
V +R(V, γ′)γ′,W

〉
dt ≡ 0.

So using the similar method in theorem 7.27.2, we can obtain

∇̂ d
dt
∇̂ d

dt
V +R(V, γ′)γ′ = 0.

Hence V is the Jacob field.

Def 7.8. If V is piecewise C∞ over [a, b], i.e. a ⩽ t0 ⩽ · · · ⩽ tk+1 = b, Vi = V
∣∣
[ti,ti+1]

is smooth,
we define

Iγ(V,W ) =

k∑
i=0

〈
∇̂ d

dt
Vi,W

〉 ∣∣∣∣ti+1

ti

−
k∑

i=0

ˆ ti+1

ti

〈
∇̂ d

dt
∇̂ d

dt
Vi +R(Vi, γ

′)γ′,W
〉
dt.

Prop 7.5. If Iγ(V,W ) = 0 for any piecewise C∞ variation vector field W , then V is a C∞

Jacobi field.

Proof. Let W be a piecewise C∞ variational vector field such that W (ti) = 0 for every i, then

k∑
i=0

ˆ ti+1

ti

〈
∇̂ d

dt
∇̂ d

dt
Vi +R(Vi, γ

′)γ′,W
〉
dt = Iγ(V,W ) = 0.

And since every W
∣∣
(ti,ti+1)

are independent, so

ˆ ti+1

ti

〈
∇̂ d

dt
∇̂ d

dt
Vi +R(Vi, γ

′)γ′,W
〉
dt = 0
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for all i ∈ [0, k], otherwise we can times a constant on W
∣∣
(ti,ti+1)

.
Therefore ∇̂ d

dt
∇̂ d

dt
Vi +R(Vi, γ

′)γ′ ≡ 0 for every i,i.e. Vi is Jacobi field.
Moreover, fix i ∈ {0, · · · , k} and let

W (tj) =

{
0 i = j(
∇̂ d

dt
Vj

)
(tj)−

(
∇̂ d

dt
Vj−1

)
(tj) i 6= j

Then
0 = Iγ(V,W ) =

∣∣∣(∇̂ d
dt
Vi

)
(ti)−

(
∇̂ d

dt
Vi−1

)
(ti)
∣∣∣2

Hence by gluing up every {Vi}, we obtain the Jacobi field V .

Coro 7.6. Let γ : [a, b] → (M, g) be a unit-speed curve, if γ is a local minimal geodesic, then
Iγ(V, V ) ⩾ 0 for every variational vector field V .

Proof. Since γ is locally minimal, for every proper variation α with variational vector field V ,

∂2

∂s2

∣∣∣∣
s=0

E(α(•, s)) = Iγ(V, V ) ⩾ 0.

Lemma 7.4. Let γ : [a, b] → (M, g) be a unit-speed geodesic. If γ has no conjugate point, then
there exist Jacobi fields J2, · · · , Jn along γ such that

(1) Ji(a) = 0, i ⩾ 2 and {γ′(b), J2(b), · · · , Jn(b)} is an orthonormal basis of of Tγ(b)M .

(2) 〈Ji(t), γ′(t)〉 ≡ 0 for t ∈ [a, b], i ⩾ 2.

(3) {γ′(t), J2(t), · · · , Jn(t)} be linearly independent for t ∈ (a, b].

Proof. (1) Let {γ′(b), e2, · · · , en} ∈ Tγ(b)M be an orthonormal basis.
Since there is no conjugate points along γ.
There exist a unique Jacobi field Ji such that

Ji(a) = 0, Ji(b) = ei,

for every 2 ⩽ i ⩽ n.

(2) Since
〈Ji(t), γ′(t)〉′′ = 0

And Ji, γ′ are normal at a and b.
So Ji are normal Jacobi field on γ.
Moreover, span{J2(t), · · · , Jn(t)} is linearly independent with γ′.

(3) Suppose ∃c ∈ (a, b), s.t.{J2(c), · · · , Jn(c)} are linearly dependent, let

W (t) =
n∑

i=2

λiJi(t)

such that W (c) = 0.
So W

∣∣
[a,c]

is a Jacobi field with W (a) =W (c) = 0.

Therefore W (t) ≡ 0 over [a, c].
Hence W (b) = 0, i.e.λ2 = · · ·λn = 0, contradiction!
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Def 7.9. V0 = {V ∈ Γ(γ∗TM)|V (a) = V (b) = 0},N0 = {v ∈ V0|〈v, γ′〉 ≡ 0}.

Thm 7.8. Let γ : [a, b] → (M, g) be a unit speed geodesic, then

(1) If γ has no conjugate points, then Iγ is positive definite on N0,V0.

(2) If γ(a) and γ(b) are the only conjugate points along γ, then Iγ(V, V ) ⩾ 0 on N0,V0,
moreover, Iγ(V, V ) = 0 ⇔ V is a Jacobi field and V ∈ N0.

(3) γ has an interior conjugate point⇔ ∃some V ∈ N0, s.t.Iγ(V, V ) < 0. In particular, γ is not
a local minimal geodesic.

Proof. (1) Suppose V ∈ N0, let {γ′(b), e2, · · · , en} be an orthonormal basis of Tγ(b)M and Ji(t)
are Jacobi fields such that Ji(a) = 0, Ji(b) = ei.
Since Ji are perpendicular to γ′, so let

V =

n∑
i=2

f i(t)Ji(t),

where f i(b) = 0 for each i and

Iγ(V, V ) =

ˆ b

a

〈(
f iJi

)′
,
(
f jJj

)′〉
dt−

ˆ b

a
f ifjR(Ji, γ

′, γ′, Jj)dt

=

ˆ b

a

((
f i
)′
f j〈Ji, J ′

j〉+
(
f j
)′
f i〈J ′

i , Jj〉+ f if j〈J ′
i , J

′
j〉
)
dt

+

ˆ b

a

((
f i
)′ (

f j
)′ 〈Ji, Jj〉 − f if jR(Ji, γ

′, γ′, Jj)
)
dt

On the other hand,(
〈Ji, J ′

j〉 − 〈J ′
i , Jj〉

)′
= 〈Ji, J ′′

j 〉 − 〈J ′′
i , Jj〉 = 〈R(Ji, γ′)γ′, Jj〉 − 〈R(Jj , γ′)γ′, Ji〉 = 0

Therefore
〈Ji, J ′

j〉 = 〈J ′
i , Jj〉,

Iγ(V, V ) =

ˆ b

a

((
f if j〈J ′

i , Jj〉
)′ − f if j〈J ′′

i , Jj〉
)
dt

+

ˆ b

a

((
f i
)′ (

f j
)′ 〈Ji, Jj〉 − f if jR(Ji, γ

′, γ′, Jj)
)
dt

= f if j〈J ′
i , Jj〉

∣∣∣∣b
a

+

ˆ b

a

(
f i
)′ (

f j
)′ 〈Ji, Jj〉dt

=

ˆ b

a

∥∥∥(f i)′ Ji∥∥∥2dt ⩾ 0

The identity holds iff
(
f i
)′
Ji = 0, i.e.fi are constant.

And since fi(b) = 0.
So fi ≡ 0, i.e.V is trivial.
Hence Iγ is positive definite on N0.
Now we suppose V ∈ V0 and define

V ⊥ = V − 〈V, γ′〉γ′ ∈ N0.
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So
Ir(V, V ) =Ir

(
V ⊥, V ⊥

)
+ 2Iγ

(
V, 〈V, γ′〉γ′

)
− Iγ

(
〈V, γ′〉γ′, 〈V, γ′〉γ′

)
=Ir

(
V ⊥, V ⊥

)
+ 2

ˆ b

a

〈
V ′, 〈V ′, γ′〉γ′

〉
dt−

ˆ b

a

∣∣〈V ′, γ′〉
∣∣2dt

=Ir

(
V ⊥, V ⊥

)
+

ˆ b

a

∣∣〈V ′, γ′〉
∣∣2dt ⩾ 0

The identity holds iff V ⊥ = 0, 〈V ′, γ′〉 = 0, i.e.V = 0.
Hence Iγ is positive definite on V0.

(2) Define γc : [a, c] → (M, g), γc = γ.
Then Iγc is positive define.
Consider a parallel frame {γ′ = e1, e2, · · · , en} along γ.
If V ∈ V0, then let

V =

n∑
i=1

f i(t)ei(t).

So there is an induced variational vector field along γc given by

V c(t) =
∑

f i
(
(b− a)t+ a(c− b)

c− a

)
ei(t)

Therefore Iγc(V c, V c) ⩾ 0 and

Iγ(V, V ) = lim
c→b

Iγc(V c, V c) ⩾ 0.

If Iγ(V, V ) = 0, then Iγ(V,W ) = 0 for every W ∈ V0 since Iγ is semi-positive definite.
So V is Jacobi field with V (a) = V (b) = 0, i.e.V ∈ N0.

(3) If γ(a) is conjugate to γ(c) for some c ∈ (a, b), then there exists a Jacobi field J1 along γc
with J1(a) = J1(c) = 0.
Consider

J(t) =

{
J1(t) a ⩽ t ⩽ c

0 c ⩽ t ⩽ b

Then it is easy to see that Iγ(J, J) = 0.
Let W be a C∞ variational vector field with

W (c) = −
(
∇̂ d

dt
J
)
(c−).

So for sufficiently small ε,

Iγ(J,W ) =
〈
∇̂ d

dt
J,W

〉 ∣∣∣∣c
a

= −|W (c)|2 < 0

Iγ(J + εW, J + εW ) = 2εIγ(J,W ) + ε2Iγ(W,W ) < 0

Hence ∃V ∈ V0, s.t.Iγ
(
V ⊥, V ⊥) ⩽ Iγ(V, V ) < 0.
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Coro 7.7. Let γ be a unit-speed geodesic that has no conjugate point, and V,W are vector field
along γ such that

V (a) =W (a), V (b) =W (b).

If V is a Jacobi field, then
Iγ(V, V ) ⩽ Iγ(W,W )

and the identity holds iff V =W .

Proof.
Iγ(V −W,V −W ) = Iγ(V, V ) + Iγ(W,W )− 2Iγ(V,W ) ⩾ 0

Iγ(V, V ) = 〈V, V ′〉
∣∣∣∣b
a

= 〈V ′,W 〉
∣∣∣∣b
a

= Iγ(V,W )

So Iγ(V, V ) ⩽ Iγ(W,W ) and the identity holds iff V −W = 0.

Def 7.10. Let B : V × V → R be an symmetric bilinear form.

(1) The index of B is defined to be the maximal dimension of all subspaces W of V such that
B :W ×W → R is negative definite, denoted as µ(B).

(2) The nullity of B is the dimension of the null space

N(B) = {v ∈ V |B(v, w) = 0 for all w ∈ V }

B is said to be degenerate if the nullity is positive.

Coro 7.8. If γ(b) is a conjugate point of γ(0) along a unit-speed geodesic γ : [0, b] → (M, g),
then

mγ(γ(b)) = dimN(Iγ).

Proof. By theorem 7.87.8(2), N(Iγ) = {V ∈ N0|V is a Jacobi field}.
So by definition mγ(γ(b)) = dimN(Iγ).

Thm 7.9 (Morse index theorem). Let γ : [0, b] → (M, g) be a unit-speed geodesic, then the
index of Iγ is finite and equals to the number of points γ(t) with 0 < t < b that conjugate to
γ(0), each counted with its multiplicity, i.e.

µ(Iγ) =
∑
0<t<b

γ(t)∈conj(γ(0))

dimN(Iγt).

Exam 7.4. Consider (S1 × R, gcan), which is flat.
Let γ : [a, b] →M be a unit-speed geodesic, we claim that γ has no conjugate point.
Otherwise, there exists Jacobi field J along γ such that J(a) = J(c) = 0, so

J ′′ +R(J, γ′)γ′ = 0, i.e.J ′′ = 0.

For J(t) = J i(t)ei(t) where {ei(t)} is a parallel basis, we have

J ′′(t) =
(
J i
)′′

(t)ei(t) = 0, i.e.
(
J i
)′′

= 0.

So J ≡ 0 is trivial, contradiction!
Hence γ is a locally minimal geodesic, while it may not be the minimal geodesic.
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7.5 The cut locus and injective radius
Def 7.11. Suppose (M, g) is a complete Riemannian manifold and p ∈M, v ∈ TpM .

The cut time of point (p, v) is defined as

tcut(p, v) = sup
{
b > 0

∣∣∣γv∣∣[0,b] is a minimal geodesic
}
.

Suppose tcut(p, v) < +∞, the cut point of p along γv is γv(tcut(p, v)) ∈M .

(1) The cut locus of p, denoted by cut(p), is the set of all q ∈ M , such that q is the cut point
of p along some geodesic.

(2) The tangent cut locus of p is defined as

Tcut(p) =

{
v ∈ TpM

∣∣∣∣|v| = tcut

(
p,

v

|v|

)}
.

(3) the injective radius domain of p is

Σ(p) =

{
v ∈ TpM

∣∣∣∣|v| < tcut

(
p,

v

|v|

)}
.

Prop 7.6. The cut point(if exists) occur at or before the first conjugate point along every
geodesic.

Proof. Suppose γ : [0, b] →M is a geodesic such that γ(c) ∈ conj(γ(0)) with c ∈ [0, b).
Then by theorem 7.87.8(3), γ is not local minimal.
So the cut point of γ(0) along γ is < b, contradiction!

Exam 7.5. (1) For (Sn, gcan), cut(p) = conj(p) = {−p}.

(2) For (S1 × R, gcan), conj((p, x)) = ∅, cut((p, x)) = {p} × R.

Thm 7.10. Let (M, g) be a complete Riemannian manifold and p ∈M, v ∈ TpM with |v| = 1,
tcup(p, v) = c ∈ (0,+∞]

(1) If 0 < b < c, then

(a) γv
∣∣
[0,b]

has no conjugate points

(b) γv
∣∣
[0,b]

is the unique minimal unit-speed geodesic connecting γv(0) and γv(b).

(2) If c < +∞, then γv
∣∣
[0,c]

is a minimal geodesic connection γv(0) and γv(c).

Moreover, one or both the following statements hold.

(a) γv(c) is conjugate to p along γv
(b) There are two or more unit speed minimal geodesics connecting γv(0), γv(c).

Proof. (1) By proposition 7.67.6, γv(t) can not be conjugate to p for 0 < t ⩽ b.
And by the definition of tcut(p, v), there exists some b′ such that b < b′ < c such that γv

∣∣
[0,b′]

is minimal.
Suppose the exists a unit-speed curve µ : [0, c] →M with µ(0) = p, µ(c) = γ(b) and c ⩽ b.
Then b′ = d(p, γ(b′)) ⩽ d(p, γ(b)) + d(γ(b), γ(b′)) ⩽ c+ b′ − b.
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So c = b.
And consider the curve µ̃

∣∣
[0,b]

= µ, µ̃
∣∣
[b,b′]

= γv
∣∣
[b,b′]

.

Then L (µ̃) = d(p, q), i.e.µ̃ is smooth geodesic.
Hence µ′(b) = γ

∣∣′
v
(b), i.e.γv = µ is unique.

(2) We assume γv(c) is not conjugate to p along γv.
There exists a sequence {bi} decreasing to c such that γv : [0, bi] → M is well-defined but
not a minimal geodesic by definition.
Let γi : [0, ai] →M be a unit-speed minimal geodesic connection p and γv(bi).
Suppose wi = γ′i(0) ∈ TpM,γi(t) = expp(twi).
By compactness and passing to a subsequence, we assume ai → a,wi → w, then

expp(aw) = lim expp(aiwi) = lim γi(ai) = lim γv(bi) = γv(c).

So γw : [0, a] →M, t 7→ expp(tw) is a unit-speed geodesic connecting p and γv(c).
Moreover,

c = d(p, γv(c)) = lim d(p, γi(ai)) = d(p, expp(aw)) = a

Therefore γw is a minimal geodesic, we shall show that w 6= v.
Since cv is not a critical point of expp : TpM → M and so it is locally injective in a small
neighborhood U of cv.
But expp(biv) = expp(aiwi).
So for large i, biv ∈ U and aiwi /∈ U .
Hence cv 6= aw, i.e.v 6= w.

Remark 7.4. In many usual examples, there seems to have more than one minimal geodesics
passing through p and q when p, q are conjugate along γ.

However, this is not necessary.
We consider the meridian γ of parabolic starting at p = (x0, y0, z0) for z0 > 1.
Then γ is obviously minimal around 0.
but when γ(t) = (−x0,−y0, z0), the length of latitude is π√z0 < 2

(
z0 +

√
z0
)
< L

(
γ
∣∣
[0,t]

)
.

So while going through γ, there is first only one minimal geodesic, and at some point, the
single minimal geodesic bifurcates into two, which are symmetrical about the plane of γ.

That point is called bifurcation point, and obviously its a conjugate point of p along γ with
only one minimal geodesic γ.

This type of point has some good properties, you can search for them if you are interested.

Thm 7.11. (M, g) is complete, p ∈M , then

(1) tcut : STM → (0,+∞] is continuous.

(2) Tcut(p) is the boundary Σ(p).

(3) expp(Tcut(p)) = cut(p).

(4) cut(p) is closed subset in M of measure 0.

(5) If M is compact, then cut(p) is compact.
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(6) expp : Σ(p) →M\cut(p) is a diffeomorphism.

(7) expp : Σ(p) →M is surjective.

(8) injp(M, g) = d(p, cut(p)).

(9) inj :M → (0,+∞] is continuous.

Proof. (1) Consider a sequence (pi, vi) converges to (p, v) in STM .
Let ci = tcut(pi, vi) and C = tcut(p, v), assume a subsequence of ci converges to c, we shall
proof that c ⩽ C and C ⩽ c.
We first assume c < +∞.
By continuity of distance function, d(p, expp(cv)) = lim d(pi, exppi(civi)) = lim ci = c.
So γv is minimizing on [0, b], i.e.C ⩾ c.
By theorem 7.107.10, there must be infinite (pi, vi) such that γvi(ci) is conjugate to pi along
γvi , or infinite (pi, vi) such that for some w 6= v ∈ STpiM , exppi(twi) is minimizing and
exppi(ciwi) = exppi(civi).
For the first case, (pi, civi) are critical points of the exponential map.
By continuity, (p, cv) is also a critical points of the exponential map, i.e. γv(c) is the
conjugate point of p and so C ⩽ c.
For the second case, by passing to a subsequence, we assume wi → w.
And WLOG, we may assume that γv(c) is not a conjugate point of p.
Then exp is locally injective in a small neighborhood of (p, cv).
So similar to the proof of theorem 7.107.10, we can conclude that w 6= v, i.e.C ⩽ c.
Now suppose c = +∞.
Then for c0 > 0, γvi is minimizing on [0, c0] for sufficiently large i.
By continuity, d(p, exp(p, c0v)) = lim c0 = c0, i.e.γv is minimizing on [0, c0].
So c ⩽ C, and C ⩽ c is trivial.
Hence c ≡ C, i.e. lim

i→+∞
ci = C.

(2) since tcut is continuous.
So Σ(p) is open and Tcut(p) = ∂Σ(p).

(3) For every q ∈ cut(p), assume q is the cut point of p along γv for v ∈ STpM , then

expp(tcut(p, v)v) = γv(tcut(p, v)) = q.

And since |tcut(p, v)v| = tcut(p, v).
So expp(Tcut(p)) ⊃ cut(p).
And expp(Tcut(p)) ⊂ cut(p) by definition.

