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Chapter 1

Smooth Manifolds

1.1 Exercises
Exer 1.1. Show that equivalent definitions of manifolds are obtained if instead of allowing U
to be homeomorphic to any open subset of Rn, we require it to be homeomorphic to an open ball
in Rn, or to Rn itself.

Since Û is open, ∃r > 0, s.t.Br(ϕ(p)) ⊂ Û .
So p ∈ ϕ−1(Br(ϕ(p))), ϕ

∣∣
φ−1(Br(φ(p)))

: ϕ−1(Br(ϕ(p))) → Br(ϕ(p)) is homeomorphism.

And let ψ : Br(ϕ(p))
∼=−−→ Rn, x 7→ tan

(
π|x−φ(p)|

2r

)
x−φ(p)
|x−φ(p)| .

Hence ψ ◦ ϕ
∣∣
φ−1(Br(φ(p)))

is homeomorphism from ϕ−1(Br(ϕ(p))) to Rn.

Exer 1.6. Show that Rn is Hausdorff and second-countable, and is therefore a topological n-
manifold.

Because π(x) = π
(
x
|x|

)
= [x], we can obtain that π

∣∣
Sn is surjective.

And for x, y ∈ Sn, [x] = [y] ⇔ ∃a ∈ R, s.t.x = ay ⇔ x = ±y.
So WLOG, suppose d(x, y) < d(x,−y) and consider two open sets U = (Br(x) ∩ Sn) ∪

(Br(−x) ∩ Sn), V = (Br(y) ∩ Sn) ∪ (Br(−y) ∩ Sn), where 2r < d(x, y).
Then U, V are neighborhood of x, y resp. in Sn, and U ∩ V = ∅
Therefore [x] ∈ π(U), [y] ∈ π(V ), π(U) ∩ π(V ) = ∅, i.e.RPn is Hausdorff.
And RPn is second-countable, since S is second-countable and π is open map.

Exer 1.7. Show that RPn is compact.

By proposition A.45(a), RPn is compact, since π
∣∣
Sn : Sn → RPn is surjective.

Lemma 1.13. Suppose X is a locally finite collection of subsets of a topological space M .

(a) The collection
{
X̄ : X ∈ X

}
is also locally finite.

(b)
⋃
X∈X

X =
⋃
X∈X

X̄.

Exer 1.14. Prove the preceding lemma.

(a) ∀p ∈M, ∃neighborhood U, s.t.U intersects at most finitely many of the sets in X.
We claim that if U ∩X = ∅, U ∩ X̄ = ∅.
Then we can deduce the conclusion immediately since

{
X̄ : X ∈ X, X̄ ∩ U 6= ∅

}
⊂ {X :

X ∈ X, X ∩ U 6= ∅}.
To verify the claim, suppose x ∈ U ∩ X̄.

1



CHAPTER 1. SMOOTH MANIFOLDS 2

Then x must be a limit point of X, i.e.x = lim
n→∞

xn, xn ∈ X.

But xn /∈ U since U ∪X = ∅, which means that x ∈ U is a limit point of U c, contradiction!
Hence U ∩ X̄ = ∅ so the statement is true.

(b)
⋃
X∈X

X̄ consist of all X ∈ X and all their limit points, so it is obviously contained in
⋃
X∈X

X.

Conversely, for p ∈
⋃
X∈X

X, if p is in some X ∈ X, then p ∈
⋃
X∈X

X̄ is trivial.

So we now consider the case that p is a limit point of
⋃
X∈X

X.

Let U be a neighborhood of p that intersects at most finitely many of the sets in X, and
lim
n→∞

pi = p, {pn} ⊂ U .

Then by pigeonhole principle, ∃X ∈ X, s.t.X ∩ {pn} has infinite many elements.
Pick the subsequence of {pn} that contained in X, we conclude that p ∈ X̄.
Hence

⋃
X∈X

X =
⋃
X∈X

X̄.

Prop 1.17. Let M be a topological manifold.

(a) Every smooth atlas A for M is contained in a unique maximal smooth atlas called the
smooth structure determined by A.

(b) Two smooth atlases for M determine the same smooth structure if and only if their union
is a smooth atlas.

Exer 1.18. Prove Proposition 1.17(b).

⇒: Let A,B be two smooth atlas for M that determine the same smooth structure.
So Ā = B̄ = A ∪B ⊃ A ∪B, i.e.A ∪B is smooth.
⇐: Because A ∪B is smooth and A,B ⊂ A ∪B.
So Ā = A ∪B = B̄, i.e.A,B determine the same smooth structure.

Prop 1.19. Every smooth manifold has a countable basis of regular coordinate balls.

Exer 1.20. Prove Proposition 1.19.

Consider the same construction as lemma 1.10, for any precompact coordinate ball V , let
(U,ϕ) be the chart of M that contains V̄ .

So V is precompact in U , and V̂ = Br(x) ⊂ Br′(x) ⊂ U for some r′ > r.
Hence V must be a regular coordinate ball, i.e.there is a countable basis of regular coordinate

balls.

Prop 1.38. Let M be a topological n-manifold with boundary.

(a) IntM is an open subset of M and a topological n-manifold without boundary.

(b) ∂M is a closed subset of M and a topological (n− 1)-manifold without boundary.

(c) M is a topological manifold if and only if ∂M = ∅.

(d) If n = 0, then ∂M = ∅ and M is a 0-manifold.

Exer 1.39. Prove the preceding proposition. For this proof, you may use the theorem on
topological invariance of the boundary when necessary. Which parts require it?
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(a) IntM is the union of all interior chart, so it is an open subset of M .
And for every p ∈ IntM , there is a interior chart (U,ϕ) that contain p, and U ⊂ IntM .
So (U,ϕ) is a chart of IntM, i.e.IntM is a topological n-manifold without boundary.

(b) By theorem 1.37, ∂M =M − IntM is closed in M .
For every p ∈ ∂M , there is a boundary char (U,ϕ) that sends p to ∂Hn.
So consider V = ϕ−1(Û ∩ ∂Hn) ⊂ ∂M , the chart

(
V, ϕ

∣∣
V

)
contain p and map V to ∂Hn ∼=

Rn−1.
Hence ∂M is a topological (n− 1)-manifold without boundary.

(c) ⇒: By definition, there is no boundary chart, i.e.∂M = ∅.
⇐: M = IntM since each point in M is either interior point or boundary point.
So by (a), M is topological manifold.

(d) Since n = 0, R0 = H0 and ∂H0 = ∅.
So ∂M = ∅, i.e.M is a 0-manifold.

Prop 1.40. Let M be a topological manifold with boundary.

(a) M has a countable basis of precompact coordinate balls and half-balls.

(b) M is locally compact.

(c) M is paracompact.

(d) M is locally path-connected.

(e) M has countably many components, each of which is an open subset of M and a connected
topological manifold with boundary.

(f) The fundamental group of M is countable.

Exer 1.41. Prove the preceding proposition.

(a) Similar to Lemma 1.10 and proposition 1.19, we first consider the case that there is a global
smooth chart (M,ϕ).
If (M,ϕ) is interior chart, it is totally the same as Lemma 1.10.

If (M,ϕ) is boundary chart, consider B =
{
Br(x) : r, x

i ∈ Q, Br′(x) ⊂ Û for some r′ > r
}
∪{

Br(x) ∩Hn : r, xi ∈ Q, x ∈ Hn, Br′(x) ∩Hn ⊂ Û for some r′ > r
}

.

Then B is a countable basis of Û , consisting of precompact balls and half-balls.
Hence ϕ−1(B) is a countable basis of precompact coordinate balls and half-balls.
We now let M be an arbitrary smooth manifold. By definition, each point of M is in the
domain of a chart.
By proposition A.16, M can be covered by countably many charts, and each chart has a
countable basis of precompact coordinate balls and half-balls.
Hence the union of all these open set forms a countable basis of precompact coordinate balls
and half-balls of M .

(b) Directly from (a).
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(c) We prove a stronger statement: given an open cover X of M and any basis B, there exists
a countable, locally finite open refinement of X consisting of elements of B.
Let (Kj) be an exhaustion ofM by compact sets, and Vj = Kj+1/IntKj ,Wj = IntKj+2/Kj−1.
Then Vj is a compact set contained in the open set Wj .
For each x in Vj , there exist Xx ∈ X, Bx ∈ B that contain x, and Bx ⊂ Xx ∩Wj

Since all Bx form a cover of Vj , so it has a finite subcover.
The union of all finite subcover as j range over Z+ is a countable open cover of M , which
is a refinement of X.
And the cover is locally finite, since Wj ∩Wj′ = ∅ for |j − j′| > 2.

(d) Directly from (a).

(e) By proposition A.43(a), each component is open in M , thus they form an open cover of M .
Since M is second-countable, this cover must have a countable subcover.
But the components are all disjoint, which means that there must have only countable
different components.
And they are connected topological manifold with boundary, since they are open subset.

(f) Using the conclusion of (a)−(e), the prove of this statement is totally the same as proposition
1.16, which is pretty complicated and I don’t want to repeat it here.

Exer 1.42. Show that every smooth manifold with boundary has a countable basis consisting of
regular coordinate balls and half-balls.