(4) Consider a sequence {qi} converges to q in M such that qi ∈ cut(p).
Let qi = exp(tcut(p, vi)vi) and by passing to a subsequence, we assume vi → v.
Then tcut(p, vi) must be bounded, so

lim tcut(p, vi) = tcut(p, v).
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By the continuity, q = expp(tcut(p, v)v) ∈ cut(p), i.e.cut(p) is closed.
And since Tcut(p) is the graph of tcut(p, •) : STpM → (0,+∞].
So Tcut(p) is measure zero, so is cut(p) = expp(Tcut(p)).

(5) Follows by the fact that closed subset of compact set is compact.

(6) For v ∈ Σ(p), there is one and only one unit-speed minimal geodesic passing through p and
expp(v) given by expp

(
t v
|v|

)
.

So expp is a smooth bijection from Σ(p) onto its image.
And by theorem 7.107.10 and (3), expp(Σ(p)) =M\cut(p).
Hence expp : Σ(p) →M\cut(p) is diffeomorphic.

(7) Follows by (2), (3), (6).

(8) Since Bd(p,cut(p))(p) ⊂ Σ(p).
So injp(M, g) ⩾ d(p, cut(p)).
And for q ∈ Binjp(M,g)(p), q is not critical value of expp and has a unique preimage.
Therefore q /∈ cut(p), i.e.injp(M, g) ⩽ d(p, cut(p)), this completes the proof.

(9) injp(M, g) = inf{tcut(p, v)|v ∈ STpM}.
So consider a sequence pi converges to p in M .
Let ri = injpi(M, g) = tcut(pi, vi), R = injp(M, g) = tcut(p, V ), assume a subsequence of ri
converges to r, we shall proof that r ⩽ R and R ⩽ r.
By passing to a subsequence, we assume vi → v.
Then ri = tcut(pi, vi) → tcut(p, v) ⩾ R, i.e.r ⩾ R.
And by continuity, for the sequence (pi, wi) converges to (p, V ) in STM , ri ⩽ tcut(pi, wi) =
tcut(p, V ) = R.
So r ⩽ R, i.e.R ≡ r = lim

i→+∞
ri.



Chapter 8

Topological properties of
Riemannian manifold

8.1 Local isometries and isometries
Def 8.1. If ϕ : (M, gM ) → (N, gN ) is a C∞ map,

(1) ϕ is called a local isometry if
dϕp : TpM → Tg(p)N

is a linear isometry, i.e. ϕ∗gN = gM

(2) ϕ is called an isometry if ϕ is a diffeomorphism(or surjective) and

dN (ϕ(p), ϕ(q)) = dM (p, q).

Thm 8.1. If ϕ : (M, gM ) → (N, gN ) is bijective, TFAE

(1) ϕ is an isometry

(2) ϕ is a diffeomorphism and a local isometry

(3) ϕ is a diffeomorphism and for every C∞ curve γ : [a, b] →M ,

L(ϕ ◦ γ) = L(γ).

Proof. (1) ⇒ (2): For r < min{inj(M,p), inj(N, q)}, consider the unit-speed minimal geodesic

γv : [0, r] →M, t 7→ expp(tv).

Then dN (ϕ(γv(s)), ϕ(γv(t))) = |s− t|.
And let γ̃v be the unique unit-speed minimal geodesic from q to ϕ(γv(r)).
Suppose ϕ(γv(t)) 6= γ̃v(t) for some t ∈ (0, r).
Then the composition of two minimal geodesics from q to ϕ(γv(t)), from ϕ(γv(t)) to γ̃v(r)

resp. is different from γ̃v but has the length r, contradiction!
So ϕ ◦ γv = γ̃v is an unit-speed minimal geodesic and

|dϕp(v)| =
∣∣∣∣dγ̃vdt

(0)

∣∣∣∣ = 1.

Hence dϕp is isometric,i.e. ϕ is a local isometry.

62
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(2) ⇒ (3):

L(ϕ ◦ γ) =
ˆ b

a

∣∣(ϕ ◦ γ)′
∣∣dt = ˆ b

a

∣∣dϕ(γ′)∣∣ = ˆ b

a

∣∣γ′∣∣ = L(γ).

(3) ⇒ (1):

dN (ϕ(p), ϕ(q)) = inf
γ∈Lφ(p),φ(q)

L(γ) = inf
γ∈Lφ(p),φ(q)

L(ϕ−1 ◦ γ) = inf
γ∈Lp,q

L(γ) = dM (p, q).

So ϕ is an isometry.

Thm 8.2. Let (M, gM ) and (N, gN ) be two Riemannian manifolds and ϕ :M → N be a smooth
map, TFAE:

(1) ϕ is a local isometry.

(2) For every p ∈M , there are open neighborhoods U of p in M and V of ϕ(p) in N such that
ϕ
∣∣
U
: U → V is an isometry.

Proof. (2) ⇒ (1) is trivial by theorem 8.18.1.
(1) ⇒ (2): Since linear isometry is invertible.
By inverse function theorem, ϕ is local diffeomorphism.
So the proof is completed by theorem 8.18.1.

Coro 8.1. Let ϕ : (M, gM ) → (N, gN ) be a local isometry, if γ : [a, b] →M is a C∞ curve and
γ̃ = ϕ ◦ γ, then

(1) ϕ is totally geodesic.

(2) γ is a geodesic in (M, gM ) ⇔ γ̃ is a geodesic in (N, gN ).

Proof. Since ϕ is a local isometry.
So ϕ∗gN = gM , i.e.B(X,Y ) = ∇̂Xϕ∗Y − ϕ∗(∇XY ) = 0.
And by corollary 6.46.4, ϕ is totally geodesic and γ is geodesic iff γ̃ is geodesic.

8.2 covering map
Def 8.2. A Riemannian covering map π : (M, gM ) → (N, gN ) if

(1) π is a covering map

(2) π is C∞

(3) π is a local isometry

Thm 8.3. Suppose π : (M̃, g) → (M, g) is a local isometry.

(1) If M̃ is complete⇒M is complete and π is a Riemannian covering map

(2) If π is a covering map, (M, g) is complete⇔ (M̃, g̃) is complete
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Proof. (1) For every p ∈M, p̃ ∈ π−1(p) and a geodesic γ starting at p, there is a unique geodesic
γ̃ starting at p̃ with

γ̃′(0) = dϕ−1
p

(
γ′(0)

)
.

Then π ◦ γ̃ is a geodesic starting at p with

(π ◦ γ̃)′ (0) =
(
dϕp ◦ dϕ−1

p

) (
γ′(0)

)
= γ′(0).

So π ◦ γ̃ = γ is well-defined all over R, i.e. M is complete, and

π
(
expp̃

(
dϕ−1

p (v)
))

= expp(v),

i.e. π is surjective.
Define Up = Bε(p), Up̃ = Bε (p̃), we now prove that Up is evenly covered by {Up̃}.
For another q̃ ∈ π−1(p), the geodesic from p̃ to q̃ maps to a geodesic loop from p to p.
And the loop must go outside Up and get back, i.e. d (p̃, q̃) ⩾ 2ε.
So Up̃ ∩ Uq̃ = ∅.
On the other hand, for every q ∈ π−1(Up), d(π(q), p) < ε, i.e.d (q, p̃) < ε for some p̃.
Therefore q ∈ Up̃ and

π(Up) =
⊔

p̃∈π−1(p)

Up̃.

Hence π is a Riemannian covering map.

(2) By Hopf-Rinow theorem, Riemannian manifold is geodesic complete iff it is metric complete.
So (M, g) is complete iff (M̃, g̃) is complete since π is a covering map.

Prop 8.1. Suppose (M, g) is a Riemannian manifold and Γ is a discrete Lie group acting
smoothly, freely, properly, and isometrically on M .

Then M/Γ ha s a unique Riemannian metric such that the quotient map π : M → M/Γ is
a normal Riemannian covering.

8.3 Deck transformation
Prop 8.2. Suppose M̃ π−−→M is a covering map

(1) (Unique lifting proposition)If B is a connected topology space, f : B → M is continuous,
then any two lifts of f that agree at one point are identical.

(2) (Path lifting proposition)Suppose f : [0, 1] → M is a continuous path, then for any p̃ ∈
π−1(f(0)), ∃!lift f̃ : [0, 1] → M̃, f̃(0) = p̃.

(3) (Monodromy theorem)Suppose f, g : [0, 1] → M are path-homotopic and f̃ , g̃ : [0, 1] → M
are their lifts starting at the same point, then f̃ , g̃ are path homotopic and f̃(1) = g̃(1).

Proof. These are some easy topology proposition, so we will use them directly without proving.

Def 8.3. Let π : M̃ → M be the universal cover of M , deck transformation F : M̃ → M̃ is a
homeomorphism with π ◦ F = π, the set of deck transformation is denoted by Autπ

(
M̃
)
.
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Prop 8.3. (1) π1(M) ∼= Autπ

(
M̃
)

(2) Autπ

(
M̃
)

acts C∞, freely and properly on M̃

(3) Autπ

(
M̃
)

acts transitively on each fiber of π.

Proof. These are some easy topology proposition, so we will use them directly without proving.

Prop 8.4. Deck transformation is isometry.

Proof. F ∗g̃ = F ∗π∗g = (π ◦ F )∗g = π∗g = g̃.

Def 8.4. Let γ0, γ1 : [0, 1] → M be two loops, they are said to be free homotopic if they are
homotopic through closed paths, i.e. there exists a homotopy H : [0, 1]× [0, 1] →M such that

H(0, t) = γ0(t),H(1, t) = γ1(t),H(s, 0) = H(s, 1).

The equivalence class of loops in M given by freely homotopic is called free homotopy class.

Def 8.5. Let (M, g) be a complete Riemannian manifold and F :M →M be an isometry.
A geodesic γ : R → M is an axis of F if F ◦ γ is a nontrivial translation of γ, i.e. there

exists a nonzero constant c, such that

(F ◦ γ)(t) = γ(t+ c).

An isometry with no fixed points that has an axis is said to be axial.

Lemma 8.1. Let F be an isometry of a complete manifold (M, g). If δF (p) = d(p, F (p)) has a
positive minimum, then it is axial.

Proof. Suppose δF has a minimum at p ∈ M , and let γ : [0, 1] → M be a minimal geodesic
connecting p and F (p).

Then γ̃ = F ◦ γ is a minimal geodesic connecting F (p) and F 2(p).
We claim γ and γ̃ form an angle π at F (p) and thus fit together an extension of γ to [0, 2].
For any t ∈ [0, 1], we have

δF (p) =d(p, F (p)) ⩽ d(γ(t), γ̃(t))

⩽d(γ(t), γ(1)) + d(γ(1), γ̃(t))

=d(γ(t), γ(1)) + d(γ̃(0), γ̃(t))

=d(γ(t), γ(1)) + d(γ(0), γ(t))

=d(γ(0), γ(1)) = d(p, F (p))

So d(γ(t), γ̃(t)) = d(γ(t), γ(1)) + d(γ(1), γ̃(t)), this proves the claim.
Hence (F ◦ γ)(t) = γ(t+ 1) and repeating this process we can define γ all over R.

Lemma 8.2. If (M, g) is compact Riemannian manifold and F : M̃ → M̃ be a nontrivial deck
transformation on the universal cover π : M̃ →M , then

(1) δF (p) = d(p, F (p)) has a positive infimum, δF (p) ⩾ 2inj(M), i.e. F is axial

(2) The axis γ̃ corresponding to this minimum is mapped to a closed geodesic in M whose length
is minimal in its free homotopy class.
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Proof. (1) is directly follow by theorem 8.38.3 and lemma 8.18.1, we now proof (2).
It is obvious that γ̃ : [0, 1] → M̃, γ̃(0) = x̃, γ̃(1) = F (x̃) projects to a loop in M .
We first claim that if γ̃0, γ̃1 : [0, 1] → M̃ are curves connecting x̃0, F (x̃0) and x̃1, F (x̃1) resp.

with, then γ0, γ1 are freely homotopic.
We define a homotopy H̃(s, t) : [0, 1]× [0, 1] →M with

H̃(s, 1) = F
(
H̃(s, 0)

)
, H̃(0, t) = γ̃0(t), H̃(1, t) = γ̃1(t).

Then H̃ is a free homotopy of γ̃0 and γ̃1.
And let H = π ◦ H̃, we have

H(0, t) =
(
π ◦ H̃

)
(0, t) = (π ◦ γ̃0)(t) = γ0(t),H(1, t) = γ1(t),

H(s, 0) =
(
π ◦ H̃

)
(s, 0) =

(
π ◦ F ◦ H̃

)
(s, 0) =

(
π ◦ H̃

)
(s, 1) = H(s, 1).

So H is a free homotopy of γ0 and γ1.
We then claim that let γ̃0 : [0, 1] → M be a path with γ̃0(0) = x̃0, γ̃0(1) = F (x̃0), if γ1 is

freely homotopic to γ0 by H, then F (γ̃1(0)) = γ̃1(1) for some lifting γ̃1 of γ1.
Let H̃ : [0, 1]× [0, 1] → M̃ be the lift of H with H̃(0, 0) = x̃0.
Then both γ̃0(t), H̃(0, t) are lifts of γ0(t) and γ̃0(0) = H̃(0, 0).
So γ̃0(t) = H̃(0, t).
And both

(
F ◦ H̃

)
(s, 0), H̃(s, 1) are lifts of H(s, 0) with(
F ◦ H̃

)
(0, 0) = F ◦ γ̃0(0) = γ̃0(1) = H̃(0, 1).

Therefore
(
F ◦ H̃

)
(s, 0) = H̃(s, 1) and γ̃1 = H̃(1, t) is a lift of γ1(t) since

(π ◦ γ̃1)(t) =
(
π ◦ H̃

)
(1, t) = H(1, t) = γ1(t).

By lemma 8.18.1, the axis of F in [0, c] is a minimal geodesic γ̃ from p̃ to F (p̃).
So for γ1 ∼ π ◦ γ̃ w.r.t. freely homotopic, we have

L(γ̃1) ⩾ d(γ̃1(0), γ̃1(1)) = δF (γ̃1(0)) ⩾ δF (p̃) = L(γ̃).

Hence γ has the minimal length in [γ].

Coro 8.2. Let M be a compact connected Riemannian manifold, then every nontrivial free
homotopy class in M is represented by a closed geodesic that has minimum length among all
admissible loops in its free homotopy class.

Proof. For an arbitrary loop γ0 start at p, we want to find a closed geodesic γ that is freely
homotopic to γ0.

Consider the deck transformation such that F (γ̃0(0)) = γ̃0(1).
By lemma 8.28.2, F has an axis γ̃ and π ◦ γ̃

∣∣
[0,c]

is a closed geodesic in M whose length is
minimal in its free homotopy class.

And by the proof of lemma 8.28.2, π ◦ γ̃
∣∣
[0,c]

is freely homotopic to γ0.
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8.4 Manifold with Non-positive Sectional Curvature
Thm 8.4 (Cartan-Hadamard). Let (M, g) be a complete Riemannian manifold with sec(g) ⩽ 0.

Then ∀p ∈M, expp : TpM →M is a covering map.
In particular, the universal covering M̃ of M is ∼= Rn.

Proof. Since sec(g) ⩽ 0.
By proposition 7.47.4, expp : TpM →M is a local diffeomorphism.
Let g̃ = exp∗p(g).
Then expp : (TpM, g̃) → (M, g) is a local isometry.
Consider γ̃v(t) = tv : R → TpM .
Then expp(γ̃v(t)) = expp(tv) is a geodesic in (M, g).
Therefore γ̃v(t) is a geodesic in (TpM, g̃).
By Hopf-Rinow, (TpM, g̃) is complete.
Hence by theorem 8.38.3, expp is a Riemannian covering map and M̃ ∼= TpM ∼= Rn.

Remark 8.1. Sn has no Riemannian metric with sec(g) ⩽ 0.
But for n ⩾ 3, Sn has Riemannian metric with Ric(g) ⩽ 0 (HIGHLY NONTRIVIAL).

Coro 8.3. Suppose M,N are compact C∞ manifolds, if one of them is simply connected, then
M ×N does not admit a Riemannian metric with non-positive sectional curvature.

Proof. Suppose M is simply connected and Ñ is the universal covering of N .
Then π :M × Ñ →M ×N is the universal covering.
If g is a Riemannian metric with sec(g) ⩽ 0 on M ×N , then the pull back metric π∗g is a

complete Riemannian metric with sec(π∗g) ⩽ 0, and M × Ñ ∼= RN .
Let p1 :M × Ñ →M be the canonical projection and µ be a volume form on M .
Then dp∗1(µ) = p∗1(dµ) = 0, i.e.p∗1(µ) is a closed form on M × Ñ ∼= RN .
So p∗1µ is exact.
Fix a point y0 ∈ Ñ and let ι :M →M × Ñ , x 7→ (x, y0) be a embedding, then

ˆ
ι(M)

p∗1µ =

ˆ
M
ι∗(p∗1µ) =

ˆ
M
(p1 ◦ ι)∗µ =

ˆ
M
µ > 0.

On the other hand, p∗1µ is exact on M × Ñ , i.e.
´
ι(M) p

∗
1µ = 0, contradiction!

Def 8.6. A simply connected complete Riemannian manifold (M, g) with sec(g) ⩽ 0 is called
a Cartan-Hadamard manifold.

Thm 8.5. Let (M, g) be a simply connected complete Riemannian manifold, TFAE:

(1) (M, g) has sec(g) ⩽ 0

(2) for all p ∈M and v, v̂ ∈ TpM , ∣∣(d expp)v (v̂)∣∣ ⩾ |v̂|.

(3) for all p ∈M and v0, v1 ∈ TpM

d(expp(v0), expp(v1)) ⩾ |v1 − v0|.

Moreover, if one of them is satisfied, then

(a) expp : TpM →M is a diffeomorphism

(b) Any two points in M are connected by a unique geodesic.
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Proof. (1) ⇒ (2): Consider the variation

α(t, s) = expp (t (v + sv̂))

with variational vector field

J(t) = α∗

(
∂

∂s

) ∣∣∣∣
s=0

= (d expp)t(v+sv̂) (tv̂) = (d expp)tv (tv̂) .

So J(0) = 0, J ′(0) = v̂.
Let f(t) = |J(t)|, then

f ′(t) = |η|−1〈η, J ′〉 with η =

{
t−1J(t) t > 0

J ′(0) t = 0

Therefore we have |f ′(0)| = |J ′(0)| = |v̂| and

f ′′(t) =
1

|J |3
(
J2〈J ′, J ′〉 − 〈J, J ′〉2

)
− R(J, γ′, γ′, J)

|J |
⩾ 0

Set F (t) = f(t)− t|v̂|.
Then F ′′ ⩾ 0, F ′(0) = 0, F (0) = 0.
Hence F (t) is increasing, i.e.

F (1) =
∣∣(d expp)v (v̂)∣∣− |v̂| ⩾ 0.

(2) ⇒ (a): expp is a local diffeomorphism.
So similar to the proof of Cartan-Hadamard theorem, expp : (TpM, g̃) → (M, g) is a Rie-

mannian covering map, where g̃ = exp∗p g.
And TpM,M are simply connected.
Hence expp : TpM →M is diffeomorphism.
(2) ⇒ (3): Consider the geodesic γ from expp(v0) to expp(v1) and let expp(v(t)) = γ(t).
Then by using (a), we have

d(expp(v0), expp(v1)) =

ˆ 1

0

∣∣γ′(t)∣∣dt = ˆ 1

0

∣∣(d expp)v(t)(v′(t))∣∣dt
⩾
ˆ 1

0

∣∣v′(t)∣∣dt ⩾ ∣∣∣∣ˆ 1

0
v′(t)dt

∣∣∣∣
=|v1 − v0|

(3) ⇒ (2): Fix p ∈M, v ∈ TpM and let q = expp(v).
Then expq : TqM →M is bijective since (M, g) is complete and so for every w ∈ TqM ,

d(expq(0), expq(w)) = d(q, expq(w)) = |w|.

Define
ϕ = exp−1

q ◦ expp : TpM → TqM.

Then ϕ(v) = 0 and it is differentiable around v,

(dϕ)v = (d exp−1
q )q ◦ (d expp)v = (d expp)v.

We choose w = ϕ (v + v̂) for some v̂ ∈ TpM , then

|ϕ (v + v̂)| = d(q, expq(ϕ(v + v̂))) = d(expp(v), expp(v + v̂)) ⩾ |v̂|.
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Hence ∣∣(d expp)v (v̂)∣∣ = |(dϕ)v (v̂)| = lim
t→0

|ϕ(v + tv̂)− ϕ(v)|
t

⩾ lim
t→0+

|tv̂|
t

= |v̂|.

(2) ⇒ (1): Suppose R(v̂, v, v, v̂) > 0, consider the Jacobi field

J(t) = (d expp)tv(tṽ).

Then J(0) = 0, J ′(0) = ṽ.
And let f(t) = |J(t)|2, by theorem 3.33.3,

f(t) = |ṽ|2t2 − 8R(ṽ, v, v, ṽ)t4 +O(t5).

So f(t)− |ṽ|2t2 < 0 around 0, but

f(t) = |J(t)|2 =
∣∣(d expp)tv(tṽ)∣∣2 ⩾ |tṽ|2,

contradiction!

Prop 8.5. Let (M, g) be a Cartan-Hadamard manifold, then for every p ∈M, v0, v1 ∈ TpM and
0 < t ⩽ T ,

|v0 − v1| ⩽
d(expp(tv0), expp(tv1))

t
⩽
d(expp(Tv0), expp(Tv1))

T
.

Proof. By theorem 8.58.5,

|tv0 − tv1| ⩽ d(expp(tv0), expp(tv1)), |Tv0 − Tv1| ⩽ d(expp(Tv0), expp(Tv1)).

So we only need to show that

d(expp(tv0), expp(tv1))

t
⩽
d(expp(Tv0), expp(Tv1))

T
.

Consider the Jacobi field
J(t) =

(
d expp

)
tv
(tv̂)

and f(t) = |J(t)|.
Then f is convex by theorem 8.58.5.
Therefore

f(t) ⩽ (T − t)f(0) + tf(T )

T
, i.e.

∣∣(d expp)tv(tv̂)∣∣
t

⩽
∣∣(d expp)Tv(T v̂)

∣∣
T

.

Consider the geodesic γ from expp(Tv0) to expp(Tv1) and let expp(Tv(s)) = γ(s), then

d(expp(Tv0), expp(Tv1))

T
=

ˆ 1

0

∣∣(d expp)Tv(s)(Tv
′(s))

∣∣
T

ds

⩾
ˆ 1

0

∣∣(d expp)tv(s)(tv′(s))∣∣
t

ds

⩾
d(expp(tv0), expp(tv1))

t

Coro 8.4. Let (M, g) be a Cartan-Hadamard manifold, then for a geodesic triangle ABC,

(1) ∠A+ ∠B + ∠C ⩽ π
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(2) c2 ⩾ a2 + b2 − 2ab cos∠C.

If sec(g) < 0, inequalities are strict.

Proof. (1) Let A = expC(v0), B = expC(v1), then

c2 ⩾|v0 − v1|2 = |v0|2 + |v1|2 − 2|v0||v1| cos∠(v0, v1)
=d(C,A)2 + d(C,B)2 − 2d(C,A)d(C,B) cos∠ACB
=a2 + b2 − 2ab cos∠C

(2)

∠A+ ∠B + ∠C ⩽ arccos
a2 + b2 − c2

2ab
+ arccos

b2 + c2 − a2

2bc
+ arccos

c2 + a2 − b2

2ca
= π.

If M has negative sectional curvature, then d(expp(v0), expp(v1)) > |v0 − v1|.
So the inequalities are strict.

Lemma 8.3. Let (M, g) be a Cartan-Hadamard manifold, for every p, q ∈ M, v ∈ TpM , we
define p0 = expp(−v), p1 = expp(v), then

d2(p0, q) + d2(p1, q) ⩾ d2(p0, p) + d2(p1, p) + 2d2(p, q).

Proof. let q = expp(w)
Then d(p, q) = |w|, d(p0, q) ⩾ |w + v|, d(p1, q) ⩾ |w − v|.
And d(p, q) = |w|, d(p0, p) = d(p1, p) = |v|, so

d2(p0, q) + d2(p1, q) ⩾|w + v|2 + |w − v|2 = 2|v|2 + 2|w|2

=d2(p0, p) + d2(p1, p) + 2d2(p, q)

Lemma 8.4 (Serre). Let (M, g) be a Cartan-Hadamard manifold, for every p ∈ M, r ⩾ 0, let
B̄(p, r) ⊂M be the closed ball of radius r centered at p.

Let Ω ⊂M be a non-empty bounded set, and define

rΩ = inf
{
r > 0

∣∣∃p ∈M, s.t.Ω ⊂ B̄(p, r)
}
.

Then there exists a unique point pΩ ∈M, s.t.Ω ⊂ B̄(pΩ, rΩ).

Proof. Existence: let (pi, ri) be a sequence such that Ω ⊂ B̄(pi, ri) and ri → rΩ.
Then for q ∈ Ω, d(q, pi) ⩽ ri, i.e.{pi} is bounded.
So {pi} has a convergence subsequence converges at some point pΩ.
Hence Ω ⊂ B̄(pΩ, rΩ).
Uniqueness: Suppose there exist p0, p1 ∈M such that Ω ⊂ B̄(p0, rΩ) ∩ B̄(p1, rΩ).
Let p1 = expp0(v0) and take

p = expp0

(v0
2

)
.

Then by lemma 8.38.3, for any q ∈ Ω we have

d2(p, q) ⩽ d2(p0, q) + d2(p1, q)

2
− d2(p0, p1)

4
⩽ r2Ω − d2(p0, p1)

4
⩽ r2Ω.

So d(p0, p1) = 0, i.e.p0 = p1.
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Thm 8.6 (Cartan fixed point theorem). Suppose that (M, g) is a Cartan-Hadamard manifold
and G is a compact Lie group acting smoothly and isometrically on M , then G has a fixed point
in M ,i.e. ∃p0 ∈M such that gp0 = p0 for all g ∈ G.

Proof. Let p ∈M and consider the group orbit

Ωp = {gp|g ∈ G}.

Since G is compact, Ω is bounded.
So pΩ, rΩ > 0 is defined by lemma 8.48.4 and

Ω = gΩ ⊂ B̄(gpΩ, rΩ).

Hence pΩ = gpΩ by the uniqueness of pΩ.

Thm 8.7 (Cartan torsion theorem). If (M, g) is a complete Riemannian manifold with sec(g) ⩽
0, then π1(M) is torsion free, i.e. all nontrivial elements have infinite order.

Proof. Let π :
(
M̃, g̃

)
→ (M, g) be the universal cover and Γ = Autπ

(
M̃
)
∼= π1(M).

Then by proposition 8.18.1, M ∼= M̃/Γ and the induced metric is isometric.
Suppose ϕ is a torsion free element in Γ.
Then the subgroup of Γ generated by ϕ is a compact Lie group and acts smoothly and

isometrically on M̃ .
So by Cartan fixed point theorem, ϕ must have a fixed point.
But Γ act freely on M̃ , contradiction!

8.5 Manifold with negative sectional curvature
Thm 8.8 (Preissmann). Let (M, g) be a compact Riemannian manifold with sec(g) < 0.

(1) Any nontrivial abelian subgroup of π1(M) is ∼= Z

(2) π1(M) is not abelian

Coro 8.5. If M,N are two compact manifolds, then M ×N can not support sec(g) < 0.

Proof. Suppose M ×N has sec(g) < 0.
By corollary 8.38.3, M,N are not simply connected.
Then π1(M ×N) ∼= π1(M)× π1(N).
Consider nontrivial elements g1 ∈ π1(M), g2 ∈ π1(N), then g1, g2 must be torsion free.
So 〈(g1, e), (e, g2)〉 ∼= Z×Z is a nontrivial abelian subgroup of π1(M×N), contradiction!

Lemma 8.5. Suppose (M, g) is a Cartan-Hadamard manifold with negative sectional curvature.
If ϕ :M →M is an axial isometry, then its axis is unique up to reparametrization.

Proof. Suppose γ1 and γ2 are both axis but do not intersect.
Let A = γ1(0), B = γ1(1) = ϕ(A), C = γ2(0), D = γ2(1) = ϕ(C).
Consider the geodesic σ from A to C, then ϕ ◦ σ is a geodesic from B to D.
So the geodesic quadrilateral ABDC has angle sum 2π.
On the other hand, the geodesic triangles ABC,BCD have angle sums strictly less than π.
And B is inside the angle ACD since γ1 and γ2 do not intersect.
Therefore ∠ACB + ∠DCB = ∠ACD and similarly ∠ABC + ∠DBC = ∠ABD.
These are contradiction, i.e. γ1, γ2 must intersect at some point p = γ1(t1) = γ2(t2), then

ϕ(p) = γ1(t1 + c1) = γ2(t2 + c2).

is another intersection point.
Hence γ1 = γ2 since (M, g) is a Cartan-Hadamard manifold.



CHAPTER 8. TOPOLOGICAL PROPERTIES OF RIEMANNIAN MANIFOLD 72

proof of theorem 8.88.8(1). Let π :
(
M̃, g̃

)
→ (M, g) be the universal covering.

Then
(
M̃, g̃

)
is a Cartan-Hadamard manifold with negative sectional curvature.

It suffices to show that every nontrivial abelian subgroup H of Autπ

(
M̃
)

∼= π1(M) is
isomorphic to Z.

Let ϕ be a nontrivial element in H and γ is its unique unit-speed axis.
If ψ is another nontrivial element in H, then
ϕ(ψ(γ(t))) = ψ(ϕ(γ(t))) = ψ(γ(t+ c)).
So ψ ◦ γ is also an axis for ϕ.
By lemma 8.58.5, ψ ◦ γ is a unit-speed reparametrization of γ, i.e. ψ(γ(t)) = γ(t+ a).
Suppose a

c is irrational, then spanZ(a, c) is dense in R.
Consider x, y ∈ Z such that 0 < xa+ yc < inj(M).
Then (ψx ◦ ϕy)(γ(0)) = γ(xa+ yc).
Therefore π ◦ γ

∣∣
[0,xa+yc]

is a unit-speed geodesic loop, contradiction!
So a

c = x
y for some x, y ∈ Z, i.e.ϕx = ψy.

Hence H ∼= Z.

Lemma 8.6. Let (M, g) be a complete Riemannian manifold with non-positive sectional cur-
vature and π : M̃ →M be the universal covering.

If the geodesic γ̃ : R → M̃ is a common axis for all elements of Autπ
(
M̃
)

, then M is not
compact.
Proof. For any point p̃ = γ̃(s) and k > 0, we consider the unit-speed geodesic

β̃ : [0, k] → M̃, β̃(0) = p̃,
〈
β̃′(0), γ̃′(s)

〉
= 0.

Let αk be the minimal geodesic in M passing through β(k) and p = β(0).
Then β · αk is a loop at p, i.e. L(αk) ⩽ L(β) = k.
We claim that L(αk) = k, so that M is not bounded.
Let α̃k be the lift of αk starting from β̃(k) and F is the deck transformation w.r.t. β · αk.
Then F (p̃) is the end point of α̃k and

F (p̃) = F (γ̃(s0)) = γ̃(s0 + c).

By corollary 8.48.4, L(αk) = L (α̃k) ⩾ L
(
β̃
)
= k in right geodesic triangle

(
p̃, β̃(k), F (p̃)

)
.

proof of theorem 8.88.8(2). Suppose π1(M) is abelian.
Let γ̃ be the axis of the generator ϕ of Autπ

(
M̃
)
.

Then ϕn (γ̃(t)) = γ̃(t+ nc), i.e.γ is the common axis for all elements of Autπ
(
M̃
)
.

By lemma 8.68.6, M is not compact, contradiction!

There are some advance theorem for the fundamental group of compact Riemannian manifold
with non-positive sectional curvature, we will not proof them.
Thm 8.9 (Byers). If sec(g) < 0, then any nontrivial solvable subgroup of π1(M) is isomorphic
to Z and π1(M) is not solvable.
Thm 8.10. If sec(g) < 0, then any subgroup of π1(M) that contains a nontrivial abelian normal
subgroup is isomorphic to Z.
Thm 8.11 (Yau,1971). If sec(g) ⩽ 0 and π1(M) is solvable, then M is flat,i.e. isometric to
Rn/Γ.
Thm 8.12 (Lawson-Yau,Wolf). If sec(g) ⩽ 0 and A is a free abelian subgroup of π1(M) of rank
k ⩾ 2, then M admits a totally geodesic and isometrically immersed flat k-torus.
Prob 8.1. Open problem: does S4 × S1 have Ricci-flat metric?
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8.6 Manifold with non-negative curvature
Thm 8.13 (Myers). Let (M, g) be a complete Riemannian manifold with

Ric(g) ⩾ (n− 1)g

R2
,

where R ∈ R+, n ⩾ 2, then

(1) diam(M, g) ⩽ πR,

(2) M is compact,

(3) |π1(M)| is finite.

Proof. (1) Suppose diam(M, g) > πR.
Since (M, g) is complete.
So there exists a unit-speed minimal geodesic γ : [0, l] →M with l > πR.
Let (e1(t) = γ′(t), e2(t), · · · , en(t)) be an orthonormal basis of Tγ(t)M where e2, · · · , en are
parallel vector field along γ, consider the variational vector field

Vi(t) = sin

(
πt

l

)
ei(t).

Then Vi(0) = Vi(l) = 0 and so by theorem 7.57.5,

0 ⩽
n∑

i=2

d2

ds2

∣∣∣∣
s=0

E(αi(·, s)) =
n∑

i=2

ˆ l

0

〈
∇̂ d

dt
Vi, ∇̂ d

dt
Vi

〉
dt−

n∑
i=2

ˆ l

0
R(Vi, γ

′, γ′, Vi)dt

=(n− 1)
π2

l2

ˆ l

0
cos2

(
πt

l

)
dt−

ˆ l

0
sin2

(
πt

l

)
Ric(γ′, γ′)dt

⩽(n− 1)
π2

l2

ˆ l

0
cos2

(
πt

l

)
dt− (n− 1)

R2

ˆ l

0
sin2

(
πt

l

)
dt

<
n− 1

R2

ˆ l

0

(
cos2

(
πt

R2

)
− sin2

(
πt

l

))
dt = 0

This is contradiction!
So diam(M, g) ⩽ πR.

(2) Since diam(M, g) ⩽ πR is bounded.
So M is compact.

(3) Let π :
(
M̃, g̃

)
→ (M, g) be the universal cover.

Then
(
M̃, g̃

)
is also compact.

So π is proper and must be a finite cover, i.e. |π1(M)| is finite.

Remark 8.2. S.Y. Cheng proved that if the identity holds, then (M, g) is isometric to the
constant sectional curvature manifold (Sn(R), gcan), we will proof this in the last chapter.

Coro 8.6. Let (M, g) be a complete Riemannian manifold.
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(1) If it has sectional curvature K ⩾ 1
R2 > 0, then diam(M, g) ⩽ πR.

(2) If it is compact and has positive Ricci curvature, then |π1(M)| is finite.

(3) If it is an Einstein manifold with positive scalar curvature, then M is compact and |π1(M)|
is finite.

Proof. All are directly follows from Myers theorem.

Lemma 8.7. Let A : Rn−1 → Rn−1 be an orthonormal transformation, if detA = (−1)n, then
there exists some v ∈ Rn−1\{0} such that Av = v.

Proof. Let the eigenvalues and eigenvectors of A be λi, vi resp, then

|vi|2 = v∗i vi = v∗iA
∗Avi = |λi|2|vi|2

So |λi| = 1
And since |A| = (−1)n, dimA = n− 1.
Hence there is some i with λi = 1, i.e.Avi = vi.

Thm 8.14 (Synge). Let (M, g) be a compact Riemannian manifold with positive sectional
curvature.

(1) If dimM is even and M is orientable, then π1(M) = {e}.

(2) If dimM is odd, then M is orientable.

Proof. Suppose the conclusions are not correct.
Then π1(M) 6= {e}.
Let π :

(
M̃, g̃

)
→ (M, g) be the universal cover.

We endow M̃ with

(1) the pullback orientation when dimM is even.

(2) an arbitrary orientation when dimM is odd.

There is a nontrivial deck transformation F : M̃ → M̃ and

(1) F is orientation preserving when dimM is even

(2) F is orientation reversing when dimM is odd

So by lemma 8.28.2, there exists an axis γ̃ : R → M̃ for F and γ = π ◦ γ̃ is a closed geodesics
in M that minimizes curve length in its free homotopy class and WLOG, we assume

F (γ̃(t)) = γ̃(t+ 1).

We claim that there exists a variation α of γ in the free homotopy class of γ,i.e.

α(t, 0) = γ(t), α(0, s) = α(1, s)

such that the variational vector field V satisfies that

V (0) = V (1), 〈V, γ′〉 = 0, ∇̂ d
dt
V = 0.
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Assuming the claim, we have

∂2

∂s2

∣∣∣∣
s=0

E(α(•, s)) =
ˆ 1

0

〈
∇̂ d

dt
V, ∇̂ d

dt
V
〉
dt−

ˆ 1

0
R(V, γ′, γ′, V )dt

+

ˆ 1

0

〈
∇̂ d

dt

(
∇ ∂

∂s
α∗

(
∂

∂s

)) ∣∣∣∣
s=0

, γ′
〉
dt

=−
ˆ 1

0
R(V, γ′, γ′, V )dt+

〈(
∇ ∂

∂s
α∗

(
∂

∂s

)) ∣∣∣∣
s=0

, γ′
〉 ∣∣∣∣t=1

t=0

=−
ˆ 1

0
R(V, γ′, γ′, V ) < 0

This is contradiction!
Proof of claim:
Let x̃0 = γ̃(0), x̃1 = γ̃(1) = F (x̃0), p = π (x̃0) = π (x̃1) and

P̃ = P0,1,γ̃ : Tx̃0M̃ → Tx̃1M̃, P = P0,1,γ : TpM → TpM.

be the parallel transports along γ̃
∣∣
[0,1]

in M̃ and loop γ
∣∣
[0,1]

in M resp.
Since local isometries preserve parallelisms.
So the following diagram commutes and all these maps are linear isometries

Tx̃0M̃ Tx̃1M̃

TpM TpM

P̃

dπx̃0
dπx̃1

P

And since M̃ is simply connected and it is oriented.
Therefore P̃ is orientation preserving, moreover,

(1) when n is even, the vertical maps are both orientation-preserving, so is P

(2) when n is odd, F is orientation-reversing and

dπx̃0 = dπx̃1 ◦ dF − x̃0

implies that the two vertical maps induce opposite orientations on TpM , so P is orientation
reversing.