Consider the same construction as proposition 1.40, for any precompact coordinate ball V ,
let (U,ϕ) be the chart of M that contains V̄ .

So V is precompact in U , and V̂ = Br(x) ⊂ Br′(x) ⊂ U for some r′ > r.
Hence V must be a regular coordinate ball.
And for any precompact coordinate half-ball V , let (U,ϕ) be the boundary chart of M that

contains V̄ .
So V is precompact in U , and V̂ = Br(0) ∩Hn ⊂ Br′(0) ∩Hn ⊂ U for some r′ > r.
Hence V must be a regular coordinate half-ball.
Therefore there is a countable basis consisting of regular coordinate balls and half-balls.

Exer 1.43. Show that the smooth manifold chart lemma (Lemma 1.35) holds with “Rn” replaced
by “Rn or Hn” and “smooth manifold” replaced by “smooth manifold with boundary”.

Totally the same as lemma 1.35 since there is no particularity of Rn been used while proving.

Exer 1.44. Suppose M is a smooth n-manifold with boundary and U is an open subset of M .
Prove the following statements:

(a) U is a topological n-manifold with boundary, and the atlas consisting of all smooth charts
(V, ϕ) for M such that V ⊂ U defines a smooth structure on U . With this topology and
smooth structure, U is called an open submanifold with boundary.

(b) If U ⊂ IntM , then U is actually a smooth manifold (without boundary); in this case we call
it an open submanifold of M .

(c) IntM is an open submanifold of M (without boundary)
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(a) Consider the atlas in the statement, denote it as A.
For every point p ∈ U , since there is a chart (V, ϕ) of M that contains p, the chart(
U ∩ V, ϕ

∣∣
U∩V

)
∈ A also contains p.

And we can easily check that every two charts in A are compatible.
Hence A is a well-define smooth atlas and U is a smooth manifold with boundary.

(b) By proposition 1.40, IntM is a topological manifold without boundary, and all charts in the
smooth atlas in (a) are interior charts.
So IntM is a smooth manifold without boundary.
By example 1.26, U is an open submanifold of IntM .

(c) Directly by (b).

1.2 Problems
Prob 1.1. Let X be the set of all points (x, y) ∈ R2 such that y = ±1, and let M be the quotient
of X by the equivalence relation generated by (x,−1) ∼ (x, 1) for all x 6= 0. Show that M is
locally Euclidean and second-countable, but not Hausdorff. (This space is called the line with
two origins).

Denote two different origins as a, b resp.
For x 6= 0, x ∈ (x− ε, x+ ε) is an open set in M , where |ε| < |x|.
And (−ε, 0)∪ (0, ε)∪ {a}, (−ε, 0)∪ (0, ε)∪ {b} are both open and homeomorphic to (−ε, ε).
Hence M is locally Euclidean.
The set {(x, y) : x, y ∈ Q, xy > 0} ∪ {(x, 0) ∪ (0, y) ∪ {p} : x, y ∈ Q, x < 0 < y, p ∈ {a, b}} is

a countable basis of M , so M is also second-countable.
But every neighborhood of a must contain (−ε, 0)∪(0, ε)∪{a} for sufficiently small ε, which

means that any two neighborhood of a, b must have nonempty intersection.
Therefore M is not Hausdorff.

Remark 1.1. This is a famous counterexample of the statement “quotient space of Hausdorff
space is Hausdorff”.

Prob 1.2. Show that a disjoint union of uncountably many copies of R is locally euclidean and
Hausdorff, but not second-countable.

X =
⊔
α∈A

Rα is obviously locally Euclidean and Hausdorff, we now prove that it is not

second-countable.
Consider a cover B = {Rα|α ∈ A }.
Then by proposition A.16, if X is second-countable, B must have a countable subcover.
But countable many sets in B can only cover countable many Xi, contraction!
Hence X is not second-countable.

Remark 1.2. In generally, any disjoint union of uncountable many topological spaces is not
second-countable.

Prob 1.3. A topological space is said to be σ-compact if it can be expressed as a union of
countably many compact subspaces. Show that a locally Euclidean Hausdorff space is a topological
manifold if and only if it is σ-compact.

⇒: By lemma 1.10, topological manifold is obviously σ-compact.
⇐: Since X is locally Euclidean, for every point p, there is a chart (U,ϕ) containing p.
So X can be covered by countably many charts, since X is σ-compact.
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And because every charts are homeomorphic to open subset of Rn, which are all second-
countable, we can obtain that X is also second-countable.

Hence X is a topological manifold.

Prob 1.4. Let M be a topological manifold, and let U be an open cover of M .

(a) Assuming that each set in U intersects only finite many others, show that U is locally finite.

(b) Give an example to show that the converse to (a) may be false.

(c) Now assume that the sets in U are precompact in M , and prove the converse: if U is locally
finite, then each set in U intersects only finitely many others.

(a) Suppose there is a point p in M such that any of its neighborhood intersects with infinitely
many of the sets in U.
Then p must be contained in some U ∈ U, since U is an open cover of M .
So U intersects with infinitely many of the sets in U, contradiction!

(b) let M = R,U = {R} ∪ {(n, n+ 1) : n ∈ Z}, then it is clear that R intersects with infinitely
many different sets in U, but U is locally finite.

(c) For every open set U ∈ U, Ū is compact.
Since every point p ∈ Ū has a neighborhood that intersects with finitely many of sets in U.
Consider all these neighborhood as a cover of Ū , it must have a finite subcover.
So there must have only finitely many of the sets in U that intersects with Ū , otherwise one
of the neighborhood in the finite subcover will intersects with infinitely many of sets in U.

Prob 1.5. Suppose M is a locally Euclidean Hausdorff space. Show that M is second-countable
if and only if it is paracompact and has countably many connected components.

⇒: By proposition 1.11 and theorem 1.15, M is paracompact and has countably many
connected components.

⇐: We first prove that M is second-countable when it is connected, once this is done, there
is also a countable basis for countably many connected components cases.

For every point p ∈M , there is a precompact chart (U,ϕ) containing p.
All these charts form a open cover of M , so it has a locally finite refinement denoted by U.
By problem 1.4(c), every set in U intersects only finitely many others.
Consider a set sequence Vn in U, inductively define by letting V0 be an arbitrary set in U,

and Vn be the sets in U that intersect sets in
n−1⋃
i=0

Vi but not contained in it.

We claim that the collection
∞⋃
i=0

Vi cover M .

Since M is locally Euclidean and connected, it is locally path-connected, i.e.M is path-
connected.

So for each point x ∈M , there must have a path γ : [0, 1] →M that connects x and a point
in V0 together.

And γ([0, 1]) is compact, it can be covered by finite many sets in U.
Divided [0, 1] into several parts 0 = a0 < a1 < · · · < ak = 1, such that f([ai−1, ai]) ⊂ Ui for

some Ui ∈ U.

Then it is easy to see that Ui ⊂
i⋃

j=0
Vj , which means that x is covered by

k⋃
i=0

Vi.

Hence the collection
∞⋃
i=0

Vi cover M , and it is countable since every Vi are countable.

Therefore M is second-countable, since every elements in Vi are charts.
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Prob 1.6. Let M be a nonempty topological manifold of dimension n ⩾ 1. If M has a smooth
structure, show that it has uncountably many distinct ones.

Let fs : Bn → Bn, x → |x|s−1x, which is obviously a homeomorphism, we first prove that
fs(x) is a diffeomorphism iff s = 1.

When s = 1, fs(x) = x is obviously a diffeomorphism.
Then we consider the case that s < 1, we have ∂fs,1

∂x1

∣∣∣
x=0

= |x|s−1 + (s − 1)x21|x|s−3. If we

approx 0 along the x1-axis, we find that ∂fs,1
∂x1

∣∣∣
x=0

= (s− 1)|x1|s−1 → ∞, is not well-defined.

So fs(x) is not a diffeomorphism when s < 1. And for s > 1, f−1
s (x) = |x|

1
s
−1x is not

diffeomorphism.
Hence, for a given smooth manifold M with a smooth structure A, we consider an arbitrary

point p and a chart (U,ϕ) ∈ A that contains p.
We first make (U,ϕ) to be the only chart that covers p, let A′ = {(V \{p})|(V, ψ) ∈ A} ∪

{(U,ϕ)}, which is obviously a smooth chart.
Then since Û ⊂ Rn is open, there exist an r such that B (p̂, r) ⊂ Û .
So let A′′ = {(V \{p}, ψ)|(V, ψ) ∈ A} ∪ {(W,ϕ)}, where W = ϕ−1 (B (p̂, r)) ⊂ U .
Now we try to modify ϕ, define φ = φ−p̂

r , then φ maps W to the unit ball.
Therefore we define A′′′

s = {(V \{p}, ψ)|(V, ψ) ∈ A} ∪ {(W, fs ◦ φ)} and prove that it is
smooth.

Since every two charts that not containing p are smoothly compatible, we now focus on the
chart (V \{p}, ψ) and (W, fs ◦ φ).

Then (Fs ◦ φ) ◦ ψ−1 : ψ(W ∪ V \{p}) → Bn\{0} is a diffeomorphism.
In the end, we prove that any two A′′′

s and A′′′
t are not compatible.

Consider charts (W, fs ◦ φ) and (W, ft ◦ φ), the transition map is fs ◦ φ ◦ φ−1 ◦ f−1
t = f s

t
is

not diffeomorphism, i.e.these two charts are not smooth compatible.
Hence it has uncountably many distinct ones.

Prob 1.7. Let N denote the north pole (0, · · · , 0, 1) ∈ Sn ⊂ Rn+1, and let S denote the south pole
(0, · · · , 0,−1). Define the stereographic projection σ : Sn\{N} → Rn by σ

(
x1, · · · , xn+1

)
=

(x1,··· ,xn)
1−xn+1 . Let σ̃(x) = −σ(−x) for x ∈ S\{S}.

(a) For any x ∈ S\{N}, show that σ(x) = u, where (u, 0) is the point where the line through N
and x intersects the linear subspace where xn+1 = 0. Similarly, show that σ̃(x) is the point
where the line through S and x intersects the same subspace. (For this reason, σ̃ is called
stereographic projection from the south pole. )

(b) Show that σ is bijective, and σ−1(u1, · · · , un) = (2u1,··· ,2un,|u|2−1)
|u|2+1

.

(c) Compute the transition map σ̃ ◦ σ−1 and verify that the atlas consisting of the two charts
(Sn\{N}, σ) and (Sn\{S}, σ̃) defines a smooth structure on Sn. (The coordinates defined
by σ or σ̃ are called stereographic coordinates. )

(d) Show that this smooth structure is the same as the one defined in Example 1.31.

(a) We only need to prove that (σ(x), 0), x and N are collinear.

This is because xi−(σ(x))i

xn+1 = xn+1xi

xn+1(xn+1−1)
= xi

xn+1−1
= xi−N i

xn+1−Nn+1

(b) By (a), since a line can only have two intersect with the sphere.
So σ is injective.
Consider an arbitrary point u = (u1, · · · , un), we need to prove that the line connecting u
and N has another intersect with the sphere.
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Then the point x on the line satisfy that xi = (1− xn+1)ui for i = 1, · · · , n

Since x ∈ S\{N}, we can obtain that (1− xn+1)2|u|2 + (xn+1)2 = 1, i.e.xn+1 = |u|2−1
|u|2+1

.

Hence σ is bijective and σ−1(u1, · · · , un) = (2u1,··· ,2un,|u|2−1)
|u|2+1

.

(c) σ̃ ◦ σ−1(u1, · · · , un) = σ̃
(
(2u1,··· ,2un,|u|2−1)

|u|2+1

)
= (u1,··· ,un)

|u|2 is diffeomorphism, whose inverse is
itself.
So these two charts are smooth compatible, i.e.the atlas consisting of these two charts
defines a smooth structure on Sn.

(d) For i 6= n + 1, ϕ±
i ◦ σ−1 =

(
2u1,··· ,ûi,··· ,2un,|u|2−1

)
|u|2+1

and σ ◦
(
ϕ±
i

)−1
=

(
u1,··· ,

√
1−|u|2,un−1

)
1−un are

diffeomorphism.
For i = n+ 1, ϕ±

i ◦ σ−1 = 2
|u|2+1

u and σ ◦
(
ϕ±
i

)−1
= 1

1−
√

1−|u|2
u are diffeomorphism.

So (S\{N}, σ) is smooth compatible with
(
U±
i , ϕ

±
i

)
, so is (S\{S}, σ̃).

Hence this smooth structure is the same as the one defined in Example 1.31.

Prob 1.8. By identifying R2 with C, we can think of the unit circle S1 as a subset of the complex
plane. And angle function on a subset U ⊂ S1 is a continuous function θ : U → R such that
eiθ(z) = z for all z ∈ U . Show that there exist an angle function θ on an open subset U ⊂ S1 if
and only if U 6= S1. For any such angle function, show that (U, θ) is a smooth coordinate chart
for S1 with its standard smooth structure.

If there exist such angle function θ, and suppose U = S1.
Since S1 is connected and compact, let θ(S1) = [a, b].
And θ is injective because eiz ◦ θ = Id is injective.
So θ : S1 → [a, b] is homeomorphic, but S1 is not simply connected, contradiction!
If U is proper subset of S1, then every component of U is simply connected.
Let θ(z) = −i ln(z) where ln is a well-define branch of logarithm function.
Then θ is a well-define continuous function satisfying that eiθ(z) = z.
And since σ ◦ θ−1 = cosx

1−sinx = tan
(
x
2 + π

4

)
, σ̃ ◦ θ−1 = tan

(
−x

2 + π
4

)
are diffeomorphism.

Hence U is smooth compatible with S1\{N} and S1\{S}, i.e.(U, θ) is a smooth coordinate
chart for S1 with its standard smooth structure.

Prob 1.9. Complex projective n-space, denoted by CPn, is the set of all 1-dimensional
complex-linear subspaces of Cn+1, with the quotient topology inherited from the natural projection
π : Cn+1\{0} → CPn. Show that CPn is a compact 2n-dimensional topological manifold, and
show how to give it a smooth structure analogous to the one we constructed for RPn. (We use
the correspondence (x1+ iy1, · · · , xn+1+ iyn+1) ↔ (x1, y1, · · · , xn+1, yn+1) to identify Cn+1 with
R2n+2. )

For each i = 1, · · · , n+ 1, let Ũi ⊂ Cn+1\{0} be the set where zi 6= 0 and let Ui = π
(
Ũi

)
.

Since Ũi is a saturated open subset, Ui is open and π
∣∣
Ũi

: Ũi → Ui is a quotient map.
Define a map ϕi : Ui → Cn by ϕi[z1, · · · , zn+1] =

(
z1

zi
, · · · , zi−1

zi
, z

i+1

zi
, · · · , zn+1

zi

)
.

This map is well define because its value is unchanged by multiplying z by a nonzero constant.
Because ϕi ◦ π is continuous, ϕi is continuous by the universal property of quotient maps.
In fact, ϕi is a homeomorphism because it has a continuous inverse given by ϕ−1

i (u1, · · · , un) =
[u1, · · · , ui−1, 1, ui+1, · · · , un] as you can check.

Because the sets U1, · · · , Un+1 cover CPn, this shows that CPn is locally Euclidean.
And let f : CPn × CPn → C, (z, w) →

∑
i<j

|ziwj − wizj |
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Then f is obviously continuous, and f−1(0) = {(z, z)|z ∈ CPn}.
So {(z, z)|z ∈ CPn} is closed, i.e.CPn is a Hausdorff space and a topological manifold.
More precisely, because ϕi ◦ ϕ−1

j =
(
u1

ui
, · · · , ui−1

ui
, u

i+1

ui
, · · · , uj−1

ui
, 1
ui
, u

j

ui
, · · · , un

ui

)
is a diffeo-

morphism, all these charts are compatible to each other.
Hence CPn is a smooth manifold.

Prob 1.10. Let k and n be integers satisfying 0 < k < n, and let P,Q ⊂ Rn be the linear
subspaces spanned by (e1, · · · , ek) and (ek+1, · · · , en), respectively, where ei is the ith standard
basis vector for Rn. For any k-dimensional subspace S ⊂ Rn that has trivial intersection with
Q, show that the coordinate representation ϕ(S) constructed in Example 1.36 is the unique

(n−k)×k matrix B such that S is spanned by the columns of the matrix
[
Ik
B

]
, where Ik denotes

the k × k identity matrix.

Since ei + ϕ(S)ei ∈ S and are linear independent, since ϕ(S)ei ∈ Q.
So S is spanned by {ei+ϕ(S)ei|i = 1, · · · , k}, i.e.it is spanned by the columns of the matrix[

Ik
B

]
and B is obviously unique.

Prob 1.11. Let M = B̄n, the closed unit ball in Rn. Show that M is a topological manifold with
boundary in which each point in Sn−1 is a boundary point and each point in Bn is an interior
point. Show how to give it a smooth structure such that every smooth interior chart is a smooth
chart for the standard smooth structure on Bn.

Let U = Bn, U+
i =

{
(x1, · · · , xn) ∈ B̄n

∣∣xi > 0
}
, U−

i =
{
(x1, · · · , xn) ∈ B̄n

∣∣xi < 0
}

and
define:

ϕ±
i : U±

i → Bn,±i , (x1, · · · , xn) →
(
x1, · · · , xi ∓

√
1− (x1)2 − · · · − (̂xi)2 − · · · − (xn)2, · · · , xn

)
,

where Bn,+i =
{
(x1, · · · , xn) ∈ Bn

∣∣xi ⩾ 0
}
,Bn,−i =

{
(x1, · · · , xn) ∈ Bn

∣∣xi ⩽ 0
}

.
It is easy to check that ϕ±

i is diffeomorphism, so the transition maps are all diffeomorphism.
Hence B̄n is a smooth manifold, with charts (U, Id),

(
U±
i , ϕ

±
i

)
.

Prop 1.45. Suppose M1, · · · ,Mk are smooth manifolds and N is a smooth manifold with
boundary. Then M1 × · · · ×Mk × N is a smooth manifold with boundary, and ∂(M1 × · · · ×
Mk ×N) =M1 × · · · ×Mk × ∂N .

Prob 1.12. Prove Proposition 1.45(a product of smooth manifolds together with one smooth
manifold with boundary is a smooth manifold with boundary).