Since γ is closed geodesic, we have

P (γ′(0)) = γ′(1) = γ′(0).

On the other hand, P is an isometry and it induces a linear map

A = P

∣∣∣∣
W

:W →W

where W is the orthogonal complement of γ′(0) in TpM .
Notes that dimW = n−1 and det(A) = (−1)n, by lemma 8.78.7, there exists nontrivial v ∈W

such that A(v) = v.
Consider the parallel vector field

V (t) = P0,t,γ(v)

along γ with V (0) = V (1) = v, V (t) ⊥ γ′(t) and the variation

α(t, s) = expγ(t)(sV (t)).

Then α(t, 0) = γ(t), α(0, s) = α(1, s) and the variational field of α is V (t).
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Coro 8.7. Let (M, g) be a compact Riemannian manifold with positive sectional curvature, if
dimM is even, not orientable, then π1(M) ∼= Z/2Z.

Proof. Let M̃ be a two-sheet orientable cover of M .
By theorem 8.148.14, M̃ is simply connected and so it is the universal cover of M .
Hence |π1(M)| = 2, i.e.π1(M) = Z/2Z.

Coro 8.8. the product metric of RP2 ×RP2 has positive Ricci curvature, but it cannot support
a metric with positive sectional curvature.

Proof. π1(RP2 × RP2) = (Z/2Z)2.
So the conclusion follows by corollary 8.78.7.

Conj 8.1 (Hopf). The product metric of S2 × S2 has positive Ricci curvature, does it admit a
metric with positive sectional curvature?

Thm 8.15 (Weinstein-Synge). Let (M, g) be an n-dimensional compact oriented Riemannian
manifold with positive sectional curvature.

Given an isometry F : (M, g) → (M, g) that F preserves the orientation when n is even, or
F reverses the orientation when n is odd, then F has a fixed point.

Proof. Suppose f has no fixed point.
Then there is a point p ∈M such that d(p, f(p)) is minimal since M is compact.
by lemma 8.18.1, let γ be the axis of f such that γ(0) = p, γ(1) = f(p).
So f∗(γ′(0)) = γ′(1), i.e.f∗ is isometric from γ′(0)⊥ → γ′(1)⊥, consider

W = γ′(0)⊥, A = f−1
∗ ◦ P0,1,γ

∣∣∣∣
W

:W →W.

Then det(A) = (−1)n and by lemma 8.78.7, there exists v ∈W\{0} such that Av = v.
Define

V (t) = P0,t,γ(v), α(t, s) = expγ(t)(sV (t)),

then we have
V (0) = v, V (1) = f∗(v),

α(t, 0) = γ(t), α(1, s) = expf(p)(f∗(sv)) = f(expp(sv)) = f(α(0, s)).

Similar to Synge theorem, we have

∂2

∂s2

∣∣∣∣
s=0

E(α(·, s)) = −
ˆ 1

0
R(V, γ′, γ′, V )dt < 0,

contradiction!
Hence f has fixed point.

8.7 Constant sectional curvature
Exam 8.1. (1) (Rn, gcan) has sectional curvature zero.

(2) (Sn(r), gcan) has constant sectional curvature 1
r2

.

(3) (Bn(r), gcan) with

gcan =
4r4

r2 − |x|2
n∑

i=1

dxi ⊗ dxi

has constant sectional curvature − 1
r2

.
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(4) (Hn, gcan) with

gcan =
r2

y2

(
n−1∑
i=1

dxi ⊗ dxi + dy ⊗ dy

)

has constant sectional curvature − 1
r2

.

Thm 8.16 (Local Cartan-Ambrose-Hicks theorem). Let (M, g) and (M̃, g̃) be two Riemannian
manifolds and

Φ0 : TpM → Tp̃M̃

be some fixed linear isometry.
Suppose δ ∈

(
0,min

{
injpM, injp̃M̃

})
, for any v ∈ TpM with |v| < δ we define

γ(t) = expp(tv), γ̃(t) = expp̃(tΦ0(v))

and a linear isometry

Φt = p0,t,γ̃ ◦ Φ0 ◦ p−1
0,t,γ : Tγ(t)M → Tγ̃(t)M̃.

TFAE:

(1) There is an isometry ϕ : B(p, δ) → B(p̃, δ) with ϕ(p) = p̃, (ϕ∗)p = Φ0

(2) Φt preserves the curvature, i.e. for all t ∈ [0, 1] and u, v, w, z ∈ Tγ(t)M , then

R(U, V,W,Z) = R̃(ΦtU,ΦtV,ΦtW,ΦtZ).

Moreover, if one of these conditions hold, the isometry is precisely given by

ϕ = expp̃ ◦Φ0 ◦ exp−1
p : B(p, δ) → B(p̃, δ)

and Φt = ϕ∗γ(t).

TpM Tp̃M̃ TpM Tp̃M̃

Tγ(t)M Tγ̃(t)M̃ B(p, δ) B(p̃, δ)

Φ0

P0,t,γ P0,t,γ̃

Φ0

expp expp̃

Φt φ

Proof. (1) ⇒ (2): we only need to show that Φt = (ϕ∗)γ(t).
Since (ϕ ◦ γ)′(0) = Φ0(v) = γ̃′(0).
So γ̃(t) = ϕ(γ(t)).
Consider an orthonormal basis

(
e1 =

γ′(0)
|γ′(0)| , e2, · · · , en

)
of TpM .

By parallel transport, let (e1(t), · · · , en(t)) be a orthonormal basis of Tγ(t)M , then

∇̂ d
dt
Φt(ei(t)) = ∇̂ d

dt
(ϕ∗)γ(t)(ei(t)).

Hence Φt = (ϕ∗)γ(t).
(2) ⇒ (1): we define

ϕ = expp̃ ◦Φ0 ◦ exp−1
p : B(p, δ) → B(p̃, δ).

Then ϕ(p) = p̃, (ϕ∗)p = Φ0.
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We want to show that ϕ is an isometry, i.e. for any w ∈ TqM ,

|(ϕ∗)qw| = |w|.

Consider a geodesic γ : [0, 1] → M from p to q and Jacobi field J with J(0) = 0, J(1) = w
and let J =

∑
yi(t)ei(t).

We claim that J̃ = Φt(J(t)) is a Jacobi field along γ̃.
By the Jacobi field equation,

y′′j +
∑

yi
∣∣γ′(0)∣∣2R(ei, e1, e1, ej) = 0.

If we set ẽi(t) = Φt(ei(t)), then

J̃(t) =
n∑

i=1

yi(t)ẽi(t).

Since Φt preserves curvatures and |γ′(0)| = |γ̃′(0)|, so we obtain

y′′j +
∑

yi
∣∣γ̃′(0)∣∣2R̃(ẽi, ẽ1, ẽ1, ẽj) = 0,

i.e. J̃(t) is a Jacobi field.
On the other hand,

J̃ ′(0) = Φ0(J
′(0)), J̃(t) = (d expp̃)tγ̃′(0)

(
tJ̃ ′(0)

)
.

So we have
J̃(1) =(d expp̃)γ̃′(0)

(
J̃ ′(0)

)
=(d expp̃)γ̃′(0) ◦ Φ0 ◦ (d expp)−1

γ′(0)(J(1))

=(ϕ∗q)(J(1))

Hence |(ϕ∗q)(w)| =
∣∣∣J̃(1)∣∣∣ = |Φ1(J(1))| = |J(1)| and ϕ is a isometry.

Thm 8.17 (Cartan-Ambrose-Hicks theorem). Let (M, gM ) be a connected Riemannian mani-
fold, suppose ϕ and ψ are two local isometries from M to (N, gN ).

If there exists p ∈M such that ϕ(p) = ψ(p) and ϕ∗p = ψ∗p, then ϕ = ψ.

Proof. Since M is connected.
So there is a path γ : [0, 1] →M from p to q and let

A =
{
t ∈ [0, 1]

∣∣∣ϕ(γ(t)) = ψ(γ(t)), (ϕ∗)γ(t) = (ψ∗)γ(t)

}
.

Consider a small neighborhood V of p, such that ϕ
∣∣
V
, ψ
∣∣
V

are isometry.
Then f : ϕ−1 ◦ ψ : V →W is an isometry with f(p) = p, f∗p = Id.
By Local Cartan-Ambrose-Hicks theorem, we have

f(q) = expp ◦Id ◦ exp−1
p (q) = q.

Therefore f = Id, i.e.A is open, and the closeness of A is obvious since ϕ,ψ are smooth.
Hence A = [0, 1], i.e.ϕ ≡ ψ.

Thm 8.18 (Uniformization). Let (M, g) be a complete Riemannian manifold with constant
sectional curvature K, then (M, g) is isometric to M̃/Γ, where M̃ is one of the model spaces
Rn, Sn(r),Bn(r) and Γ ⊂ Iso(M̃, gcan) is discrete and acts freely.
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Proof. Let
(
M̃, g̃

)
be the universal cover of M and M0 be the corresponding model space.

IfM0 = Rr or Bn(r) and K ⩽ 0, fix p ∈M0, p̃ ∈ M̃ and linear isometry Φ0 = TpM0 → Tp̃M̃ .
Consider the map

ϕ = expp̃ ◦Φ ◦ exp−1
p :M0 → M̃

By Cartan-Hadamard theorem, ϕ is well-defined.
And By local Cartan-Ambrose-Hicks theorem, ϕ is local isometric.
Moreover, ϕ is isometric by theorem 8.38.3 and theorem 8.18.1.
If M0 = Sn(r) and K > 0, fix p ∈M0, p̃ ∈ M̃ and linear isometry Φ0 : TpM0 → Tp̃M̃ .
Consider the map

ϕ1 = expp̃ ◦Φ0 ◦ exp−1
p : Sn(r)\{−p} → M̃.

Then by local Cartan-Ambrose-Hicks theorem, ϕ1 is well-defined local isometry.
Choose another point m ∈ Sn(r)\{±p} and set m̃ = ϕ1(m).
Define Ψ0 = (dϕ1)m : TmM0 → Tm̃M̃ and

ϕ2 = expm̃ ◦Ψ0 ◦ exp−1
m : Sn(r)\{−m} → M̃.

Since W = Sn(r)\{−m,−p} is connected and

ϕ1(m) = ϕ2(m) = m̃, (dϕ2)m = ψ0 = (dϕ1)m.

So by Cartan-Ambrose-Hicks theorem, ϕ1 = ϕ2 on Sn(r)\{−p,−m}.
Now we define

ϕ(x) =

{
ϕ1(x) x ∈ Sn(r)\{−p}
ϕ2(x) x ∈ Sn(r)\{−m}

Hence ϕ : Sn(r) → M̃ is local isometry and by theorem 8.38.3 and theorem 8.18.1, ϕ is isometry.

Coro 8.9. Let (M, g) be a complete Riemannian manifold with constant sectional curvature
K ≡ 1. If dimRM = 2024, then M ∼= S2024 or M ∼= RP2024.

Proof. By the theorem, M̃ ∼= S2024.
And if M is orientable, then π1(M) = {e}, i.e.M = M̃ .
If M is not orientable, then π1(M) = Z2, i.e.M ∼= S2024/Z2

∼= RP2024.



Chapter 9

Radial distance function

9.1 Elementary computations
Prop 9.1. Let (M, g) be a complete Riemannian manifold, p ∈M,U =M\cut(p).

For any q ∈ U , we define the distance function r : U → R, r(q) = d(p, q), then

(1) r is continuous.

(2) r is C∞ over U\{p}.

(3) r2 is C∞ over U .

(4) r(q) =
∣∣exp−1

p (q)
∣∣.

(5) ∇r is defined intrinsically on U\{p}.

Proof. In normal coordinate (x1, · · · , xn) centered at p, the unique geodesic γ with γ(0) = p
and γ′(0) = v is given by

γv(t) = (tv1, · · · , tvn).

So for q = (q1, · · · , qn) ∈ U ,

r(q) =
∣∣exp−1

p (q)
∣∣ =

√√√√ n∑
i=1

(qi)2.

Def 9.1. In normal coordinates (x1, · · · , xn) around p, the radial vector field over U\{p} is

∂r =
∑ ∂r

∂xi
∂

∂xi
=
∑ xi

r

∂

∂xi
.

Remark 9.1. ∂r is invariant under the orthogonal transform, but it is not defined in general
coordinate system.

Thm 9.1. On U\{p},

(1) |∂r| = 1

(2) ∇r = ∂r.

80
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Proof. (1) In normal coordinates (x1, · · · , xn) centered at p ∈M , for q = (q1, · · · , qn),

exp−1
p (q) =

∑
qi

∂

∂xi

∣∣∣∣
p

, r(q) =
√∑

(qi)2.

Let b = r(q), then

γv(t) =

(
tq1

b
, · · · , tq

n

b

)
, ∂r
∣∣
q
= qi

b
∂
∂xi

∣∣
q
= γ′v(b).

And since γv is unit-speed geodesic.
So |∂r| = |γ′v(b)| = 1.

(2) We shall show ∂r is orthogonal to the level set of r, so that ∇r is parallel to ∂r.
Let Σb = expp(∂B(0, b) ∩ Σ(p)) ⊂M .
We show that for any q ∈ Σb and w ∈ TqM tangent to Σb at p,

g
(
∂r
∣∣
q
, w
)
= 0.

Let c : (−ε, ε) → Σb be the smooth curve with c(0) = q, c′(0) = w and |c(s)| = b, consider

w(s) = ∂r
∣∣
c(s)

=
∑ ci(s)

b
∂
∂xi

∣∣
c(s)

.

And we define a family of geodesic α : [0, b]× (−ε, ε) → U by

α(t, s) = expp(tω(s)) =

(
tc1(s)

b
, · · · , tc

n(s)

b

)
.

By Gauss lemma 3.13.1, since |w(s)| = 1, we can obtain〈
α∗

(
∂

∂t

)
, α∗

(
∂

∂s

)〉
≡ 0.

Note that

α∗

(
∂

∂s

)
(b, 0) =

(
t(c1(s))′

b
, · · · , t(c

n(s))′

b

) ∣∣∣∣
(b,0)

=

(
dc1

ds
, · · · , dc

n

ds

) ∣∣∣∣
0

= c′(0) = w,

α∗

(
∂

∂t

)
(b, 0) =

(
c1(0)

b
, · · · , c

n(0)

b

)
= w(0) = ∂r

∣∣
q
.

Hence g
(
∂r
∣∣
q
, w
)
= 0.

On the other hand,

g
(
∂r
∣∣
q
,∇r

)
= g

(
xi

r

∂

∂xi
, gkl

∂r

∂xk
∂

∂xl

)
=
xi

r

∂r

∂xk
gklgil =

∑
k

xk

r

xk

r
= 1 = g

(
∂r
∣∣
q
, ∂r
∣∣
q

)
.

Hence ∂r
∣∣
q
−∇r = 0.

Coro 9.1. In normal coordinates {x1, · · · , xn} centered at p ∈M
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(1)
∑
j

gijx
j = xi

(2) gim = δim −
∑
j

∂gij
∂xm

xj

(3)
∑
j

∂gij
∂xm

xj =
∑
j

∂gmj

∂xi
xj

(4)
∑
i,j

∂gij
∂xm

xixj =
∑
i,j

∂gmj

∂xi
xixj = 0

(5)
∑
i,j

Γk
ijx

ixj = 0

(6) ∇∂r∂r = 0 over U\{p}.

Proof. (1)

gij
xi

r

∂

∂xj
= ∇r = ∂r =

xi

r

∂

∂xi
.∑

i

gijxi = xj , i.e.
∑
j

gijx
j = xi.

(2)

δim =
∂xi

∂xm
=
∑
j

∂gij
∂xm

xj + gim,

∑
j

∂gij
∂xm

xj = δim − gim = δmi − gmi =
∑
j

∂gmj

∂xi
xj .

(3) ∑
i,j

∂gij
∂xm

xjxi =
∑
i

(δim − gim)xi = xm −
∑
i

gmix
i = 0 =

∑
i,j

∂gmj

∂xi
xjxm.

(4) ∑
i,j

Γk
ijx

ixj =
gkl

2

∑
i,j

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
xixj = 0.

(5)

∇∂r∂r =
∑
i,j

xi

r

(
∂

∂xi

(
xj

r

)
∂

∂xj
+
xj

r
Γk
ij

∂

∂xk

)
=
∑
i,j

xi(δijr
2 − xjxi)

r4
∂

∂xj
= 0.

Thm 9.2. Let (M, g) be a complete Riemannian manifold, p ∈ M,U = M\cut(p) and v ∈
Σ(p)\{0}, then

(1) The differential of expp satisfies

(d expp)tv(v) = γ′v(t),

where v ∈ Ttv(TpM) ∼= TpM,γ′v(t) ∈ Tγ(t)M.
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(2) For any ξ ∈ TpM ∼= Ttv(TpM), we have

g
(
(d expp)tv(v), (d expp)tv(ξ)

)
= g(v, ξ)

In particular,

(1) For any t ∈ [0, 1], we have
∣∣(d expp)tv(v)∣∣ = |v|.

(2) If ξ ⊥ v, then (d expp)tv(v) ⊥ (d expp)tv(ξ).

Proof. (1)

(d expp)tv(v) =
d

ds

∣∣∣∣
s=0

expp(tv, sv) =
d

ds

∣∣∣∣
s=0

γv(t+ s) = γ′v(t).

(2) Consider the variation
α(t, s) = expp(t(v + sξ))

Then its variation field is the Jacobi field

J(t) = α∗

(
∂

∂s

) ∣∣∣∣
b=0

= (d expp)tv(tξ)

with J(0) = 0, J ′(0) = ξ, so

〈J(t), γ′(t)〉 = t〈J ′(0), γ′(0)〉 = t〈ξ, v〉.

Hence the proof is completed.

Prop 9.2. (M, g) is complete, p ∈M,U =M\cut(p).
Let J(t) be the Jacobi field with J(0) = 0, J ′(0) = a, then in normal coordinates (x1, · · · , xm),

J(t) = α∗

(
∂

∂s

) ∣∣∣∣
s=0

=

n∑
i=1

tai
∂

∂xi

∣∣∣∣
γv(t)

.

And α(t, s) = expp(t(v + sa)) = (t(v1 + sa1), · · · , t(vn + san)).

Proof. Trivial.

Def 9.2. Define Hf ∈ Γ(M,T ∗M ⊗ TM) as

g(Hf (X), Y ) = (Hess f)(X,Y ).

Prop 9.3. For X ∈ Γ(M,TM),
Hf (X) = ∇X∇f.

In particular, we have
Hr(∂r) = ∇∂r∇r = ∇∂r∂r = 0.

Proof. For any X,Y ∈ Γ(M,TM),

Xg(∇f, Y ) = g(∇X∇f, Y ) + g(∇f,∇Xf).

So
g(∇X∇f, Y ) = X(Y f)− (∇XY )f = (Hess f)(X,Y ) = g(Hf (X), Y ).
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Prop 9.4. Locally,
Hf = gjk∇i∇jfdx

i ⊗ ∂

∂xk
.

Proof. let
Hf =M j

i dx
i ⊗ ∂

∂xj
.

Then by definition,

M l
iglj = g

(
Hf

(
∂

∂xi

)
,
∂

∂xj

)
= ∇i∇jf.

This concludes the desired formula.

Prop 9.5. Let (M, g) be a complete Riemannian manifold, p ∈M,U =M\cut(p) and r is the
radial distance function on U , suppose J is a normal Jacobi field along γv with J(0) = 0, then

(1) For any t ∈ (0, b],
Hr(J(t)) = J ′(t),Hr(γ

′
v(t)) = 0.