By example 1.34, M1 × · · ·Mk is a smooth manifold, denoted by M .
Consider the charts (U,ϕ), (V, ψ) for M,N resp., and let (U×V, ϕ×ψ) be a chart for M×N .
And For any two such charts (U1 × V1, ϕ1 × ψ1), (U2 × V2, ϕ2 × ψ2), note that (ϕ2 × ψ2) ◦

(ϕ1 × ψ1)
−1 = (ϕ2 ◦ ϕ−1

1 ) ◦ (ψ2 ◦ ψ−1
1 ) is diffeomorphism.

Hence M ×N is a smooth manifold with boundary.
And let (x, y) ∈ ∂(M ×N), (U × V, ϕ× ψ) be a boundary chart that contains (x, y).
Since ϕ(U) is open, (V, ψ) must be a boundary chart.
Moreover, ψ(y) must be contained in ∂Hn, otherwise there is an interior chart whose image

is a neighborhood of ψ(y).
Therefore (x, y) ∈M × ∂N .
Conversely, if (x, y) ∈ M × ∂N , there is a boundary chart (V, ψ) that contains y such that

ψ(y) ∈ ∂Hn.
So for a chart (U,ϕ) that contains x, (U × V, ϕ × ψ) contains (x, y) and (ϕ × ψ)(x, y) =

(ϕ(x), ψ(y)) ∈ ∂Hm+n.
Hence ∂(M ×N) =M × ∂N .



Chapter 2

Smooth Maps

2.1 Exercises
Exer 2.1. Let M be a smooth manifold with or without boundary. Show that pointwise mul-
tiplication turns C∞(M) into a commutative ring and a commutative and associative algebra
over R.

For each point p ∈ M , consider smooth charts (U,ϕ), (V, ψ) whose domain contain p, and
f ◦ ϕ−1, g ◦ ψ−1 is smooth.

So (U ∩ V, ϕ) is a smooth chart, and in ϕ(U ∩ V ), g ◦ ϕ−1 = g ◦ ψ−1 ◦ (ψ ◦ ϕ−1) is smooth.
Therefore (f + g) ◦ ϕ−1, (fg) ◦ ϕ−1, (cf) ◦ ϕ−1 are all smooth in ϕ(U ∩ V ).
Hence f + g, fg, cf ∈ C∞(M), i.e.it is a commutative and associative algebra over R.

Exer 2.2. Let U be an open submanifold of Rn with its standard smooth manifold structure.
Show that a function f : U → Rk is smooth in the sense just defined if and only if it is smooth
in the sense of ordinary calculus. Do the same for an open submanifold with boundary in Hn.

For each point p ∈ U , f ◦ Id−1 = f in U , since (U, Id) is the global smooth chart.
So f is smooth in the sense just defined iff it is smooth in the sense of ordinary calculus.

Exer 2.3. Let M be a smooth manifold with or without boundary, and suppose f :M → Rk is
a smooth function. Show that f ◦ ϕ−1 : ϕ(U) → Rk is smooth for every smooth chart (U,ϕ) for
M .

For each point p ∈ U , there exists a chart (V, ψ) containing p and f ◦ ψ−1 is smooth.
So (U ∩ V, ϕ) is a smooth chart, and in ϕ(V ∩ U), f ◦ ϕ−1 = f ◦ ψ−1 ◦ (ψ ◦ ϕ−1) is smooth.
Hence f ◦ ϕ−1 is smooth at every point p̂ ∈ Û , i.e.f ◦ ϕ−1 is smooth.

Prop 2.5 (Equivalent Characterizations of smoothness). Suppose M and N are smooth man-
ifolds with or without boundary, and F : M → N is a map. Then F is smooth if and only if
either of the following conditions is satisfied:

(a) For every p ∈M , there exist smooth charts (U,ϕ) containing p and (V, ψ) containing F (p)
such that U ∩ F−1(V ) is open in M and the composite map ψ ◦ F ◦ ϕ−1 is smooth from
ϕ(U ∩ F−1(V )) to ψ(V ).

(b) F is continuous and there exist smooth atlases {(Uα, ϕα)} and {(Vβ , ψβ)} for M and N ,
respectively, such that for each α and β, ψβ◦F ◦ϕ−1

α is a smooth map from ϕα(Uα∩F−1(Vβ))
to ψβ(Vβ).

Prop 2.6 (Smoothness Is Local). Let M and N be smooth manifolds with or without boundary,
and let F :M → N be a map.

10
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(a) If every point p ∈M has a neighborhood U such that the restriction F
∣∣
U

is smooth, then F
is smooth.

(b) Conversely, if F is smooth, then its restriction to every open subset is smooth.

Exer 2.7. Prove the preceding two propositions.

(a) If F satisfies the condition, notice that (U ∩F−1(V ), ϕ) is a smooth chart since U ∩F−1(V )
is open.
So F is smooth by definition.
If F is smooth, by definition, for every p ∈ M , there exist smooth chart (U,ϕ) containing
p and (V, ψ) containing F (p), such that F (U) ⊂ V and ψ ◦ F ◦ ϕ−1 is smooth.
So U ∩ F−1(V ) = U is open, i.e.F satisfies the condition.

(b) If F satisfies the condition, then every point p ∈M is contained in some (Uα, ϕα), and F (p)
is contained in some (Vβ , ψβ), and Uα ∩ F−1(Vβ) open.
So by (a), F is smooth.
If F is smooth, then there exists smooth atlases {(Uα, ϕα)} and {(Vβ , ψβ)} for M and N
resp., such that for each α there exists a β such that F (Uα) ⊂ Vβ and ψβ ◦F ◦ϕ−1

α is smooth.
We now prove that these atlases satisfies the condition.
For each α, β, let β′ satisfying that F (Uα) ⊂ Vβ′ and ψβ′ ◦ F ◦ ϕ−1

α is smooth.
So ψβ ◦F ◦ϕ−1

α = (ψβ ◦ψ−1
β′ ) ◦ (ψβ′ ◦F ◦ϕ−1

α ) is smooth from ϕα(Uα ∩F−1(Vβ)) to ψβ(Vβ).

Remark 2.1. The conditions that U ∩F−1(V ) is open in proposition 2.5(a) is necessary, problem
2.1 is a counterexample of the situation U ∩ F−1(V ) is closed.

(a) There exist smooth charts (V, ϕ) containing p and (W,ψ) containing F (p) such that V ⊂
U,F (V ) ⊂W and ψ ◦ F ◦ ϕ−1 is smooth, since F

∣∣
U

is smooth.
So by definition, F is smooth.

(b) For each open set U and point p ∈ U , there exist smooth charts (V, ϕ) containing p and
(W,ψ) containing F (p) such that F (V ) ⊂W and ψ ◦ F ◦ ϕ−1 is smooth.
And since (U ∩ V, ϕ) is a smooth chart and F (U ∩ V ) ⊂W .
Hence by definition, F

∣∣
U

is smooth

Exer 2.9. Suppose F : M → N is a smooth map between smooth manifolds with or without
boundary. Show that the coordinate representation of F with respect to every pair of smooth
charts for M and N is smooth.

For each pair of smooth charts (U,ϕ), (V, ψ) and p ∈ U , there exist smooth charts (U ′, ϕ′)
containing p and (V ′, ψ′) containing F (p) such that F (U ′) ⊂ V ′ and ψ′ ◦ F ◦ (ϕ′)−1 is smooth.

So ψ◦F ◦ϕ−1 = (ψ◦(ψ′)−1)◦(ψ′ ◦F ◦(ϕ′)−1)◦(ϕ′ ◦ϕ−1) is smooth from ϕ(U ∩U ′∩F−1(V ))
to ψ(F (U) ∩ V ′ ∩ V ).

Hence ψ ◦ F ◦ ϕ−1 is smooth at each p̂ ∈ Û ,i.e.F̂ is smooth.

Prop 2.10. Let M,N , and P be smooth manifolds with or without boundary.

(a) Every constant map c :M → N is smooth.

(b) The identity map of M is smooth.
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(c) If U ⊂M is an open submanifold with or without boundary, then the inclusion map U ↪→M
is smooth.

(d) If F :M → N and G : N → P are smooth, then so is G ◦ F :M → P .

Exer 2.11. Prove parts (a)− (c) of the preceding proposition.

(a) Let (V, ψ) be a chart that contains c(M).
Then for each point p ∈M and a chart (U,ϕ) containing p, ψ ◦ cϕ−1 is smooth since it is a
constant map whose image is ψ(c(M)).
Hence c is smooth.

(b) For each point p ∈M and a chart (U,ϕ) containing p = Id(p), ϕ ◦ Id ◦ ϕ−1 = Id is smooth.
So Id is smooth.

(c) For each point p ∈ U and a chart (V, ϕ) containing p = i(p), ϕ ◦ i ◦ ϕ−1 = Id is smooth.
So i is smooth.

Prop 2.15 (Properties of Diffeomorphism).

(a) Every composition of diffeomorphisms is a diffeomorphism

(b) Every finite product of diffeomorphisms between smooth manifolds is a diffeomorphism.

(c) Every diffeomorphism is a homeomorphism and an open map.

(d) The restriction of a diffeomorphism to an open submanifold with or without boundary is a
diffeomorphism onto its image.

(e) “Diffeomorphic” is an equivalence relation on the class of all smooth manifolds with or
without boundary.

Exer 2.16. Prove the preceding proposition.

(a) Let M,N,P be the smooth manifolds with or without boundary, F : M → N,G : N → P
are diffeomorphisms.
Then G ◦ F is a bijection and by proposition 2.10, G ◦ F and F−1 ◦G−1 are smooth.
Hence the composition G ◦ F is a diffeomorphism.

(b) Let M1, · · · ,Mn, N1, · · · , Nn be the smooth manifolds with or without boundary, and Fi :
Mi → Ni are diffeomorphisms, M =M1×· · ·×Mn, N = N1×· · ·×Nn and F=F1×· · ·Fn.
Then for each p ∈M , there are smooth charts (Ui, ϕi) containing pi and (Vi, ψi) containing
Fi(pi), such that F (Ui) ⊂ Vi and ψi ◦ Fi ◦ ϕ−1

i is smooth.
So (U = U1×· · ·×Un, ϕ = ϕ1×· · ·×ϕn) and (V = V1×· · ·×Vn, ψ = ψ1×· · ·×ψn) are smooth
charts of M and N resp., and F (U) ⊂ V , ψ ◦F ◦ϕ−1 = (ψ1 ◦F ◦ϕ−1

1 )×· · ·× (ψn ◦F ◦ϕ−1
n )

is smooth.
Therefore F is smooth, so is F−1.
And since F is bijective, we conclude that F is diffeomorphism.

(c) By proposition 2.4, F and F−1 are continuous.
Hence F is a homeomorphism since F is bijection.
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(d) Let M,N be the smooth manifolds with or without boundary, F : M → N is a diffeomor-
phism, U is a open submanifold of M and V = F (U).
By proposition 2.6(b), F

∣∣
U

is smooth and F−1(V ) is smooth since U = F−1(V ).
Therefore F

∣∣
U

is smooth.

(e) By proposition 2.10(b), identity map is smooth and bijective, i.e.M ≈M .
IfM ≈ N , let F :M → N be the diffeomorphism, then F−1 is a diffeomorphism, i.e.N ≈M .
If M ≈ N,N ≈ P , then by (a), we can obtain that M ≈ P .
Hence “Diffeomorphic” is an equivalence relation on the class of all smooth manifolds with
or without boundary.

Thm 2.18 (Diffeomorphism Invariance of the Boundary). Suppose M and N are smooth man-
ifolds with boundary and F :M → N is a diffeomorphism. Then F (∂M) = ∂N , and F restricts
to a diffeomorphism from IntM to IntN .

Exer 2.19. Use Theorem 1.46 to prove the preceding theorem.

For each p ∈ ∂M , there exist smooth charts (U,ϕ) containing p and (V, ψ) containing F (p)
such that F (U) ⊂ V and ψ ◦ F ◦ ϕ−1 is smooth.

By proposition 2.15(d), ψ ◦ F
∣∣
U
◦ ϕ−1 is diffeomorphism from Û to F̂ (U).

So F̂ (U) is also a subset of Hn and F̂ (p) ∈ ∂Hn, i.e.F (p) ∈ ∂N .
Similarly, we have ∂M ⊂ F−1(∂N), i.e.F (∂M) = ∂N .
And F

∣∣
IntM

is a diffeomorphism to IntN , since F (IntM) = IntN .

Thm 2.23 (Existence of Partitions of Unity). Suppose M is a smooth manifold with or without
boundary, and X = (Xα)α∈A is any indexed open cover of M . Then there exists a smooth
partition of unity subordinate to X.

Exer 2.24. Show how the preceding proof needs to be modified for the case in which M has
nonempty boundary.

By exercise 1.42, each set Xα has a basis Bα of regular coordinate balls and half-balls.
So we can obtain a basis B =

⋃
α∈A

Bα of M and by proposition 1.40(c), X has a count-

able, locally finite refinement {Bi} ∪ {Ci} consisting of elements of B, where {Bi} are regular
coordinate balls while {Ci} are half-balls.

By lemma 1.13(a), the cover
{
B̄i

}
∪
{
C̄i

}
is also locally finite.

We can define the smooth function fi : M → R such that suppfi = B̄i in the same way as
theorem 2.23, so it is sufficient to define this function to C̄i.

Since there exist some C ′
i ⊂ Xα such that C̄i ⊂ C ′

i and a smooth coordinate map ϕi : C
′
i →

Rn such that ϕi
(
C̄i

)
= B̄ri(0) ∩Hn, ϕi(B

′
i) = Br′i(0) ∩Hn for some ri < r′i.

Define gi = Hi ◦ ϕi on C ′
i, and zero else-where, where Hi : Rn → R is a smooth function

that is positive in Bri(0) and zero else-where, as in lemma 2.22.
So gi is a smooth function such that suppgi = C̄i.
And the remaining part is totally the same to the proof for smooth manifold without bound-

ary.

Lemma 2.26. Suppose M is a smooth manifold with or without boundary, A ⊂M is a closed
subset, and f : A→ Rk is a smooth function. For any open subset U containing A, there exists
a smooth function f̃ :M → Rk such that f̃

∣∣∣
A
= f and suppf̃ ⊂ U .

Exer 2.27. Give a counterexample to show that the conclusion of the extension lemma can be
false if A is not closed.
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Let M = R, A = U = (0, 1) and f = 1.
Suppose such f̃ exists, then suppf̃ is a closed set contained in U = A.
This is impossible since A ⊂ suppf̃ .

2.2 Problems
Prob 2.1. Define f : R → R by

f(x) =

{
1 x ⩾ 0,

0 x < 0.

Show that for every x ∈ R, there are smooth coordinate charts (U,ϕ) containing x and (V, ψ)
containing f(x) such that ψ ◦ f ◦ ϕ−1 is smooth as a map from ϕ(U ∩ f−1(V )) to ψ(V ), but f
is not smooth in the sense we have defined in this chapter.

For x < 0, consider a sufficiently small neighborhood U such that U ⊂ (−∞, 0), then
ψ ◦ f ◦ ϕ−1 = f

∣∣
U
≡ 0 is a constant function, which is definitely smooth.

Similarly, for x > 0, consider U such that U ⊂ (0,∞), then ψ ◦ f ◦ ϕ−1 ≡ 1 is smooth.
For x = 0, let U = (−ε, ε), V = (1− ε, 1 + ε) where ε < 1
Then U ∩ f−1(V ) = [0, ε), i.e.ψ ◦ f ◦ ϕ−1 ≡ 1 is smooth.
But for chart (V, ψ) such that f(U) ⊂ V , V must contains 0, 1 since U ∩(−∞, 0) 6= ∅, 0 ∈ U .
Then ψ ◦ f ◦ ϕ−1 = f

∣∣
U

is not smooth since it has no derivative at 0.

Prop 2.12. Suppose M1, · · · ,Mk and N are smooth manifolds with or without boundary, such
that at most one of M1, · · · ,Mk has nonempty boundary. For each i, let πi :M1×· · ·×Mk →Mi

denote the projection onto the Mi factor. A map F : N →M1 × · · · ×Mk is smooth if and only
if each of the component maps Fi = πi ◦ F : N →Mi is smooth.

Prob 2.2. Prove Proposition 2.12(smoothness of maps into product manifolds).

If F is smooth, then Fi = πi ◦ F is smooth since πi is smooth by Example 2.13.
If each of Fi is smooth, then for each point p ∈ N , there exist smooth charts (Ui, ϕi)

containing p and (Vi, ψi) containing Fi(p), such that Fi(Ui) ⊂ Vi and ψi ◦ Fi ◦ ϕ−1
i is smooth.

So let U =
k⋂
i=1

Ui, V =
k∏
i=1

Vi, ψ =
k∏
i=1

ψi, we have F (U) ⊂ V , and for each i, πi◦ψ◦F ◦ϕ−1
1 =

ψi ◦ Fi ◦ ϕ−1
i ◦ (ϕi ◦ ϕ−1

1 ) is smooth, i.e.ψ ◦ F ◦ ϕ−1
1 is smooth.

Hence F is smooth.

Prob 2.3. For each of the following maps between spheres, compute sufficiently many coordinate
representations to prove that it is smooth.

(a) pn : S1 → S1 is the n-th power map for n ∈ Z, given in complex notation by pn(z) = zn.

(b) α : Sn → Sn is the antipodal map α(x) = −x.

(c) F : S3 → S2 is given by F (w, z) = (zw̄ + wz̄, iwz̄ − izw̄, zz̄ − ww̄), where we think of S3 as
the subset {(w, z) : |w|2 + |z|2 = 1} of C2.

(a) Notice that pn is continuous, it remains to prove that stereographic coordinates satisfies the
condition of proposition 2.5(b).
For convenience, we let N = 1, S = −1.
For U = S1\{N}, V = S1\{N}, (σ ◦ pn ◦ σ−1)(x) = tan

(
n arctanx− n−1

2 π
)

is smooth.
For U = S1\{N}, V = S1\{S}, (σ̃ ◦ pn ◦ σ−1)(x) = tan

(
n
2π − n arctanx

)
is smooth.
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For U = S1\{S}, V = S1\{N}, (σ ◦ pn ◦ σ̃−1)(x) = tan
(
π
2 − n arctanx

)
is smooth.