(2) In particular, for any W (t) along γ with W (0) = 0,

(Hess r)(J(s),W (s)) = (Iγv)s (J,W ) =

ˆ s

0
〈J ′,W ′〉 −R(J, γ′, γ′,W )dt.

Proof. (1) Suppose J ′(0) = a = ai
∂

∂xi

∣∣∣∣
p

.

In normal coordinates {x1, · · · , xn} centered at p ∈M ,

J(t) = tai
∂

∂xi

∣∣∣∣
γv(t)

.

Then we have

J ′(t) = ∇̂ d
dt
J(t) = ai

∂

∂xi

∣∣∣∣
γv(t)

+ tai∇̂ d
dt

∂

∂xi

∣∣∣∣
γv(t)

=

(
ak + taiΓk

ij

dγjv
dt

)
∂

∂xk

∣∣∣∣
γv(t)

.

Since γv(t) = (tv1, · · · , tvn) and

r(γv(t)) = d(p, γv(t)) =
∣∣exp−1

p (γv(t))
∣∣ = |tv| = t.

So
H (J(t)) =∇J(t)∂r = ∇tai ∂

∂xi

(
xj

r

∂

∂xj

)
=

(
tai

r
− taixixj

r3

)
∂

∂xj
+ tai

xj

r
Γk
ij(γv(t))

∂

∂xk

And since J(t) is normal Jacobi field
So 〈J(t), γ′(t)〉 = t〈a, v〉 = 0.
Hence we have

Hr(J(t)) = ai
∂

∂xj

∣∣∣∣
γv(t)

+ taivjΓk
ij

∂

∂xk

∣∣∣∣
γv(t)

= J ′(t),

Hr(γ
′(t)) =

xixj

t2
Γk
ij(γ(t))

∂

∂xk
= 0.
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(2)
(Hess r)(J(s),W (s)) =〈Hr(J(s)),W (s)〉 = 〈J ′(s),W (s)〉 − 〈J ′(0),W (0)〉

=

ˆ s

0

(
〈J ′(t),W (t)〉

)′
dt

=

ˆ s

0
〈J ′′(t),W (t)〉+ 〈J ′(t),W ′(t)〉dt

=Iγs(J,W )

9.2 Metrics on manifolds with constant sectional curvature
Thm 9.3. Let U be a geodesic ball around p ∈ Snk , r be the radial distance function, q ∈ U and
(x1, · · · , xn) is normal coordinates centered at p, then

gk = dr ⊗ dr + sn2k(r)ĝ,

where ĝ is the induced form by U\{p} → Rn\{0} → Sn−1.

Proof. We set
gc = dr ⊗ dr + sn2k(r)ĝ.

For q ∈ U\{p} and w ∈ TqM , we shall show that

gk(w,w) = gc(w,w).

For w = ∇r = ∂r, we have

gk(w,w) = 1, gc(w,w) = (dr ⊗ dr)(∂r, ∂r) + sn2k(r)ĝ(∂r, ∂r) = 1.

For w ⊥ ∂r
∣∣
q
, (dr)(w) = g(∂r, w) = 0 and so (dr ⊗ dr)(w,w) = 0.

Let b = d(p, q), then

gc(w,w) = sn2k(b)ĝ(w,w) = sn2k(b)
ḡ(w,w)

b2
=

sn2k(b)

b2

∑
i

∣∣wi
∣∣2.

Assume γ : [0, b] → U is a unit-speed geodesic connecting p and q and J is a Jacobi field
along γ with J(0) = 0, J(b) = w.

By proposition 7.37.3, let J(t) = c · snk(t)E(t), then

gk(w,w) = |J(b)|2gk = c2sn2k(b) =
∣∣J ′(0)

∣∣2sn2k(b).
And let J ′(0) = ai

∂

∂xi

∣∣∣∣
p

, therefore

J(b) = (ba1, · · · , ban) = (w1, · · · , wn).

Hence

gk(w,w) =
∑
i

∣∣wi
∣∣2

b2
sn2k(b) = gc(w,w).
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Prop 9.6. Let U be a geodesic ball in Snk around p and r be the radial distance function, then

Hr =
sn′k(r)

snk(r)
πr,

where πr : TqSnk →W ⊂ TqSnk and W is the orthogonal complement of ∂r
∣∣
q
.

In particular,
Hess r = sn′k(r)snk(r)ĝ,

∆r = (n− 1)
sn′k(r)

snk(r)
,

∆r2 = 2 + 2(n− 1)r
sn′k(r)

snk(r)
.

Proof. Consider the parallel vector field E(t) along γ : [0, b] →M with 〈E, γ′〉 ≡ 0, |E| ≡ 1.
Then J(t) = c · snk(t)E(t) is the Jacobi field with J(0) = 0 and J ′(0) = cE(0).
By proposition 9.59.5,

Hr(J(t)) = J ′(t) = c · sn′k(t)E(t), i.e.Hr(E(t)) =
sn′k(t)

snk(t)
E(t).

And by theorem 9.39.3,

(Hess r)(X,Y ) = g(Hr(X), Y ) =
sn′k(t)

snk(t)
g(πr(X), Y ) = sn′k(r)snk(r)ĝ(X,Y )

Moreover, in orthonormal basis
(
E1(t), · · · , En−1(t),

∂
∂r

)
, trπr = n− 1 and so

∆r = trHr = (n− 1)
sn′k(t)

snk(t)
,

∆r2 = 2r∆r + 2g(∇r,∇r) = 2r∆r + 2.

Prop 9.7. Let (M, g) be a complete Riemannian manifold, p ∈M,U =M\cut(p) and r be the
radial distance function on U , if

Hr =
sn′k(r)

snk(r)
πr

holds on U\{p}, then (M, g) has constant sectional curvature k.

Proof. Let γ : [0, b] → U be a unit-speed curve with γ(0) = p, J is a normal Jacobi field with
J(0) = 0, then

J ′ = Hr(J) =
sn′k(r)

snk(r)
J.

So J
snk(t)

is a parallel vector field, let

J

snk(t)
= cE(t).

Similar to the proof of theorem 9.39.3, we have g = dr ⊗ dr + sn2k(r)ĝ = gk.



Chapter 10

Comparison theorem and
applications

10.1 The Rauch comparison theorems and applications
Thm 10.1 (Rauch comparison theorem). Let (M, g), (M̃, g̃) be two Riemannian manifolds and
p ∈M, p̃ ∈ M̃, U =M\cut(p), Ũ = M̃\cut(p̃), 2 ⩽ dimM ⩽ dim M̃ .

Consider unit-speed geodesics γ : [0, l] →M and γ̃ : [0, l] → M̃ , suppose

(1) for any t ∈ [0, l] and any planes Σ ⊂ Tγ(t)M, Σ̃ ⊂ Tγ̃(t)M̃ such that γ′(t) ∈ Σ, γ̃′(t) ∈ Σ̃,

KΣ(γ(t)) ⩽ K̃Σ̃(γ̃(t)).

(2) γ̃(0) has no conjugate point along γ̃
∣∣
[0,l]

.

Then for any two Jacobi fields J, J̃ along γ, γ̃ resp. such that

J(0) = cγ′(0), J̃(0) = cγ̃′(0),
∣∣J ′(0)

∣∣ = ∣∣∣J̃ ′(0)
∣∣∣, g(J ′(0), γ′(0)) = g̃(J̃ ′(0), γ̃′(0)),

we have
∣∣∣J̃(t)∣∣∣ ⩽ |J(t)| for t ∈ [0, l].

Proof. We first assume J(0) = J̃(0) = 0, g(J ′(0), γ′(0)) = g̃(J̃ ′(0), γ̃′(0)) = 0.
Since γ̃ has no conjugate points along γ̃[0,l].
So |J |2

|J̃|2
is well-defined on (0, l] and

lim
t→0

|J |2

|J ′|2
= lim

t→0

〈J, J ′〉〈
J̃ , J̃ ′

〉 = lim
t→0

〈J, J ′′〉+ |J ′|2〈
J̃ , J̃ ′′

〉
+
∣∣∣J̃ ′
∣∣∣2 = 1.

Therefore it suffices to show that |J |2∣∣∣J̃∣∣∣2


′

= 2

∣∣∣J̃∣∣∣2〈J ′, J〉 − 〈J̃ ′, J̃〉|J |2∣∣∣J̃∣∣∣4 ⩾ 0.

We want to show
〈J ′, J〉
|J |2

⩾

〈
J̃ ′, J̃

〉
∣∣∣J̃∣∣∣2 .

87
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For fixed s ∈ (0, l], we assume J(s) 6= 0 and define

Ws(t) =
J(t)

|J(s)|
, W̃s(t) =

J̃(t)∣∣∣J̃(s)∣∣∣ .
Then |Ws(s)| =

∣∣∣W̃s(s)
∣∣∣ = 1 and

〈J ′, J〉
|J |2

=
〈W ′

s,Ws〉
|Ws|2

,
〈J̃ ′, J̃〉∣∣∣J̃∣∣∣2 =

〈W̃ ′
s, W̃s〉∣∣∣W̃s

∣∣∣2 .

Moreover,

〈J ′(t), J(t)〉
|J(t)|2

∣∣∣∣
t=s

= 〈W ′
s(t),Ws(t)〉

∣∣∣∣
t=s

=

ˆ s

0

(
〈W ′

s(t),Ws(t)〉
)′
dt

=

ˆ s

0
〈W ′

s,W
′
s〉 − R(Ws, γ

′, γ′,Ws)dt

〈J̃ ′(t), J̃(t)〉∣∣∣J̃(t)∣∣∣2
∣∣∣∣∣∣∣
t=s

=

ˆ s

0

〈
W̃ ′

s, W̃
′
s

〉
− R

(
W̃s, γ̃

′, γ̃′, W̃s

)
dt

Choose parallel orthonormal frames {e1(t) = γ′(t), e2(t) = Wt(t), · · · , en(t)} along γ and
{ẽ1(t) = γ̃′(t), ẽ2(t) = W̃t(t), · · · , ẽm(t)} along γ̃.

Let
Ws(t) =

n∑
i=1

λi(t)ei(t)

and define a vector field Ṽ along γ̃ with

Ṽ (t) =
n∑

i=1

λi(t)ẽi(t).

Then Ṽ (s) = ẽ2(s) = W̃s(s) and so by corollary 7.77.7,

〈J ′(t), J(t)〉
|J(t)|2

∣∣∣∣
t=s

=

ˆ s

0

〈
Ṽ ′, Ṽ ′

〉
g̃
− R(Ws, γ

′, γ′,Ws)dt

⩾
ˆ s

0

〈
Ṽ ′, Ṽ ′

〉
g
− R̃

(
Ṽ , γ′, γ′, Ṽ

)
dt

⩾
ˆ s

0

〈
W̃ ′

s, W̃
′
s

〉
− R̃

(
W̃s, γ

′, γ′, W̃s

)
dt

For the general cases, let

J(t) = J1(t) + 〈J, γ′(t)〉γ′(t), J̃(t) = J̃1(t) + 〈J̃ , γ̃′(t)〉γ̃′(t).

So
|J |2 = |J1|2 +

∣∣〈J, γ′(t)〉∣∣2, ∣∣∣J̃∣∣∣2 = ∣∣∣J̃1∣∣∣2 + ∣∣∣〈J̃ , γ̃′〉∣∣∣2,
〈J(t), γ′(t)〉 = 〈J(0), γ′(0)〉+ t〈J ′(0), γ′(0)〉 = 〈J̃(0), γ̃′(0)〉+ t〈J̃ ′(0), γ̃′(0)〉 = 〈J̃(t), γ̃′(t)〉.

Hence |J |2 ⩾
∣∣∣J̃∣∣∣2.
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Coro 10.1 (Jacobi field comparison). Let (M, g) be a complete Riemannian manifold p ∈
M,U = M\cut(p), γ : [0, b] → U be a unit-speed geodesic with γ(0) = p and J be any normal
Jacobi field along γ with J(0) = 0.

(1) If the sectional curvature KM ⩽ k, then

|J(t)| ⩾ snk(t)
∣∣J ′(0)

∣∣
for all t ∈ [0, b1], where b1 = b if k ⩽ 0 and b1 = min(πR, b) if k = R−2 > 0.

(2) If the sectional curvature KM ⩾ k, then

|J(t)| ⩽ snk(t)
∣∣J ′(0)

∣∣.
Coro 10.2 (conjugate comparison). Let (M, g) be a Riemannian manifold with sectional cur-
vature KM ⩽ k, then

(1) If k ⩽ 0, then M has no conjugate point.

(2) If k = 1
R2 , then there is no conjugate point on any geodesic shorter than πR.

Proof. (1) See proposition 7.47.4.

(2) Let γ : [0, b] →M be a unit-speed geodesic and J be a nontrivial normal Jacobi field along
γ with J(0) = 0.
By corollary 10.110.1,

|J(t)| ⩾ snk(t)
∣∣J ′(0)

∣∣ = R sin

(
t

R

)∣∣J ′(0)
∣∣.

So if t ∈ (0, πR), then J(t) 6= 0.

Coro 10.3 (metric comparison). Let (M, g) be a Riemannian manifold with dimM = n and
(U, xi) be a geodesic ball for g around some point p ∈M .

Consider the constant sectional curvature metric gk = dr ⊗ dr + sn2k(r)ĝ on U\{p}.

(1) If KM ⩽ k, then for any q ∈ U\{p} and W ∈ TqM ,

g(W,W ) ⩾ gk(W,W ).

Here if k = 1
R2 > 0, we need the condition dg(p, q) < πR.

(2) if KM ⩾ k, then for any q ∈ U\{p} and W ∈ TqM ,

g(W,W ) ⩽ gk(W,W ).

Proof. (1) Since ∂r is a unit vector w.r.t. both gk and g.
So we only consider w ∈ TqM with w ⊥ ∂r.
Consider a unit-speed geodesic γ : [0, b] → U with γ(0) = p, γ(b) = q and Jacobi field J
along γ with J(0) = 0, J(b) =W .
By corollary 10.110.1,

g(W,W ) = |J(b)|2g ⩾ sn2k(b)
∣∣J ′(0)

∣∣2
gp
.

And since γ is also a geodesic for gk
Hence by proposition 7.37.3,

gk(W,W ) = |Jk(b)|2gk = sn2k(b)
∣∣J ′(0)

∣∣2
gk

⩽ g(W,W ).
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Coro 10.4. Let (M, g), (M̃, g̃) be two Riemannian manifold with KM ⩽ KM̃ .
Fix p ∈M, p̃ ∈ M̃ and a linear isometry Φ0 : TpM → Tp̃M̃ .
Suppose 0 < δ < min(injpM, injp̃M̃), then for any curve α : [0, 1] → expp(B(0, δ)) and

α̃ = expp̃ ◦Φ0 ◦ exp−1
p ◦α : [0, 1] → M̃,

we have |α′| ⩾ |α̃′| and so L(α) ⩾ L(α̃).

Proof. Let c(s) = exp−1
p (α(s)) and c̃(s) = exp−1

p̃ (α̃(s)), then

c̃(s) = Φ0(c(s)).

And we have geodesic variants

β(t, s) = expp(tc(s)), β̃(t, s) = expp̃(tc̃(s))

For fixed s0 ∈ [0, 1], consider geodesics γs0(t) = β(t, s0) and γ̃s0(t) = β̃(t, s0).
Then γ′s0(0) = c(s0), γ̃

′
s0(0) = c̃(s0).

Consider their Jacobi fields

Js0(t) = β∗

(
∂

∂s

) ∣∣∣∣
s=s0

, J̃(t) = β̃∗

(
∂

∂s

) ∣∣∣∣
s=s0

.

Then
Js0(0) = 0, J ′

s0(0) = c′(s0), Js0(1) = (d expp)c(s0)(c
′(s0)) = α′(s0)

J̃s0(0) = 0, J̃s0(0) = c̃′(s0), J̃s0(1) = α̃′(s0)

So we have
∣∣J ′

s0(0)
∣∣ = ∣∣∣J̃ ′

s0(0)
∣∣∣ and

〈J̃ ′
s0(0), γ̃

′
s0(0)〉 = 〈c̃′(s0), c̃(s0)〉 = 〈J ′

s0(0), γ
′
s0(0)〉.

Hence |Js0(1)| ⩾
∣∣∣J̃s0(1)∣∣∣, i.e.|α′(s0)| ⩾ |α̃′(s0)|.

Coro 10.5. Let (M, g) be a complete Riemannian manifold and suppose there exist C1, C2 > 0
such that C1 ⩽ KM ⩽ C2.

Let γ be any geodesic in M and l be the distance between two consecutive conjugate points
along γ, then

π√
C2

⩽ l ⩽ π√
C1
.

In particular, expp : B
(
0, π√

C2

)
→M has no critical point.

Proof. Let p, q be the consecutive conjugate points along γ : [0, l] → M and J be the normal
Jacobi field along γ and J(0) = 0.

WLOG, we assume γ is a unit-speed geodesic.
For

(
M̃, g̃

)
= (Sn(r2), gcan), where r2 =

√
C−1
2 , KM ⩽ KM̃ .

Let γ̃ : [0, πr2] → M̃ be a unit-speed geodesic connecting poles and J̃ be a normal Jacobi
field along γ̃ with J̃(0) = 0,

∣∣∣J̃ ′(0)
∣∣∣ = |J ′(0)|.

Since γ̃ has no conjugate point.
So by theorem 10.110.1, |J(t)| ⩾

∣∣∣J̃(t)∣∣∣ for t ∈ (0, πr2), i.e.l ⩾ πr2.

For (M̃, g̃) = (Sn(r1), gcan), where r1 =
√
C−1
1 , KM ⩾ JM̃ .
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Let γ̃ : [0, πr1] → M̃ be a unit-speed geodesic connecting poles and J̃ be a normal Jacobi
field along γ̃ with J̃(0) = 0,

∣∣∣J̃ ′(0)
∣∣∣ = |J ′(0)|.

Suppose l > πr1.
Then γ has no conjugate points.
So by theorem theorem 10.110.1

∣∣∣J̃(t)∣∣∣ ⩾ |J(t)| but J̃(πr1) = 0.
Therefore J(πr1) = 0, contradiction!

Lemma 10.1. Let (M, g) be a complete Riemannian manifold and p ∈M , then for any closed
geodesic γ0 passing p, we have

L(γ0) ⩾ 2d(p, cut(p)).

Moreover, suppose ∃q ∈ cut(p) such that d(p, q) = d(p, cut(p)).

(1) Then either q is conjugate to p along some minimizing geodesic connecting p and q, or there
are exactly two minimizing geodesic γ1, γ2 : [0, b] →M from p to q, such that γ′1(b) = −γ′2(b),
where b = d(p, q).

(2) If in addition that injpM = inj(M), and q is not conjugate to p along any minimizing
geodesic, then there is a closed unit-speed geodesic γ : [0, 2b] →M such that γ(0) = γ(2b) = p
and γ(b) = q where b = d(p, q).

Proof. (1) Suppose q /∈ conj(p) and γ1, γ2 : [0, b] → M are two different minimizing geodesics
from p to q such that γ′1(b) 6= −γ′2(b).
WLOG, let b = 1.
Then there exists w ∈ TqM , such that

〈w, γ′1(1)〉 < 0, 〈w, γ′2(1)〉 < 0.

And since q is a regular value for expp, i.e.d expp is nonsingular at γ′1(0), γ′2(0).
So for small s, there exists smooth curves vi(s) ∈ TpM , such that

vi(0) = γ′i(0), expp(vi(s)) = expq(sw).

Consider the variations
αi(t, s) = expp(tvi(s)).

Then similar to corollary 7.17.1, we have

d

ds

∣∣∣∣
s=0

L(αi(•, s)) =

〈
(αi)∗

(
∂

∂s

) ∣∣∣∣
(1,0)

, γ′i(1)

〉
=
〈(

d expq
)
0
(w), γ′i(1)

〉
=
〈
w, γ′i(1)

〉
< 0

Therefore for small s, L(αi(•, s)) < L(γi) = d(p, q) and v1(s) 6= v2(s).
Hence expp is not bijective in Σ(p), contradiction!

(2) Since injpM = inj(M) = inf
q∈M

injqM .

So d(p, cut(p)) ⩽ d(q, cut(q)), and there are two minimizing geodesics from p to q, say
γ1, γ2 : [0, b] →M, s.t.γ′1(b) = −γ′2(b).
On the other hand p ∈ cut(q), i.e.d(q, cut(q)) ⩽ d(q, p) = d(p, cut(p)).
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Therefore d(q, p) = d(q, cut(q)), i.e.γ′1(0) = −γ′2(0).
Consider γ(t) = γ1 · γ−1

2 , then

γ(0) = γ(2b) = p, γ(b) = q, γ′(0) = γ′1(0) = −γ′2(0), γ′(b) = γ′1(b) = −γ′2(b).

Hence γ is a closed unit-speed geodesic.

Thm 10.2 (Klingenberg’s estimate for injective radius). Let (M, g) be a compact Riemannian
manifold with KM ⩽ C where C > 0, we define

l(M, g) = inf{L(γ)|γ is a smooth closed geodesic in M}

Then inj(M) ⩾ π√
C

or inj(M) = l(M,g)
2 .

Proof. Consider p, q ∈M such that d(p, q) = d(p, cut(p)) = inj(M).
If p, q are conjugate to each other, then by corollary 10.510.5, d(p, q) ⩾ π√

C
.

If q is not a conjugate point to p, then by lemma 10.110.1, there is a closed geodesic γ : [0, 2b] →
M with γ(0) = p, γ(b) = q.

So l(M, g) ⩽ 2b = 2inj(M).
And since every closed geodesic contains a cut point.
Hence inj(M) = l(M,g)

2 .

Exam 10.1. In (S1 × S1, gcan), KM = 0 ⩽ C for any C > 0.
So inj(M) = 2π

2 = π.

10.2 Hessian comparison and Laplacian comparison theomem

Thm 10.3. Let (M, g) and
(
M̃, g̃

)
be two Riemannian manifolds with dimM = dim M̃ ,

p ∈M, p̃ ∈ M̃ and U =M\cut(p), Ũ = M̃\cut (p̃).
Suppose γ : [0, b] → U and γ̃ : [0, b] → Ũ are two unit-speed geodesics with γ(0) = p, γ(b) = q

and γ̃(0) = p̃, γ̃(b) = q̃.
If for any t ∈ [0, b] and any planes Σ ⊂ Tγ(t)M and Σ̃ ⊂ Tγ̃(t)M̃ with γ′(t) ∈ Σ, γ̃′(t) ∈ Σ̃,

the corresponding sectional curvatures satisfy

KΣ(γ(t)) ⩾ K̃Σ̃(γ̃(t)),

Then for any X ∈ TqM, X̃ ∈ Tq̃M̃ with |X| =
∣∣∣X̃∣∣∣ = 1 and X ⊥ γ(b)′, X̃ ⊥ γ̃′(b),

Hess r(X,X) ⩽ Hess r̃
(
X̃, X̃

)
.

In particular, for t ∈ (0, b],

(∆r)(γ(t)) ⩽
(
∆̃r̃
)
(γ̃(t)) .

Moreover, if the identity holds for all t ∈ (0, b], then KΣ(γ(t)) = K̃Σ̃ (γ̃(t)).

Proof. Let (e1(t), · · · , en−1(t), en(t) = γ′(t)) be a parallel orthonormal frame along γ and
(ẽ1(t), · · · , ẽn−1(t), ẽn(t) = γ̃′(t)) be a parallel orthonormal frame along γ̃.

We assume at point γ(b), γ̃(b), 〈X, ei(b)〉 = 〈X̃, ẽi(b)〉 for i = 1, · · · , n− 1.
Let J be the Jacobi field along γ with J(0) = 0, J(b) = X and J̃ be the Jacobi field along

γ̃ with J̃(0) = 0, J̃(b) = X̃.
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Then J(t) ⊥ γ′(t), J̃(t) ⊥ γ̃′(t) for every t ∈ [0, b].

If we write J̃(t) =
n−1∑
i=1

λi(t)ẽi(t), then

X =
n−1∑
i=1

〈X, ei(b)〉ei(b) =
n−1∑
i=1

〈
X̃, ẽi(b)

〉
ei(b) =

n∑
i=1

λi(b)ei(b).

Set Z(t) =
n−1∑
i=1

λi(t)ei(t) along γ.

Then Z(0) = 0, Z(b) = J(b) = Z and

∣∣∣J̃ ′(t)
∣∣∣ = ∣∣∣∣∣

n−1∑
i=1

(λi)′ẽi(t)

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
i=1

(λi)′ei(t)

∣∣∣∣∣ = ∣∣Z ′(t)
∣∣

So by proposition 9.59.5 and corollary 7.77.7,

(Hess r)q(X,X) =Iγ(J, J) ⩽ Iγ(Z,Z)

=

ˆ b

0
(
∣∣Z ′(t)

∣∣2 − R(Z(t), γ′(t), γ′(t), Z(t)))dt

=

ˆ b

0
(
∣∣∣J̃ ′(t)

∣∣∣2 − R(Z(t), γ′(t), γ′(t), Z(t)))dt

⩽
ˆ b

0
(
∣∣∣J̃ ′(t)

∣∣∣2 − R̃(J̃(t), γ̃′(t), γ̃′(t), J̃(t)))dt

=Iγ̃

(
J̃ , J̃

)
= (Hess γ̃)

(
X̃, X̃

)

Coro 10.6. Let (M, g) be a complete Riemannian manifold, p ∈M,U =M\cut(p) and r is the
radial distance function.

(1) If KM ⩽ k, then on U0\{p},

Hr ⩾
sn′k(r)

snk(r)
πr,∆r ⩾ (n− 1)

sn′k(r)

snk(r)
,

where U0 = U if k ⩽ 0 and U0 = U ∩BπR(0) if k = R−2 > 0.
Moreover, if the identity holds on U0\{p}, then g has constant sectional curvature k on
U0\{p}.

(2) If KM ⩾ k, then on U\{p},

Hr ⩽
sn′k(r)

snk(r)
πr,∆r ⩽ (n− 1)

sn′k(r)

snk(r)
.

Moreover, if the identity holds on U\{p}, then g has constant sectional curvature k on
U\{p}.

Proof. The result follows from proposition 9.69.6 and theorem 10.310.3.
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Thm 10.4 (Laplacian comparison theorem). Let (M, g) be a complete Riemannian manifold,
p ∈M,U =M\cut(p) and r is the radial distance function.

If there exists some constant k ∈ R such that

Ric(g) ⩾ (n− 1)kg,

then the following inequality holds on U\{p}

∆r ⩽ (n− 1)
sn′k(r)

snk(r)
.

Moreover, if the identity holds on U\{p}, then (M, g) has constant sectional curvature k.

Proof. Let q ∈ U\{p}, γ : [0, b] → U be a unit-speed minimal geodesic with γ(0) = p, γ(b) = q
and (e1(t), · · · , en−1(t), en(t) = γ′(t)) be a parallel orthonormal frame along γ.

By proposition 9.59.5,

∆r(q) =

n−1∑
i=1

(Hess r)(ei(b), ei(b)) =

n∑
i=1

Iγ(Ji, Ji),

where Ji are Jacobi fields on γ such that Ji(0) = 0, Ji(b) = ei(b).
Let M̃ = Snk , p̃ ∈ M̃, Ũ = Snk\cut(p̃), r̃ be the radial distance function on Ũ , γ̃ : [0, b] → Ũ

be a unit-speed geodesic with γ̃(0) = p̃, γ̃(b) = q̃ and (ẽ1(t), · · · , ẽn(t) = γ̃′(t)) be a parallel
orthonormal frame along γ̃.

Similarly, we define Jacobi fields J̃i along γ̃ such that J̃i(0) = 0, J̃i(b) = ei(b), then

∆̃r̃(q̃) =

n−1∑
i=1

(Hess γ̃)(ẽi(b), ẽi(b)) =

n−1∑
i=1

Ĩ
(
J̃i, J̃i

)
And by proposition 9.69.6, J̃i(t) = f(t)ẽi(t) where f(t) = snk(t)

snk(b)
, so

∆̃r̃(q̃) =

n−1∑
i=1

ˆ b

0

(∣∣∣J̃ ′
i(t)
∣∣∣2 − R̃

(
J̃i(t), γ̃

′(t), γ̃′(t), J̃i(t)
))

dt = (n− 1)

ˆ b

0

(∣∣f ′(t)∣∣− kf2(t)
)
dt

We set Zi = f(t)ei(t), by corollary 7.77.7,

∆r =

n−1∑
i=1

Ir(Ji, Ji) ⩽
n−1∑
i=1

Ir(Zi, Zi)

=
n−1∑
i=1

ˆ b

0

(∣∣Z ′
i(t)
∣∣2 −R(Zi(t), γ

′(t), γ′(t), Zi(t))
)
dt

=
n−1∑
i=1

ˆ b

0

(∣∣f ′(t)∣∣2 − |f(t)|2R(ei(t), γ′(t), γ′(t), ei(t))
)

=

ˆ b

0
(n− 1)

∣∣f ′(t)∣∣2dt− ˆ b

0
f2Ric(γ′(t), γ′(t))

⩽(n− 1)

ˆ b

0
(
∣∣f ′(t)∣∣2 − k|f(t)|2)dt = ∆̃r̃(q̃)

Moreover, if ∆r = (n− 1)
sn′k(r)
snk(r)

, then

∂r(∆r) +
(∆r)2

n− 1
+ (n− 1)k = 0.
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On the other hand, by Bochner formula,

0 =
1

2
∆|∇r|2 = |Hess r|2 +Ric(∇r,∇r) + ∂r∆r ⩾ ∂r(∆r) + |Hess r|2 + (n− 1)k.

So we have
(∆r)2

n− 1
⩾ |Hess r|2.

And by Cauchy-Scharwz inequality,

(∆r)2 ⩽ (n− 1)|Hess r|2.

Since

g(g, dr ⊗ dr) = |dr|2 = 1, g(Hess r, dr ⊗ dr) = Hess r(∂r, ∂r) = 0.

Therefore we obtain∣∣∣∣Hess r − sn′k(r)

snk(r)
(g − dr ⊗ dr)

∣∣∣∣2 = |Hess r|2 + (n− 1)
sn′k(r)

snk(r)
− 2

sn′k(r)

snk(r)
∆r = 0.

Hence
Hess r =

sn′k(r)

snk(r)
(g − dr ⊗ dr) = sn′k(r)snk(r)ĝ.

Coro 10.7. Let (M, g) be a complete Riemannian manifold with nonnegative Ricci curvature,
p ∈M,U =M\cut(p) and r is the radial distance function, then on U\{p},

∆r ⩽ n− 1

r
,∆r2 ⩽ 2n.

Proof. directly follows from the Laplacian comparison theorem.

Lemma 10.2 (Ricatti comparison principle). If f : (0, b) → R is a smooth function satisfying
f(t) = 1

t +O(1) and for some k > 0 with b ⩽ π√
k
,

f ′ + f2 + k ⩽ 0,

then for any t ∈ (0, b),

f(t) ⩽ sn′k(t)

snk(t)
.

Proof. Let fk(t) =
sn′k(t)
snk(t)

.
Then fk(t) = 1

t +O(1) and
f ′k + f2k + k = 0.

Consider a smooth function F : (0, b) → R such that F (t) = 2 log(t) +O(1) and

F ′ = f + fk.

Since
d

dt

(
eF (f − fk)

)
= eF (f ′ − f ′k + f2 − f2k ) ⩽ 0.

So eR(f − fk) is decreasing and

lim
t→0

eF (t)(f(t)− fk(t)) = 0.

Hence f(t) ⩽ fk(t) for t ∈ (0, b).
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Lemma 10.3. Let (M, g) be a Riemannian manifold, (U, xi) be a geodesic ball chart around a
point p ∈M with normal coordinates {xi} and r be the radial distance function, then on U\{p},

∆r = ∂r log
(
rn−1

√
det g

)
.

Moreover, for unit-speed geodesic γ : [0, b] → U with γ(0) = p, let f(t) = (∆r)(γ(t)), then

f(t) =
n− 1

t
+O(1).

Proof. In normal coordinates (x1, · · · , xn), by corollary 4.44.4 and corollary 9.19.1,

∆r =
1√

det(g)

∂

∂xi

(
gij
√
det(g)

∂r

∂xj

)
=

1√
det(g)

∂

∂xi

(
gij
√

det(g)
xj

r

)
=

1√
det(g)

∂

∂xi

(
xi

r

√
det g

)
=
∑
i

∂

∂xi

(
xi

r

)
+

1√
det(g)

∑
i

xi

r

∂

∂xi

(√
det(g)

)
=
n− 1

r
+

1√
det(g)

∂r
√

det(g) = ∂r log
(
rn−1

√
det g

)
Let γ′(0) = v, then

r(γ(t)) =
∣∣exp−1

p (γ(t))
∣∣ = |tv| = t,

∂r
∣∣
γ(t)

= xi

r
∂
∂xi

∣∣
γ(t)

= tvi

t
∂
∂xi

∣∣
γ(t)

= γ′(t).

So
f(t) =

n− 1

r(γ(t))
+

d

dt
log
√

det(g) =
n− 1

t
+

1

2
gij
∂gij
∂xk

dγk

dt

Alternative proof of Laplacian comparison theorem. By Bochner formula,

0 =
1

2
∆|∇r| = |Hess r|2 +Ric(∇r,∇r) + ∂r∆r ⩾ ∂r∆r + |Hess r|2 + (n− 1)k.

And by Cauchy-Scharwz inequality,

(∆r)2 ⩽ (n− 1)|Hess r|2.

So
∂r(∆r) +

(∆r)2

n− 1
+ (n− 1)k ⩽ 0.

For any unit-speed geodesic γ : [0, b] → U with γ(0) = p, let

f(t) =
(∆r)(γ(t))

n− 1
.

Then by lemma 10.310.3 and Ricatti comparison principle,

f(t) ⩽ sn′k(t)

snk(t)
, i.e.∆r ⩽ (n− 1)

sn′k(r)

snk(r)
.
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10.3 Volume comparison theorems and applications
Def 10.1. The metric ball of radius δ is defined as

B(p, δ) = {q ∈M |d(p, q) < δ}.

Lemma 10.4. Let (M, g) be a complete and connected manifold, p ∈M , then for any δ > 0,

expp(B(0, δ) ∩ Σ(p)) ⊂ B(p, δ) ⊂ expp(B(0, δ) ∩ Σ(p)) ∪ cut(p).

In particular, under the trivialization map

R+ × Sn−1 Φ−−→ Rn\{0} ∼= TpM\{0} → B(p, δ)\{p},

where Φ(ρ, ω) = ρω, we have

Volg(B(p, δ)) =

ˆ
Sn−1

ˆ δ

0
χΣ(p)

√
det(g) expp(Φ(ρ, ω))ρ

n−1dρdvolSn−1

Proof. Since cut(p) is of measure zero, so

Volg(B(p, δ)) =Volg(expp(B(0, δ) ∩ Σ(p)))

=

ˆ
B(0,δ)∩Σ(p)

exp∗p(dvolg)

=

ˆ
B(0,δ)

χΣ(p) exp
∗
p(dvolg)

=

ˆ
Sn−1

ˆ δ

0
χΣ(p)

√
det(g) expp(Φ(ρ, ω))ρ

n−1dρdvolSn−1

Coro 10.8. Let p ∈ Sn
k .

(1) If k ⩽ 0, then for any δ > 0,

Volgk(B(p, δ)) =

ˆ
Sn−1

ˆ δ

0
snn−1

k (ρ)dρdvolSn−1 .

(2) If k = R−2 > 0, then for any δ > 0,

Volgk(B(p, δ)) =

ˆ
Sn−1

ˆ δ

0
χB(0,πR) · snn−1

k (ρ)dρdvolSn−1 .

Proof. directly follows from lemma 10.410.4.

Lemma 10.5. Let (M, g) be a complete Riemannian manifold, (U, xi) be a geodesic ball chart
of radius b with normal coordinates {xi}.

For each fixed ω ∈ Sn−1, the volume density ratio is defined as

λ(ρ, ω) =
ρn−1

√
det(g) ◦ expp(Φ(ρ, ω))

snn−1
k (ρ)

.

(1) If KM ⩽ k, then λ(ρ, ω) is increasing in ρ ∈ (0, b0), where

b0 =

{
b k ⩽ 0

min{b, πR} k = 1
R2

Moreover, lim
ρ→0

λ(ρ, ω) = 1.
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(2) If KM ⩾ k or Ric(g) ⩾ (n−1)kg, then λ(ρ, ω) is decreasing in ρ ∈ (0, b) and lim
ρ→0

λ(ρ, ω) = 1.

Proof. By lemma 10.310.3 and corollary 10.610.6,

∂r log
(
rn−1

√
det(g)

)
= ∆r ⩾ (n− 1)

sn′k(r)

snk(r)
= ∂r(log

(
snn−1

k (r)
)
).

So along each radial geodesic γ = expp(Φ(•, ω)),

d

dt
(log(λ(t, ω))) =

d

dt

(
log

(
rn−1

√
det(g)

snn−1
k (r)

)
◦ γ(t)

)
⩾ 0.

Hence λ(ρ, ω) is increasing in ρ ∈ (0, b0).
And when ρ→ 0,

ρ

snk(ρ)
→ 1,

√
det(g) → 0, i.e.λ(ρ, ω) → 1.

The proof of (2) is similar.

Lemma 10.6. Let f : [0,+∞) → [0,+∞) and g : [0,+∞) → (0,+∞) be two integrable
functions, if

λ(t) =
f(t)

g(t)
: [0,+∞) → [0,+∞)

is nonincreasing, show that

F (t) =

´ t
0 f(τ)dτ´ t
0 g(τ)dτ

: [0,+∞) → [0,+∞)

is nonincreasing.
Moreover, if there exists 0 < t1 < t2 such that

F (t1) = F (t2),

show that λ(t) ≡ λ(t1) for all t ∈ [0, t2].

Proof. Since for 0 ⩽ τ ⩽ t,
f(τ)

g(τ)
⩾ f(t)

g(t)
.

So

F (t) =

´ t
0 f(τ)dτ´ t
0 g(τ)dτ

⩾
´ t
0 λ(t)g(τ)dτ´ t

0 g(τ)dτ
= λ(t).

And for t ⩽ τ ⩽ s,
f(τ)

g(τ)
⩽ f(t)

g(t)
.

Therefore

F (s) =

´ s
0 f(τ)dτ´ s
0 g(τ)dτ

⩽
´ t
0 f(τ)dτ + λ(t)

´ s
t g(τ)dτ´ t

0 g(τ)dτ +
´ s
t g(τ)dτ

⩽
´ t
0 f(τ)dτ + F (t)

´ s
t g(τ)dτ´ t

0 g(τ)dτ +
´ s
t g(τ)dτ

= F (t).