For U = S1\{S}, V = S1\{S}, (σ̃ ◦ pn ◦ σ̃−1)(x) = tan(n arctanx) is smooth.
Hence by proposition 2.5(b), pn is smooth.

(b) For point p 6= N , smooth chart (Sn\{N}, σ) contains p and (Sn\{S}, σ̃) contains α(p) = −p,
and we have α(Sn\{N}) = Sn\{S}, σ̃ ◦ α ◦ σ−1(u) = −u is smooth.
And for p = N , smooth chart (Sn\{S}, σ̃) contains p and (Sn\{N}, σ) contains α(p) = S,
and α(Sn\{S}) = Sn\{N}, σ ◦ α ◦ σ̃−1(u) = −u is smooth.
Hence α is smooth.

(c) Notice that F (x, y, z, w) = (2xz + 2yw, 2yz − 2xw, x2 + y2 − z2 − w2) is continuous.
So similar to (a), we check that the stereographic coordinates satisfies the condition of
proposition 2.5(b).

For U = S3\{N}, V = S2\{N}, σ◦F ◦σ−1(x) = (4x1x3+2x2(|x|2−1),4x2x3−2x1(|x|2−1))
(|x|2−1)2+4(x3)2

is smooth.

For U = S3\{N}, V = S2\{S}, σ̃ ◦ F ◦ σ−1(x) = (2x1x3+x2(|x|2−1),2x2x3−x1(|x|2−1))
2(x1)2+2(x2)2

is smooth.

For U = S3\{S}, V = S2\{N}, σ◦F ◦σ̃−1(x) = (4x1x3−2x2(|x|2−1),4x2x3+2x1(|x|2−1))
(|x|2−1)2+4(x3)2

is smooth.

For U = S3\{S}, V = S2\{S}, σ̃ ◦ F ◦ σ̃−1(x) = (2x1x3−x2(|x|2−1),2x2x3+x1(|x|2−1))
2(x1)2+2(x2)2

is smooth.

Hence F is smooth.

Prob 2.4. Show that the inclusion map B̄n ↪→ Rn is smooth when B̄n is regarded as a smooth
manifold with boundary.

For p ∈ Bn, the smooth chart(U, Id) contains p, and i ◦ Id = Id
∣∣
Bn is smooth.

For p ∈ ∂Bn, there exist a smooth chart (U+
i , ϕ

+
i ) containing p, WLOG.

So i ◦ ϕ−1(x) =

(
x1, · · · , xi +

√
1− (x1)2 − · · · − (̂xi)2 − · · · − (xn)2, · · · , xn

)
is smooth.

Hence the inclusion map i is smooth.

Prob 2.5. Let R be the real line with its standard smooth structure, and let R̃ denote the same
topological manifold with the smooth structure defined in Example 1.23. Let f : R → R be a
function that is smooth in the usual sense.

(a) Show that f is also smooth as a map from R to R̃.

(b) Show that f is smooth as a map from R̃ to R if and only if f (n)(0) = 0 whenever n is not
an integral multiple of 3.

(a) Since (ψ ◦ f ◦ Id−1)(x) = f(x)3 is smooth.
So f is smooth as a map from R to R̃.

(b) f is smooth as a map from R̃ to R is equivalent to say that (f ◦ψ−1)(x) = f
(
x

1
3

)
is smooth.

Let g(x) = f
(
x

1
3

)
.

Notice that f (n)(x) =
∑

k1+···+nkn=n

n!
k1!···kn!g

(k1+···+kn)
(
x3

) n∏
i=1

(
(x3)

(i)

i!

)ki
.

So if g is smooth, f (n)(0) can only be nonzero when n = 3k3.
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And if f (n)(0) = 0 for all 3 - n, by Taylor’s theorem, we have f(x) = f(0)+ f (3)(0)
3! x3+ · · ·+

f (3n)(0)
(3n)! x

3n + x3n+3Rn(x) for some smooth Rn.

Therefore g(x) = g(0) + f (3)(0)
3! x+ · · ·+ f (3n)(0)

(3n)! x
n + xn+1Rn

(
x

1
3

)
, then it remains to prove

that Rn ∈ Cn(R).

By induction,
(
xn+1Rn

(
x

1
3

))′
= xn

(
(n+ 1)Rn

(
x

1
3

)
+ x

1
3

3 R
′
n

(
x

1
3

))
∈ Cn−1(R).

Hence g is smooth.

Prob 2.6. Let P : Rn+1\{0} → Rk+1\{0} be a smooth function, and suppose that for some
d ∈ Z, P (λx) = λdP (x) for all λ ∈ R\{0} and x ∈ Rn+1\{0}. (Such a function is said to be
homogeneous of degree d.) Show that the map P̃ : RPn → RPk defined by P̃ ([x]) = [P (x)] is
well defined and smooth.

If [x] = [y], then x = λy, P̃ ([x]) = [P (x)] = [λdP (y)] = [P (y)] = P̃ ([y]).
So P̃ is well-defined.
And for any two chart (Ui, ϕi), (Vj , ϕj) for RPn and RPk resp., we have ϕi ◦ P̃ ◦ ϕ−1

i (u) =(
P1(x)
Pj(x)

, · · · , Pj−1(x)
Pj(x)

,
Pj+1(x)
Pj(x)

, · · · , Pk+1(x)
Pj(x)

)
, where x = (u1, · · · , ui−1, 1, ui, · · · , un)

Since P is smooth and Pj 6= 0.
Hence P̃ is smooth.

Prob 2.7. Let M be a nonempty smooth n-manifold with or without boundary, and suppose
n ⩾ 1. Show that the vector space C∞(M) is infinite-dimensional.

We first prove that if f1, · · · , fk ∈ C∞(M) have nonempty disjoint supports, then they are
linearly independent.

Suppose they are linearly dependent, c1f1 + · · ·+ ckfk ≡ 0.
For every point p ∈ suppf1, p is not contained in any other suppfi since they are disjoint.
So c1f1(p) = 0, i.e.f1 ≡ 0, contradiction!
consider an arbitrary chart (U,ϕ), let B1, B2, · · · , Bk be k disjoint balls in Û .
For each Bi, let fi :M → R maps U to Hi ◦ϕ and be zero else-where, where Hi is a smooth

function such that supp(Hi) ⊂ Bi by lemma 2.22.
Hence C∞(M) is infinite-dimensional since k can be arbitrarily big.

Prob 2.8. Define F : Rn → RPn by F (x1, · · · , xn) = [x1, · · · , xn, 1]. Show that F is a
diffeomorphism onto a dense open subset of RPn. Do the same for G : Cn → CPn defined by
G(z1, · · · , zn) = [z1, · · · , zn, 1]. (see Problem 1.9).

Since F = ϕ−1
n+1 is the coordinate map.

So it is a diffeomorphism from Rn to Un+1.
And every open set in RPn intersect with Un+1, i.e.Un+1 is dense.
Similarly, for chart (Un+1, ϕn+1) in CPn, G = ϕ−1

n+1 is also the coordinate map.
So it is also a diffeomorphism from Cn to Un+1, which is dense in CPn.

Prob 2.9. Given a polynomial p in one variable with complex coefficients, not identically zero,
show that there is a unique smooth map p̃ : CP1 → CP1 that makes the following diagram
commute, where CP1 is 1-dimensional complex projective space and G : C → CP1 is the map of
Problem 2.8:

C CP1

C CP1

G

p p̃

G
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Since CP1\U2 = {[1, 0]} is a one point set.
So we define p̃([1, 0]) = [1, 0], and p̃(x) = G(p(G−1(x))) for x ∈ U2.
For point x ∈ U2, p̃(U2) ⊂ U2 and ϕ2 ◦ p̃ ◦ ϕ−1

2 (z) = p(z) is smooth.
There is only finite many point in CP1 that is mapped to [0, 1] by p̃ since p is a polynomial.
Therefore there exist a small neighborhood U of [1, 0] contained in U1 such that p̃(U) ⊂ U1.

We then have ϕ1 ◦ p̃ ◦ ϕ−1
1 (x) =

{
1

P (x−1)
x ∈ U1,

0 x = 0.
, this is smooth because lim

x→0

1
P (x−1)

= 0.

Hence p̃ is smooth and unique.

Prob 2.10. For any topological space M , let C(M) denote the algebra of continuous functions
f :M → R. Given a continuous map F :M → N , define F ∗ : C(N) → C(M) by F ∗(f) = f ◦F .

(a) Show that F ∗ is a linear map.

(b) Suppose M and N are smooth manifolds. Show that F : M → N is smooth if and only if
F ∗(C∞(N)) ⊂ C∞(M).

(c) Suppose F : M → N is a homeomorphism between smooth manifolds. Show that it is
diffeomorphism if and only if F ∗ restricts to an isomorphism from C∞(N) to C∞(M).

Remark 2.2. This result shows that in a certain sense, the entire smooth structure of M is
encoded in the subset C∞(M) ⊂ C(M). In fact, some authors define a smooth structure on a
topological manifold M to be a subalgebra of C(M) with certain properties; see, e.g., Nestruev’s
Smooth Manifolds and Observables.