Hence F (t) is nonincreasing.
And assume there exists 0 < t1 < t2 such that

F (t1) = F (t2),

then f(τ) = λ(t1)g(τ), i.e.λ(t) = λ(t1) for every τ ∈ [0, t2].
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Thm 10.5 (Bishop-Gromov). Let (M, g) be a complete Riemannian manifold with

Ric(g) ⩾ (n− 1)kg

for some k ∈ R.
Suppose p ∈M,B(p, δ) is a metric ball and gk is metric with sec ≡ k on B(p, δ)\{p}.
Then the volume ratio

Volg(B(p, δ))

Volgk(B(p, δ))

is nonincreasing for δ ∈ R+ and

lim
δ→0

Volg(B(p, δ))

Volgk(B(p, δ))
= 1.

In particular,

Volg(B(p, δ)) ⩽ Volgk(B(p, δ)),

Moreover, if there exist 0 < δ1 < δ2 such that

Volg(B(p, δ1))

Volgk(B(p, δ1))
=

Volg(B(p, δ2))

Volgk(B(p, δ2))
,

then
Volg(B(p, δ)) = Volgk(B(p, δ))

for any δ ∈ [0, δ2] and g has constant sectional curvature k on B(p, δ2).

Proof. If k ⩽ 0, by lemma 10.410.4 and corollary 10.810.8,

Volg(B(p, δ))

Volgk(B(p, δ))
=

1

vol(Sn−1)

ˆ
Sn−1

´ δ
0 χΣ(p)

√
det(g) ◦ expp(Φ(ρ, ω))ρn−1dρ´ δ

0 snn−1
k (ρ)dρ

dvolSn−1 .

By lemma 10.510.5 and lemma 10.610.6, it is nonincreasing.
If k = R−2 > 0, then

Volg(B(p, δ))

Volgk(B(p, δ))
=

1

vol(Sn−1)

ˆ
Sn−1

´ δ
0 χΣ(p)

√
det(g) ◦ expp(Φ(ρ, ω))ρn−1dρ´ δ

0 χB(0,πR) · snn−1
k (ρ)dρ

dvolSn−1 .

By Myers’ theorem, diam(M, g) ⩽ πR, i.e. Σ(p) ⊂ B(0, πR).
So the volume ratio is nonincreasing.
Assume there exist 0 < δ1 < δ2 such that

Volg(B(p, δ1))

Volgk(B(p, δ1))
=

Volg(B(p, δ2))

Volgk(B(p, δ2))
.

If k ⩽ 0, by lemma 10.610.6, for any ρ ∈ (0, δ2),

χΣ(p)

√
det(g) ◦ expp(Φ(ρ, ω))ρn−1

snn−1
k (ρ)

≡ 1.

So B(0, δ2) ⊂ Σ(p).
By lemma 10.310.3 and Laplacian comparison theorem,

∆r = (n− 1)
sn′k(r)

snk(r)
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and so g has constant sectional curvature k on B(p, δ2).
Suppose k = R−2 > 0, if δ2 ⩽ πR, then for ρ ∈ (0, δ2),

χΣ(p)

√
det(g) ◦ expp(Φ(ρ, ω))ρn−1

χB(0,πR) · snn−1
k (ρ)

≡ 1

So B(0, δ2) ⊂ Σ(p) and so g has constant sectional curvature k on B(p, δ2).
If δ2 > πR, then

Volg(B(p, δ2)) = Volg(B(p, πR)),Volgk(B(p, δ2)) = Volgk(B(p, πR)).

Hence we obtain the same conclusion.

Thm 10.6 (Günther). Let (M, g) be a complete Riemannian manifold with

sec(g) ⩽ k

for some k ∈ R.
Suppose p ∈M,B(p, δ) is a metric ball and gk is metric with sec ≡ k on B(p, δ)\{p}.
Then the volume ratio

Volg(B(p, δ))

Volgk(B(p, δ))

is nondecreasing for δ ∈ R+ and

lim
δ→0

Volg(B(p, δ))

Volgk(B(p, δ))
= 1.

In particular,
Volg(B(p, δ)) ⩾ Volgk(B(p, δ)),

Moreover, if there exist 0 < δ1 < δ2 such that

Volg(B(p, δ1))

Volgk(B(p, δ1))
=

Volg(B(p, δ2))

Volgk(B(p, δ2))
,

then
Volg(B(p, δ)) = Volgk(B(p, δ))

for any δ ∈ [0, δ2] and g has constant sectional curvature k on B(p, δ2).

Proof. Similar to theorem 10.510.5.

Coro 10.9. Let (M, g) be a complete Riemannian manifold, p ∈ M , B(p, δ) be the metric
ball centered at p with radius δ and gk be the metric with constant sectional curvature k on
B(p, δ)\{p}.

If Ric(g) ⩾ (n− 1)kg, then for any 0 ⩽ δ1 < min(δ2, δ3) ⩽ max(δ2, δ3) < δ4,

Volg(B(p, r4))−Volg(B(p, r3))

Volg(B(p, r2))−Volg(B(p, r1))
⩽ Volgk(B(p, r4))−Volgk(B(p, r3))

Volgk(B(p, r2))−Volgk(B(p, r1))

Proof. Let
f(r) =

Volg(B(p, r))

Volgk(B(p, r))
, h(r) = Volgk(B(p, r)).

By Bishop-Gromov theorem, f(r) is nonincreasing and lim
r→0

f(r) = 1.
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If r3 ⩾ r2, then

f(r4)h(r4)− f(r3)h(r3)

h(r4)− h(r3)
⩽ f(r3) ⩽

f(r2)h(r2)− f(r1)h(r1)

h(r2)− h(r1)
.

If r3 < r2, then since

f(r4)h(r4)− f(r2)h(r2)

h(r4)− h(r2)
⩽ f(r2)h(r2)− f(r3)h(r3)

h(r2)− h(r3)
⩽ f(r3)h(r3)− f(r1)h(r1)

h(r3)− h(r1)
,

we have
f(r4)h(r4)− f(r3)h(r3)

h(r4)− h(r3)
⩽ f(r2)h(r2)− f(r1)h(r1)

h(r2)− h(r1)
.

Hence we obtain the desired formula.

Prop 10.1 (Gromov). Let (M, g) be a complete Riemannian manifold with Ric(g) ⩾ (n− 1)kg
for some constant k > 0, then

Volg(M) ⩽ Volgk

(
Sn
(

1√
k

))
.

If the identity holds, then (M, g) is isometric to
(
Sn
(

1√
k

)
, gcan

)
.

Proof. Let k = R−2.
Then by Myers’ theorem, diam(M, g) ⩽ πR.
So for any p ∈M,Σ(p) ⊂ B(0, πR) and therefore

Volg(B(p, πR)) = Volg(M),

where B(p, πR) is a metric ball in M .
And since

Volgk(S
n(R)) = Volgk(B(p, πR)).

Hence by Bishop-Gromov theorem,

Volg(M) ⩽ Volgk(S
m(R)).

Moreover, if the identity holds, then g has constant sectional curvature on B(p, πR).
Since B(p, πR) =M .
So (M, g) has constant sectional curvature k.
Suppose π : Sn−1(R) →M is the universal covering, then

Volg(M) = |π1(M)| ·Volgk(S
n(R)).

Hence |π1(M)| = 1, i.e.(M, g) is isometric to (Sn(R), gcan).

There is a generalized quantitive rigidity theorem.

Thm 10.7 (Cheeger-Colding). For any integer n ⩾ 2, there exists δ(n) ∈ (0, 1) such that if
(M, g) is a compact Riemannian manifold with Ric(g) ⩾ (n− 1)g and

Volg(M) ⩾ (1− δ(n))Vol(Sn, gcan),

then M is diffeomorphic to Sn.

Proof. This is difficult and need some analytic tools so we are not going to prove it.
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Thm 10.8 (Myers-Cheng). Let (M, g) be a complete Riemannian manifold with Ric(g) ⩾
(n− 1)kg for some constant k = R−2 > 0.

If diam(M, g) = πR, then (M, g) is isometric to (Sn(R), gcan).

Proof. There exist points p, q ∈M such that d(p, q) = πR.
Then for any δ ∈ (0, πR), B(p, δ) ∩B(q, πR− δ) = ∅.
And since for any x, y ∈ M , Volg(B(x, πR)) = Volg(M),Volgk(B(x, πR)) = Volgk(Sn(R)),

and Volgk(B(p, δ)) + Volgk(B(q, πR− δ)) = volgk(Sn(R)).
So by Bishop-Gromov theorem,

Volg(M) ⩾Volg(B(p, δ)) + Volg(B(q, πR− δ))

⩾Volgk(B(p, δ)) · Volg(B(p, πR))

Volgk(B(p, πR))
+ Volgk(B(q, πR− δ)) · Volg(B(q, πR))

Volgk(B(q, πR))

=Volg(M)

Therefore for any δ ∈ (0, πR),

Volg(B(p, δ))

Volgk(B(p, δ))
=

Volg(B(p, πR))

Volgk(B(p, πR))
=

Volg(M)

Volgk(Sn(R))
.

Let δ → 0, we deduce Volg(M) = Volgk(Sn(R)).
By proposition 10.110.1, (M, g) is isometric to (Sn(R)), gcan).

Thm 10.9. Let (M, g) be a compact orientable Riemannian manifold with Ric(g) ⩾ λg, λ > 0.

(1) (Lichnerowicz)The first nonzero eigenvalue λ1 of ∆ = dd∗ + d∗d satisfies

λ1 ⩾
n

n− 1
λ.

(2) (Obata)If λ1 = n
n−1λ, then (M, g) is isometric to

(
Sn
(√

n−1
λ

)
, gcan

)
.

Proof. (1) Suppose f is a nonzero eigenfunction,i.e. ∆gf = −∆f = −λ1f .
Then by Bochner formula, Cauchy-Scharwz inequality and divergence theorem,

0 =

ˆ
M

1

2
∆g|∇f |2 =

ˆ
M

|Hess f |2 +Ric(∇f,∇f) + g(∇∆gf,∇f)

⩾
ˆ
M

(∆gf)
2

n
+ (λ− λ1)|∇f |2

=−
ˆ
M

λ1
n
f∆gf + (λ− λ1)|∇f |2

=

ˆ
λ1
n
|∇f |2 + (λ− λ1)|∇f |2

Hence λ1 ⩾ n
n−1λ.

(2) If λ1 = n
n−1λ, then

1

2
∆g|∇f |2 ⩾ −λ1f

n
∆gf + (λ− λ1)|∇f |2 = − λ

n− 1

(
f∆gf + |∇f |2

)
.

And since 1
2∆gf

2 = f∆gf + |∇f |2, we obtain

1

2
∆g

(
|∇f |2 + λ

n− 1
f2
)

⩾ 0,
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which implies |∇f |2 + λ
n−1f

2 is constant.
WLOG, we assume sup f2 = 1, since ∇f = 0 at the extremal point, we deduce

|∇f |2 + λ

n− 1
f2 =

λ

n− 1
, sup f = 1, inf f = −1.

Let f(p) = 1, f(q) = −1, γ be a unit-speed minimal geodesic from p to q and u(t) = f(γ(t)).
Then outside the measure zero set V = {x ∈M |f2(x) = 1}, one has

|u′(t)|√
λ

n−1(1− u2)
⩽ |∇f |√

λ
n−1(1− f2)

= 1.

So integral over [0, l], we have
ˆ l

0

|u′(t)|√
λ

n−1(1− u2)
dt =

√
n− 1

λ
π ⩽ l ⩽ d.

Hence by theorem 10.810.8, (M, g) ∼=
(
Sn
(√

n−1
λ

)
, gcan

)
.

Thm 10.10 (Bishop-Yau). Let (Mn, g) be a complete non-compact Riemannian manifold
Ric(g) ⩾ 0, then the volume growth of (M, g) satisfies

cnVol(B(p, 1))r ⩽ Volg(B(p, r)) ⩽ Vol(B(p, r)) =
Vol(Sn−1)

n
rn

for some constant cn = c(n, r) > 0 depending only on n and large r.

Proof. Let x ∈ ∂B(p, 1 + r), then

B(p, 1) ⊂ B(x, 2 + r)\B(x, r), B(x, r) ⊂ B(p, 1 + 2r).

So by corollary 10.910.9,

Volg(B(p, 1)) ⩽Volg(B(x, 2 + r))−Volg(B(x, r))

⩽Vol0(B(x, 2 + r))−Vol0(B(x, r))

Vol0(B(x, r))
Volg(B(x, r))

⩽(r + 2)n − rn

rn
Vol(B(x, r))

⩽ C̃n

r
Vol(B(p, 1 + 2r))

Prop 10.2. Let (Mn, g) be a complete Riemannian manifold with Ric(g) ⩾ 0, if

lim
r→∞

Volg(B(p, r))

rn
⩾ Vol(Sn−1)

n
,

then (M, g) is isometric to (Rn, gcan).
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Proof. By Bishop-Gromov theorem, the volume ratio

Volg(B(p, r))

Volg0(B(p, r))

is nonincreasing and
lim
r→0

Volg(B(p, r))

Volg0(B(p, r))
= 1.

And since

Volg0(B(p, r)) =

ˆ r

0
Volg0(∂B(p, x))dx = Vol(Sn−1)

ˆ r

0
xn−1dx =

rn

n
Vol(Sn−1).

So we obtain
lim
r→∞

Volg(B(p, r))

Volg0(B(p, r))
⩾ 1.

Therefore for every r > 0,
Volg(B(p, r))

Volg0(B(p, r))
≡ 1.

Hence (M, g) has constant sectional curvature 0 and similar to proposition 10.110.1, we deduce
that |π1(M)| = 1, i.e.(M, g) is isometric to (Rn, gcan).

Prop 10.3. Let (M, g) be a Cartan-Hadamard manifold with Ric(g) ⩽ −kg for some k > 0,
then for any q ∈M ,

Vol(B(p, r)) ⩾ cne
√
kr

Proof. I don’t know how to prove this ):, maybe you can work it out and teach me!

10.4 Cheeger-Gromoll’s splitting theorem
Def 10.2. A geodesic ray is a unit-speed geodesic γ : [0,+∞) →M such that for any s, t > 0,

d(γ(s), γ(t)) = |s− t|.

Lemma 10.7. Let (M, g) be a complete Riemannian manifold, TFAE

(1) M is noncompact

(2) For any p ∈M , there exists a geodesic ray γ : [0,+∞) →M,γ(0) = p.

Proof. (2) ⇒ (1) is trivial.
(1) ⇒ (2): Let {pi} be the points such that d(p, pi) = i and γi = expp(tvi) be the unit-speed

minimal geodesic from p to pi.
By passing to a subsequence, we assume vi → v.
We claim that γ(t) = expp(tv) is a unit speed geodesic ray.
Indeed, for any s, t ⩾ 0 and k > max{s, t}, we have

d(γk(s), γk(t)) = |s− t|.

So by continuity of expp,

d(γ(s), γ(t)) = d(expp(sv), expp(tv)) = lim
k→+∞

d(expp(svk), expp(tvk)) = |s− t|.
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Def 10.3. Let γ : [0,+∞) →M be a geodesic ray starting from p ∈M , we define

btγ(x) = d(x, γ(t))− t = d(x, γ(t))− d(γ(0), γ(t)).

Prop 10.4. Given t ∈ [0,+∞), the function btγ :M → R has the following properties:

(1) For any fixed x ∈M, b+γ is nonincreasing in t.

(2) For any x ∈M and t ⩾ 0,
∣∣btγ(x)∣∣ ⩽ d(x, γ(0)).

(3) For any x, y ∈M and t ⩾ 0,
∣∣btγ(x)− btγ(y)

∣∣ ⩽ d(x, y)

Proof. (1) for t > s ⩾ 0,

btγ(x)− bsγ(x) =d(x, γ(t))− t− d(x, γ(s)) + s

⩽d(γ(t), γ(s)) + s− t

=|t− s|+ s− t = 0

(2) and (3) follows from the triangle inequality.

Def 10.4. The Busemann function w.r.t. a geodesic ray r : [0,+∞) is defined as

bγ(x) = lim
t→+∞

btγ(x).

Prop 10.5. The Busemann function bγ :M → R is Lipschitz continuous with Lip(bγ) ⩽ 1.

Proof. Follows by Ascoli-Arezla theorem.

Def 10.5. Let γ : [0,+∞) →M be a geodesic ray and p ∈M\ Im γ.
According to the proof of lemma 10.710.7, the unit-speed minimal geodesics from p to c(t) is

converges to a geodesic ray γ̃ : [0,+∞) →M with γ̃(0) = p by passing to a subsequence.
Such geodesic ray γ̃ is called the asymptote for γ from p.

Lemma 10.8. Let γ be a geodesic ray and γ̃ is the asymptote for γ from p ∈M , then

(1) bγ (γ̃(t)) = bγ(p)− t.

(2) bγ(x) ⩽ bγ(p) + bγ̃(x).

Proof. (1) Let γi be the unit-speed minimal geodesics from p to c(ti) that converge to γ̃, then

d(p, c(ti))− ti = d(p, σi(s)) + d(σi(s), c(ti)).

So when i→ ∞,
bγ(p) = lim (d(p, γ(ti))− ti)

= lim (d (p, γ̃(s)) + d (γ̃(s), γ(ti))− ti)

=s+ bγ (γ̃(s))

(2) when s→ ∞,
bγ(x) = lim (d(x, γ(s))− s)

⩽ lim (d (x, γ̃(t)) + d (γ̃(t), γ(s))− s)

= lim (d (x, γ̃(t))− t) + bγ(p)

=bγ̃(x) + bγ(p)
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Def 10.6. Let (M, g) be a Riemannian manifold, f ∈ C0(M) and fq is a C2 function defined
in a neighborhood of U of q ∈M .

(1) fq is called a upper barrier function of f at q if

fq(q) = f(q), fq(x) ⩾ f(x), x ∈ U.

(2) We say
∆f(q) ⩽ c

in the barrier sense if for any ε > 0, there exists a upper barrier function fq,ε of f at q such
that

∆fq,ε(q) ⩽ c+ ε.

Prop 10.6. Let (M, g) be a complete noncompact Riemannian manifold with Ric(g) ⩾ 0 and γ
be a geodesic ray starting from p ∈M , then

∆bγ ⩽ 0

in the barrier sense.

Proof. By lemma 10.810.8(2), we only need to prove that ∆bγ(x) ⩽ 0 for x = γ(0).
By Laplacian comparison theorem,

∆btγ(x) = ∆d(x, γ(t)) ⩽ n− 1

d(x, γ(t))
.

And by proposition 10.410.4, btγ is a upper barrier function of bγ .
So for fix x and large t, we deduce ∆bγ ⩽ 0 in the barrier sense.

Def 10.7. A geodesic line is a unit-speed geodesic γ : (−∞,+∞) → M such that for any
s, t ∈ R,

d(γ(s), γ(t)) = |s− t|.

Lemma 10.9. Let (M, g) be a connected, complete, noncompact Riemannian manifold.
If M contains a compact subset K such that M\K has at least two unbounded components,

then M contains a geodesic line passing through K.

Proof. Since M\K has at least two unbounded components.
So there are two unbounded sequences of points {pi} and {qi} in different components such

that any curve from pi to qi passes through K.
Let γi : [−ai, bi] →M be the unit-speed minimal geodesics from pi to qi with γi(0) ∈ K.
Then by passing to a subsequence, γi converges to a geodesic line γ∞.