(a) F ∗(f+g) = (f+g)◦F = f◦F+g◦F = F ∗(f)+F ∗(g), F ∗(cf) = (cf)◦F = c(f◦F ) = cF ∗(f).
Hence F ∗ is a linear map.

(b) If F is smooth, then F ∗(f) = f ◦ F ∈ C∞(M) for any f ∈ C∞(N).
If F ∗(C∞(N)) ⊂ C∞(M), then for any charts (U,ϕ), (V, ψ) for M and N resp., consider an
arbitrary smooth function f : N → R.
We have f ◦ ψ−1 is smooth from Ṽ to R, and f ◦ F ◦ ϕ−1 is smooth from ϕ(U ∩ F−1(V ))
to R.
let f = πi ◦ ψ, where πi(x) = xi is smooth.
So πi ◦ (ψ ◦ F ◦ ϕ), which equals the i-th component of image of ψ ◦ F ◦ ϕ, is smooth
Hence ψ ◦ F ◦ ϕ is smooth, i.e.F is smooth.

(c) If F is diffeomorphism, then f = g ⇔ f ◦ F ◦ F−1 = g ◦ F ◦ F−1 ⇔ f ◦ F = g ◦ F .
And by (b), we can obtain that F ∗ is restricts to an isomorphism.
If F ∗ is restricts to an isomorphism, then by (b), F and F−1 are both smooth, i.e.F is a
diffeomorphism.

Prob 2.11. Suppose V is a real vector space of dimension n ⩾ 1. Define the projectivization
of V , denoted by P(V ), to be the set of 1-dimensional linear subspaces of V , with the quotient
topology induced by the map π : V \{0} → P(V ) that sends x to its span. (Thus P(Rn) = RPn−1.)
Show that P(V ) is a topological (n − 1)-manifold, and has a unique smooth structure with
the property that for each basis (E1, · · · , En) for V , the map E : RPn−1 → P(V ) defined by
E[v1, · · · , vn] = [viEi](where brackets denote equivalence classes) is a diffeomorphism.



CHAPTER 2. SMOOTH MAPS 18

For an arbitrary basis (B1, · · · , Bn), we can define a homeomorphism from Rn to V , by
mapping (x1, · · · , xn) to x1B1 + · · ·+ xnBn.

So there is a quotient map f : Rn\{0} → P(V ) induced by π.
By the universal property of quotient map q : Rn\{0} → RPn−1, we have a continuous

map f̃ : RPn−1 → P(V ) such that f̃([x]) = f̃([y]) ⇔ π−1
(
f̃([x])

)
= π−1

(
f̃([y])

)
⇔ spanx =

span y ⇔ [x] = [y], i.e.f̃ is a homeomorphism.
Therefore P(V ) is homeomorphic to RPn−1, which is a topological (n− 1)-manifold.
Define the smooth structure the same as RPn−1, such that

(
f̃(Ui), ϕi ◦ f̃−1

)
are the charts.

For any two charts, the transition map is ϕj ◦ f̃−1 ◦ f̃ ◦ ϕ−1
i = ϕj ◦ ϕ−1

i , which means that
they are compatible.

And for any other basis (E1, · · · , En), we first prove that f̃−1 ◦ E and E−1 ◦ f̃ are smooth.
This is because f̃−1 ◦E[v1, · · · , vn] = [x1, · · · , xn], where x1B1+ · · ·xnBn = v1E1+ · · · vnEn,

is an invertible linear map.
So ϕj ◦ f̃−1 ◦ E ◦ ϕi and ϕi ◦ E−1 ◦ f̃ ◦ ϕ−1

j , which are the coordinate representation of E
and R−1 resp., are smooth.

Hence E is a diffeomorphism since it is homeomorphism.

Prob 2.12. State and prove an analogue of Problem 2.11 for complex vector spaces.

Statement: Suppose V is a complex vector space of dimension n ⩾ 1. Define the projec-
tivization of V , denoted by P(V ), to be the set of 1-dimensional linear subspaces of V , with
the quotient topology induced by the map π : V \{0} → P(V ) that sends x to its span. (Thus
P(Cn) = CPn−1.) Show that P(V ) is a topological (2n− 2)-manifold, and has a unique smooth
structure with the property that for each basis (E1, · · · , En) for V , the map E : CPn−1 → P(V )
defined by E[v1, · · · , vn] = [viEi](where brackets denote equivalence classes) is a diffeomor-
phism.

The proof is totally the same as the real case and I don’t want to repeat it again.

Prob 2.13. Suppose M is a topological space with the property that for every indexed open
cover X of M , there exists a partition of unity subordinate to X. Show that M is paracompact.

Consider a partition of unity (ψα) of open cover X = (Xα), let Uα = ψ−1
α ((0,+∞)).

Then each Uα ⊂ suppψα ⊂ Xα and (Uα) is locally finite since (suppψα) is locally finite.
Moreover, since

∑
ψα(x) = 1, we conclude that (Uα) cover M.

Hence (Uα) is a open, locally finite refinement of X, i.e.M is paracompact.

Prob 2.14. Suppose A and B are disjoint closed subsets of a smooth manifold M . Show that
there exists f ∈ C∞(M) such that 0 ⩽ f(x) ⩽ 1 for all x ∈M , f−1(0) = A and f−1(1) = B.

By theorem 2.29, there exist function g, h such that g−1(0) = A, h−1(0) = B, and g, h ⩾ 0.
Let f = g

g+h , then 0 ⩽ f(x) ⩽ 1 and f−1(0) = A, f−1(1) = B.



Chapter 3

Tangent Vectors

3.1 Exercises
Lemma 3.4 (Properties of Tangent Vectors on Manifolds). Suppose M is a smooth manifold
with or without boundary, p ∈M, v ∈ TpM , and f, g ∈ C∞(M).

(a) If f is a constant function, then vf = 0.

(b) If f(p) = g(p) = 0, then v(fg) = 0.

Exer 3.5. Prove Lemma 3.4.

1. WLOG, assume f ≡ 1.
Then v(f) = v(f · f) = f(p)v(f) + f(p)v(f) = 2v(f), i.e.vf = 0.

2. v(fg) = f(p)v(g) + g(p)v(f) = 0.

Prop 3.6 (Properties of Differentials). Let M,N and P be smooth manifolds with or without
boundary, let F :M → N and G : N → P be smooth maps, and let p ∈M .

(a) dFp : TpM → TF (p)N is linear.

(b) d(G ◦ F )p = dGF (p) ◦ dFp : TpM → TG◦F (p)P .

(c) d(IdM )p = IdTpM : TpM → TpM .

(d) If F is a diffeomorphism, then dFp : TpM → TF (p)N is an isomorphism, and (dFp)
−1 =

d
(
F−1

)
F (p)

.

Exer 3.7. Prove Proposition 3.6.

(a) dFp(v + w)(f) = (v + w)(f ◦ F ) = v(f ◦ F ) + w(f ◦ F ) = dFp(v)(f) + dFp(w)(f).
dFp(cv)(f) = (cv)(f ◦ F ) = cv(f ◦ F ) = cdFp(v)(f).
Hence dFp is linear.

(b) d(G ◦ F )p (v)(f) = v(f ◦G ◦ F ) = dFp(v)(f ◦G) = dGF (p) ◦ dFp(v)(f).

(c) d(IdM )p (v)(f) = v(f ◦ Id) = v(f), i.e. d(IdM )p = IdTpM .

(d) Since F ◦ F−1 = Id.
So by (b)(c), d

(
F−1

)
F (p)

◦ dFp = IdTpM

Hence dFp : TpM → TF (p)N is an isomorphism, and (dFp)
−1 = d

(
F−1

)
F (p)

.

19
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Exer 3.17. Let (x, y) denote the standard coordinates on R2. Verify that (x̃, ỹ) are global
smooth coordinates on R2, where x̃ = x, ỹ = y + x3. Let p be the point (1, 0) ∈ R2(in standard
coordinates), and show that ∂

∂x

∣∣
p
6= ∂

∂x̃

∣∣
p
, even though the coordinate functions x and x̃ are

identically equal.

∂
∂x

∣∣
p
= ∂x̃

∂x (p̂)
∂
∂x̃

∣∣
p
+ ∂ỹ

∂x (p̂)
∂
∂ỹ

∣∣∣
p
= ∂

∂x̃

∣∣
p
+ 3 ∂

∂ỹ

∣∣∣
p
6= ∂

∂x̃

∣∣
p

Exer 3.19. Suppose M is a smooth manifold with boundary. Show that TM has a natural
topology and smooth structure making it into a smooth manifold with boundary, such that if
(U, (xi)) is any smooth boundary chart for M , then rearranging the coordinates in the natural
chart (π−1(U), (xi, vi)) for TM yields a boundary chart (π−1, (vi, xi)).

For boundary chart (U,ϕ), π−1(U) ⊂ TM is the set of all tangent vectors to M at all points
of U .

Let (x1, · · · , xn) denote the coordinate functions of ϕ, and define ϕ̃ : π−1(U) → R2n by
ϕ̃
(
vi ∂

∂xi

∣∣
p

)
= (v1, · · · , vn, x1(p), · · · , xn(p)).

Its image set is Rn × ϕ(U), which is an open subset of H2n. It is a bijection onto its image,
because its inverse can be written explicitly as ϕ̃−1(v1, · · · , vn, x1, · · · , xn) = vi ∂

∂xi

∣∣
φ−1(x)

.
The remaining part it totally the same as proposition 3.18.

Exer 3.27. Show that any (covariant or contravariant) functor from C to D takes isomorphisms
in C to isomorphisms in D.

Let f ∈ HomC(X,Y ) be a isomorphism, g ∈ HomC(Y,X) such that f ◦ g = IdY , g ◦ f = IdX .
Then F(f) ◦ F(g) = F(f ◦ g) = IdY = IdF(Y ), F(g) ◦ F(f) = F(g ◦ f) = IdX = IdF(X).
Hence covariant functor takes isomorphisms to isomorphisms, so is contravariant functor.

3.2 Problems
Prob 3.1. Suppose M and N are smooth manifolds with or without boundary, and F :M → N
is a smooth map. Show that dFp : TpM → TF (p)N is the zero map for each p ∈ M if and only
if F is constant on each component of M .

If dFp is zero for each p ∈ M , then for smooth charts (U,ϕ) for M containing p and (V, ψ)

for N containing F (p), we have dFp

(
∂
∂xi

∣∣
p

)
= ∂F̂ j

∂xi
(p̂) ∂

∂yj

∣∣∣
F (p)

.

So ∂F̂ j

∂xi
(p̂) = 0 for each i, j and p ∈ U , i.e.F̂ is constant on each component of Û .

Hence F is constant on each component of M .
If F is constant on each component of M , Then for each smooth charts (U,ϕ) for M and

(V, ψ) for N , we have ∂F̂ j

∂xi
≡ 0.

So dFp

(
∂
∂xi

∣∣
p

)
= 0 for each p ∈ U ∩ F−1(V ).

Hence dFp ≡ 0 for each p ∈M .

Prop 3.14 (The Tangent Space to a Product Manifold). Let M1, · · · ,Mk be smooth manifolds,
and for each j, let πj : M1 × · · · ×Mk → Mj be the projection onto the Mj factor. For any
point p = (p1, · · · , pk) ∈M1× · · ·×Mk, the map α : Tp(M1× · · ·×Mk) → Tp1M1⊕ · · ·⊕TpkMk

defined by α(v) = (d(π1)p(v), · · · , d(πk)p(v)) is an isomorphism. The same is true if one of the
spaces Mi is a smooth manifold with boundary.

Prob 3.2. Prove Proposition 3.14 (the tangent space to a product manifold).
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For smooth charts (Ui, ϕi) containing pi, α
(

∂
∂xi,j

∣∣
p

)
=

(
d(π1)p

(
∂

∂xi,j

∣∣
p

)
, · · · , d(πk)p

(
∂

∂xi,j

∣∣
p

))
.

Since d(πi′)p

(
∂

∂xi,j

∣∣
p

)
=

∂π̂i′
j′

∂xi,j
∂

∂xi′,j′

∣∣∣
πi′ (p)

= δi
′
i

∂
∂xi,j

∣∣
p
, where δ is the Kronecker symbol.

So α
(

∂
∂xi,j

∣∣
p

)
=

(
0, · · · , ∂

∂xi,j

∣∣
p
, · · · , 0

)
are linear independent.

And by proposition 3.15, domain and codomain of α has the same dimensions.
Hence α is an isomorphism.

Prob 3.3. Prove that if M and N are smooth manifolds, then T (M ×N) is diffeomorphic to
TM × TN .

By proposition 3.14, we can define F : T (M ×N) → TM × TN, up ⊕ vq 7→ (up, vq).
Let (U,ϕ), (V, ψ) be smooth charts for M,N resp.
Then

(
π−1
M (U), ϕ̃

)
,
(
π−1
N (V ), ψ̃

)
,
(
π−1
M×N (U × V ), ϕ̃× ψ

)
are the smooth charts for TM, TN,

T (M ×N) resp.

So
(
ϕ̃× ψ̃

)
◦ F ◦ ϕ̃× ψ

−1
(x, y, u, v) =

(
ϕ̃× ψ̃

)(
ui ∂

∂xi

∣∣
φ−1(x)

, vi ∂
∂yi

∣∣∣
ψ−1(y)

)
= (x, u, y, v).

Hence F and F−1 are smooth, i.e.F is a diffeomorphism.

Prob 3.4. Show that TS1 is diffeomorphic to S1 × R.

Define F : TS1 → S1 × R, v ∂
∂xφ

∣∣∣
p
7→ (p, v), where ϕ : S1\{−p} → R, eiθ 7→ θ.

Consider smooth charts
(
π−1(S1\{p}), ϕ̃

)
, ((S1\{p})× R, ϕ× Id) for TS1, S1 × R resp.

Notice that for q ∈ S1\{−p}, ∂
∂xφ

∣∣∣
q
= ∂

∂xψ

∣∣∣
q

for ψ : S1\{−q} → R, eiθ → θ.
We have (ϕ× Id) ◦ F ◦ ϕ̃−1(θ, v) = (θ, v).
Hence F and F−1 are smooth, i.e.F is a diffeomorphism.

Prob 3.5. Let S1 ⊂ R2 be the unit circle, and let K ⊂ R2 be the boundary of the square of side
2 centered at the origin: K = {(x, y) : max(|x|, |y|) = 1}. Show that there is a homeomorphism
F : R2 → R2 such that F (S1) = K, but there is no diffeomorphism with the same property.

Consider an arc γ of S1, such that F ◦ γ(0) = (1, 1), F ◦ γ(t) = (1, y(t)) for t > 0 and
F ◦ γ(t) = (x(t), 1) for t < 0.

Then (F ◦ γ)′ =

x
′(t) ∂

∂x

∣∣
(x(t),1)

t < 0,

y′(t) ∂
∂y

∣∣∣
(1,y(t))

t > 0.

So dF (γ′(0)) = (F ◦ γ)′(0) = 0, but γ′(0) 6= 0, contradiction!

Prob 3.6. Consider S3 as the unit sphere in C2 under the usual identification C2 ↔ R4. For
each z = (z1, z2) ∈ S3, define a curve γz : R → S3 by γz(t) = (eitz1, eitz2). Show that γz is a
smooth curve whose velocity is never zero.

For smooth chart (U+
1 , ϕ

+
1 ), ϕ+

1 ◦γz(t) =
(
a1 sin t+ b1 cos t, a2 cos t− b2 sin t, a2 sin t+ b2 cos t

)
is smooth and the same for other charts.

So γz is a smooth curve.
And γ′z(t0) = dγz

(
d
dt

∣∣
t0

)
=

d(φ+
1 ◦γz)

j

dt
∂
∂xj

∣∣
γz(t)

= (a1 cos t − b1 sin t) ∂
∂x1

∣∣
γz(t)

+ (−a2 sin t −
b2 cos t) ∂

∂x2

∣∣
γz(t)

+ (a2 cos t− b2 sin t) ∂
∂x3

∣∣
γz(t)

is nonzero since a1 cos t− b1 sin t > 0.
Hence γz is a smooth curve whose velocity is never zero.

Prob 3.7. Let M be a smooth manifold with or without boundary and p be a point of M . Let
C∞
p (M) denote the algebra of germs of smooth real-valued functions at p, and let DpM denote

the vector space of derivations of C∞
p (M). Define a map Φ : DpM → TpM by (Φv)f = v([f ]p).

Show that Φ is an isomorphism.
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It is easy to check that Φ is well-defined and linear.
And for a smooth chart (U,ϕ), (xi, U) are not equivalent to each other in C∞

p (M).
So dimDpM ⩾ dimTpM , i.e.it is sufficient to prove that Φ is injective.
For a closed ball B̄ centered at p contained in U , there exist f̃ :M → R such that f̃

∣∣∣
B̄
= f

∣∣
B̄

and suppf̃ ⊂ U by lemma 2.26.
Therefore if Φv ≡ 0, then v([f ]p) = v

([
f̃
]
p

)
= Φv

(
f̃
)
= 0, i.e.v ≡ 0.

Hence Φ is a isomorphism.

Prob 3.8. Let M be a smooth manifold with or without boundary and p ∈ M . Let VpM
denote the set of equivalence classes of smooth curves starting at p under the relation γ1 ∼ γ2
if (f ◦ γ1)′(0) = (f ◦ γ2)′(0) for every smooth real-valued function f defined in a neighborhood
of p. Show that the map Ψ : VpM → TpM defined by Ψ[γ] = γ′(0) is well defined and bijective.

Since γ1 ∼ γ2 ⇔ df(γ′1(0)) = df(γ′2(0)) ⇔ df(γ′1(0)− γ′2(0)) = 0 ⇔ γ′1(0) = γ′2(0).
We can obtain that Ψ is well-defined and injective.
And for smooth chart (U,ϕ) and v = vi ∂

∂xi

∣∣
p
, defined γ(t) = ϕ−1(v1t, · · · , vnt)

So Ψ[γ] = γ′(0) = dγ
(

d
dt

∣∣
0

)
= d(φ◦γ)i

dt
∂
∂xi

∣∣
p
= vi ∂

∂xi

∣∣
p
= v

Hence Ψ is well-defined and bijective.
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