Lemma 10.10. Let (M, g) be a connected Riemannian manifold, f ∈ C0(M) such that ∆f(x) ⩽
0 in the barrier sense for every x ∈M .

If f has a local minimum at p ∈M , then f is constant on a neighborhood of p.
In particular, f has global minimum if and only if f is constant.

Proof. Suppose p is a local minimum of f and f is not constant on any neighborhood of p.
Then there exists ε > 0 and x ∈ ∂Bε(p) such that f(p) > f(x).
Let (x1, · · · , xn) be an normal coordinate containing B̄ε(p) and x = (ε, 0, · · · , 0), consider

ϕ = x1 − C1((x
2)2 + · · ·+ (xn)2), ψ = eC2φ − 1.
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So for sufficiently large C1, we have ϕ(y) < 0 for every y ∈ ∂Bε(p) with f(y) = f(p) and

∆ψ = (C2
2 |∇ϕ|

2 + C2∆φ)e
C2φ > 0

for sufficiently large C2.
Therefore there exists λ > 0 such that (f − λψ)(y) > f(p) for every y ∈ ∂Bε(p).
Let q be the minimum of f − λψ inside Bε(p).
Consider the upper barrier function fq,δ of f at q for some small δ.
Then fq,δ − λψ is also a upper barrier function of f − λψ at q.
So for sufficiently small δ, we have

∆(fq,δ − λψ) < δ − λ∆ψ < 0.

But q is also a local minimum of fq,δ + λψ, which deduce

∆(fq,δ + λψ)(q) ⩾ 0,

contradiction!
Hence f is constant on a neighborhood of p.

Prop 10.7. Let (M, g) be a complete, noncompact Riemannian manifold Ric(g) ⩾ 0.
If M has a geodesic line, then bγ+ , bγ− :M → R are smooth harmonic function with∣∣∇bγ±∣∣ = 1,Hess bγ± = 0,

where γ± = γ(±t) : [0,+∞) →M .

Proof. Let b(x) = bγ+(x) + bγ−(x), then

b(x) = lim
t→+∞

d(x, γ+(t)) + d(x, γ−(t))− 2t = lim
t→+∞

d(x, γ(s)) + d(x, γ(−s))− 2x ⩾ 0.

And since b(γ(t)) = 0.
By proposition 10.610.6 and lemma 10.1010.10, b(x) ≡ 0.
So by proposition 10.610.6 again, we obtain that bγ+ = −bγ− are harmonic and smooth.
Let f = bγ+ , the Bochner formula shows

1

2
∆|∇f |2 = |Hess f |2 +Ric(∇f,∇f) + g(∇∆f,∇f) ⩾ |Hess f |2 ⩾ 0.

Therefore |∇f |2 is superharmonic.
On the other hand, by proposition 10.510.5, Lip(f) ⩽ 1 and so |∇f | ⩽ 1, for x = γ+(t)

f(x) = lim
s→+∞

d(γ+(t), γ+(s))− s = lim
s→+∞

|t− s| − s = −t

|∇f |(x) = |∇f |
∣∣γ′+(x)∣∣ ⩾ ∣∣〈∇f, γ′+(t)〉∣∣ = 1.

Hence |∇f | ≡ 1,Hess f ≡ 0.

Prop 10.8. Let (M, g) be a complete noncompact Riemannian manifold, suppose f ∈ C∞(M,R)
satisfies

|∇f | = 1,Hess f = 0.

We set N = f−1(0) and h = g
∣∣
N

, then:

(1) (N,h) is totally geodesic in (M, g)
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(2) the map
F : (R×N, dt⊗ dt⊕ h) → (M, g), F (p, t) = expp(t∇pf)

is an isometry.

Proof. Let B be the second fundamental form of the map ι : (N,h) → (M, g).
Since for any X ∈ Γ(N,TN),

〈ι∗∇f, ι∗X〉ĝ = 〈∇f,X〉g = X(f) = 0.

So for any X,Y ∈ Γ(N,TN),

〈B(X,Y ), ι∗∇f〉ĝ =
〈
∇̂X(ι∗Y )− ι∗

(
∇h

XY
)
, ι∗∇f

〉
ĝ

=X 〈ι∗Y, ι∗∇f〉ĝ −
〈
ι∗Y, ∇̂X (ι∗∇f)

〉
ĝ

=− 〈Y,∇X(∇f)〉g = −(Hess f)(X,Y ) = 0

Let ι∗TM = T⊥N ⊕ ι∗(TN) be the orthonormal decomposition.
Then T⊥N = spanR{ι∗∇f}.
Therefore B = 0 ∈ Γ(N,T ∗N ⊗ T ∗N ⊗ T⊥N), i.e.(N,h) is a totally geodesic in (M, g).
Let X = ∇f and γp(t) = expp(tXp).
Since ∇X = 0.
So Ep(t) = Xγp(t) and γ′p(t) are two parallel vector fields along γp with the same initial value

Ep(0) = γ′p(0) = Xp.
Therefore γ′p(t) = X ◦ γp(t), i.e.γp is an integral curve of X.
And since |X| = 1 is a complete vector field.
Thus F is well-defined diffeomorphism.
It remains to prove that F is an isometry.
For v ∈ TpN , let J be the Jacobi field along γp with J(0) = 0 and J ′(0) = v.
By the radial curvature equation corollary 6.16.1,

R(•,∇f,∇f, •) = Hess

(
1

2
|∇f |2

)
(•, •)− (∇∇fHess f) (•, •)−Hess f(∇•∇f, •) = 0

So the Jacobi equation is

J ′′(t) + R(J, γ′p)γ
′
p = J ′′(t) = 0

It implies that J ′(t) is a parallel vector field and so |J ′(1)| = |J ′(0)| = |v|
By the uniqueness of Jacobi field, we deduce

J(t) = tJ ′(t).

On the other hand, J is given by the geodesic variation α(t, s) = expp(t(Xp + sv)) and

J(1) = (d expp)Xp(v) = (dF )pv.

Therefore we have
|(dF )pv| = |J(1)| =

∣∣J ′(1)
∣∣ = |v|.

Hence F is an isometry.

Thm 10.11 (Cheeger-Gromoll’s splitting theorem). Let (M, g) be a complete Riemannian man-
ifold of dimension n with Ric(g) ⩾ 0, if there is a geodesic line in M , then (M, g) is isometric
to (R×N, gR ⊕ gN ) where Ric(gN ) ⩾ 0.
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Proof. It follows by proposition 10.710.7 and proposition 10.810.8.

Coro 10.10. Let (M, g) be a compact Riemannian manifold with Ric(g) ⩾ 0, then

(1) there exist a nonnegative k and a compact Riemannian manifold (N, gN ) with Ric(gN ) ⩾ 0
such that N does not contain a geodesic line and (M, g) ∼=

(
Rk ×N, gRk ⊕ gN

)
.

(2) Iso(M, g) = Iso(Rk)× Iso(N, gN ).

Proof. (1) follows from Cheeger-Gromoll’s splitting theorem

(2) Let F : Rk ×N → Rk ×N be an isometry.
If γ(t) = (γ1(t), γ2(t)) : R → M̃ is a geodesic line, then γ1 and γ2 are geodesic in (Rk, gRk)
and (N, gN ) resp.
And since (N, gN ) has no geodesic line.
So γ2(t) ≡ p0 ∈ N .
Therefore we can find F2(p) ∈ N such that

F : Rk × {p} → Rk × {F2(p)}

since F maps geodesic line to geodesic line.
This implies that F (v, p) = (F1(v, p), F2(p)) and for any (v, p) ∈ Rk ×N , the tangent map
(dF )(v,p) is an isometry that preserves TvRk.
Thus (dF )(v,p) also preserves TpN , i.e. (dF1)v,p

∣∣
TpN

= 0.

Hence F1(v, p) = F1(v) and so Iso(M, g) = Iso(Rk)× Iso(N, gN )

Def 10.8. A subgroup Bn of Iso(Rn) = O(n) ⋊ Rn is called a Bieberbach group it acts freely
on Rn and Rn/Bn is a compact manifold.

Thm 10.12 (Bieberbach). (1) Every Bieberbach group Bn is torsion free and contains Zn as
finite index subgroup.

(2) Every compact quotient of Rn by a discrete group G of isometries of Rn is finitely covered
by a flat torus Rn/Γ.

Proof. The proof need some technology from geometric group theory, go see the paper of Bieber-
bach written in 1911 if you want.

Thm 10.13 (Structure theorem for manifold with Ric ⩾ 0). Let (M, g) be a compact Rieman-
nian manifold with Ric(g) ⩾ 0 and π :

(
M̃, g̃

)
→ (M, g) be its universal covering with the

pullback metric.

(1) There exists some k ⩾ 0 and a compact Riemannian manifold (N, gN ) with Ric(gN ) ⩾ 0

such that
(
M̃, g̃

)
is isometric to (Rk ×N, gRk ⊕ gN ).

(2) The isometry group splits

Iso
(
M̃, g̃

)
∼= Iso(Rk, gRk)× Iso(N, gN ).

(3) There exists a finite normal subgroup G of Iso(N,h), a Bieberbach group Bk and an exact
sequence

0 → G→ π1(M) → Bk → 0.
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Proof. By corollary 10.1010.10,
(
M̃, g̃

)
is isometric to

(
Rk ×N, gRk ⊕ gN

)
, where N does not contain

a geodesic line and Ric(gN ) ⩾ 0, we only need to show that N is compact.
Suppose N is noncompact, by lemma 10.710.7, fix some x0 ∈ N , there exists a geodesic ray

γ : [0,+∞) → N starting from x0.
Since M is compact.
Then there exists a compact subset K̃ ⊂ M̃ such that

Autπ

(
M̃
)
· K̃ = M̃.

Let πRk , πN be the projections of M̃ to Rk and N resp.
Since Autπ

(
M̃
)
is a subgroup of Iso

(
M̃, g̃

)
∼= Iso(Rk, gRk)× Iso(N,h), so we have

Autπ

(
M̃
)
· πRk

(
K̃
)
= Rk,Autπ

(
M̃
)
· πN

(
K̃
)
= N.

Moreover, there exists a sequence {βm} in Autπ

(
M̃
)
, such that

βm(γ(m)) ∈ πN

(
K̃
)
.

By passing to a subsequence, we assume

limβm(γ(m)) = p, lim(dβm)(γ′(m)) = v ∈ TpM.

Let γm : [−m,+∞) → N be the geodesic rays defined by

γm(t) = βm(γ(m+ t)).

Then γm converges to the geodesic line

γ̃ : R → N, σ(t) = expp(tv),

contradiction!
For (3), consider the projection

Autπ

(
M̃
)
→ Iso

(
Rk
)

and let Bk, G be its image and kernel resp.
By construction, Bk, G acts freely and properly on Rk and N resp.
Hence Bk is a Bieberbach group and G is finite since N is compact.

Coro 10.11. Let (M, g) be a compact Riemannian manifold with Ric(g) ⩾ 0 and (M̃, g̃) be its
universal cover.

(1) If M̃ is contractible, then
(
M̃, g̃

)
is isometric to (Rn, gRn) and (M, g) is flat

(2) If
(
M̃, g̃

)
does not contain a geodesic line, then |π1(M)| is finite.

(3) If |π1(M)| is finite, then M̃ is compact and b1(M) = 0.

Proof. (1) Since M̃ splits as Rk ×N with compact N and M̃ is contractible.
So N is contractible, i.e. N is a point.

(2) k = 0 and M̃ = N is compact.
So π1(M) is finite.
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(3) There is a natural surjection

h : π1(M) → H1(M,Z) = Zb1 × T,

where T is a finite abelian group.
Hence b1(M) = 0, and M̃ →M is finite covering, i.e. M̃ is compact.

Prob 10.1. Does there exist a compact Riemannian manifold (M, g) with Ric(g) ⩾ 0, b1(M) = 0
and |π1(M)| = +∞.

Proof. Consider the Hantzsche-Wendt manifold M = T 3/(Z2 × Z2).

So the representation of π1(M) is〈
ab−1, ac−1, ad−1, ae−1, af−1|ad−1ac−1, bd−1bc−1, ae−1be−1, af−1bf−1, cf−1ce−1, df−1de−1

〉
,

where a, b, c, d, e, f are red, blue, green, orange, yellow, purple line resp. , then

H1(M) = 〈ac−1, be−1〉 ∼= Z/4Z× Z/4Z.

Hence M is flat, b1(M) = 0 but |π1(M)| = +∞.

Remark 10.1. Hantzsche-Wendt manifold is the only closed flat 3-manifold with b1(M) = 0.

Coro 10.12. Let (M, g) be a compact Riemannian manifold with Ric(g) ⩾ 0, if there exists
p ∈M such that Ric(g)(p) > 0, then |π1(M)| is finite and b1(M) = 0.

Proof. Let
(
M̃, g̃

)
be the universal covering of (M, g).

If
(
M̃, g̃

)
splits as

(
Rk ×N, gRk ⊕ gN

)
with k > 0, then Ric (gRk) = 0, i.e.Ric(g) = 0, which

is impossible.
Hence M̃ = N is compact, i.e. |π1(M)| is finite and b1(M) = 0.

Coro 10.13. Let (M, g) be a compact Riemannian manifold with Ric(g) ⩾ 0, then

b1(M) ⩽ dimM.

If b1(M) = dimM , then M is flat.

Proof. By theorem 6.46.4, b1(M) ⩽ dimM .
If b1(M) = dimM , then there are n linearly independent parallel 1-forms.
So for any p ∈M , there exists a parallel local frame on a neighborhood of p.
Hence M is flat.

Coro 10.14. S3 × S1 has no Ricci flat metric.

Proof. Suppose S3 × S1 has a Ricci-flat metric.
Since the universal covering M̃ of S3 × S1 is homeomorphic to S3 × R.
So
(
M̃, g̃

)
must split as (N × R, h⊕ gR), where N is simply connected and Ric(h) = 0.

And by theorem 1.41.4, (N,h) is isometric to
(
R3, gR3

)
, contradiction!



Appendix A

Convention of tensor calculus

The reason why I write this appendix is that many people asked me about the rules and
notations of tensor calculus and sometimes I feel confused by these notations too. So I think
should write a “axiom system” of tensor calculus that is true most of the time. It may be not
very rigorous(actually, it is a little bit ridiculous) but it is helpful if you are not familiar with
these calculus I think.

By the way, If you still feel confused while reading this, feel free to contact me, I will try
my best to answer your question and so that I can know where is unclear and need to improve.

A.1 General tensor calculus
Def A.1. Index is a letter that can take a value in a given finite set(mostly the integer 1 ∼ n).

Def A.2. A symbol with some upper and lower indices are called tensor:

Aij···
kl···.

The tensor with p upper indices and q lower indices is said to be of type (p, q).
The total number of indices is called the degree of the tensor, e.g. a type-(p, q) tensor has

degree p+ q.
If the definition of indices has m elements totally, then we say the tensor is m-dimensional.

Def A.3. A term is the multiplication of some tensors, where these tensors may share the same
indices.

Def A.4. Some terms connected by ‘+’ is called a tensor expression.
Two expressions connected by ‘=’ is called a tensor equation.

Axiom A.1. The indices are replaceable in the tensor expression.

Exam A.1. An example of a correct change is:

AiBk
jCkl +Di

jEl → AsBt
jCtl +Ds

jEl,

whereas an erroneous change is:

AiBk
jCkl +Di

jEl 6→ AsBk
jCtl +Di

jEl

since ‘s’ does not fully replace ‘i’ and ‘t’ does not fully replace ‘k’.

Axiom A.2. In one term, the same index symbol can only appear once as an upper or lower
index respectively.

112
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Exam A.2.
Aj

ikB
jk
ij

is incorrect since there are two ‘i’ in the lower index and two ‘j’ in the upper index.

Def A.5. The index that appears as upper and lower index both is called dummy(or summa-
tion) index.

The index that only appears once in the term is called free index.

Axiom A.3. A term with p free upper indices and q free lower indices can be seen as a type-(p, q)
tensor.

Exam A.3.
Ak

iB
iCj

k

Can be regarded as a (1, 0)-tensor Dj.

Axiom A.4. The free indices in a tensor expression always appear in the same (upper or lower)
position throughout every term, and in a tensor equation the free indices are the same on each
side.

Exam A.4.
AiBk

jCkl +Di
lEj = T i

jl

is legal, and as for an erroneous expression:

AiBk
jCkl +Dk

ijE
l.

While j is a free lower index in both terms, the position of ‘i’,‘l’ are wrong and ‘k’ is dummy
in the first term but free in the second term.

So far, all the things that we defined are very abstract. Thus, we now try to give you the
specific meaning of tensor.

Axiom A.5. If we take a specific value for every index of a tensor, the result is in a given
R-module.

Axiom A.6. Free indices can freely choose a value in its domain and the dummy indices should
be summed over its domain.

Exam A.5.
AiB

i ≡
∑
i

AiB
i.

The summation may occur more than once within a term:

Ak
iB

iCj
k ≡

∑
i

∑
k

Ak
iB

iCj
k.

Axiom A.7. A tensor equation of dimension m with n free indices represents mn real-value
equations: each free index takes on every value of the definition.

Exam A.6. Let the definition of indices be {0, 1, 2, 3}, then the tensor equation

AiBk
jCkl +Di

jEl = T i
jl

Then since there are three free indices (i, j, l), there are 43 = 64 real-value equations.
In particular, here are three of them:

A0B0
1C00 +A0B1

1C10 +A0B2
1C20 +A0B3

1C30 +D0
1E0 = T 0

10,

A1B0
0C00 +A1B1

0C10 +A1B2
0C20 +A1B3

0C30 +D1
0E0 = T 1

00,

A1B0
2C02 +A1B1

2C12 +A1B2
2C22 +A1B3

2C32 +D1
2E2 = T 1

22.
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Def A.6. Kronecker delta is a type-(1, 1) tensor:

δji :=

{
1 i = j

0 i 6= j

Prop A.1.
δjiA

i = Aj

δjiBj = Bi

Proof.
δjiA

i =
∑
i

δjiA
i = Aj .

δjiBj =
∑
j

δjiBj = Bi.

Def A.7. For a (2, 0)-tensor Aij , its inverse Aij is a (0, 2)-tensor such that

AijA
jk = δki .

A.2 Ricci calculus
Def A.8. Given an n-dimensional manifold M , we assume the the definition of indices is
{1, · · · , n}.

For a element T ∈ Γ(M, (⊗pTM)⊗ (⊗qT ∗M)), we can define a (p, q)-tensor:

T
i1···ip
j1···jq = T

(
∂

∂xi1
, · · · , ∂

∂xip
, dxj1 , · · · , dxjq

)
.

Prop A.2. For some elements T1, · · · , Tn ∈ Γ(M, (⊗•TM) ⊗ (⊗•T ∗M)), the product of all
these tensors corresponds to the product of T1, · · · , Tn as section of vector bundle.

Exam A.7.
Ai

jBk = A

(
∂

∂xi
, dxj

)
B
(
dxk

)
= (A⊗B)

(
∂

∂xi
, dxj , dxk

)
.

Prop A.3. For covariant derivative, we have the similar property:

∇iT
i1···ip
j1···jq = (∇T )

(
dxi,

∂

∂xi1
, · · · , ∂

∂xip
, dxj1 , · · · , dxjq

)
Remark A.1. When you are not sure what a tensor expression mean, just “throw” every index
to the back for every term and be careful that the position(upper or lower) must reverse in this
process.
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