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Chapter 1

Singular homology

1.1 Singular homology
Def 1.1.1. The standard n-simplex is the convex hull of the standard basis {e0, · · · , en} ∈ Rn+1:

∆n =

{
n∑

i=0

tiei

∣∣∣∣∣ti ⩾ 0,
n∑

i=0

ti = 1

}
.

Exam 1.1.1. ∆0 is a point:
e0

∆1 is line:
e0 e1

∆2 is triangle:

e0 e1

e2

and ∆3 is a tetrahedron.

Def 1.1.2. For 0 ⩽ i ⩽ n, we have the face inclusion map

di : ∆n−1 → ∆n, (t0, · · · , tn−1) 7→ (t0, · · · , ti−1, 0, ti, · · · , tn−1).

Def 1.1.3. A singular n-simplex in X is a continuous map σ : ∆n → X and

sinn(X) = {singular n-simplices in X}.

For 0 ⩽ i ⩽ n, we have a map

di : sinn(X) → sinn−1(X), σ 7→ σ ◦ di.

Exam 1.1.2. sin0(X) = {points in X}, sin1(X) = {paths in X}.
The map d0, d1 : sin1(X) → sin0(X) maps γ to its terminal point and start point resp.

γ

d1(γ)

d0(γ)

1
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Def 1.1.4. Sn(X) = Z sinn(X) is the free abelian group generated by sinn(X):

Sn(X) =

{
formal linear combinations

R∑
i=1

aiσi

∣∣∣∣∣ai ∈ Z, σi ∈ sinn(X)

}

An element in Sn(X) is called a singular n-chain in X.

Def 1.1.5. The boundary operator d : Sn(X) → Sn−1(X) is a group homomorphism with

d(σ) :=
n∑

i=0

(−1)idiσ.

Exam 1.1.3. When n = 1:
d(σ) = σ

∣∣
e1

− σ
∣∣
e0
.

When n = 2:
d(σ) = σ

∣∣
e1e2

− σ
∣∣
e0e2

+ σ
∣∣
e0e1

Lemma 1.1.1. The composition Sn(X)
d−−→ Sn−1(X)

d−−→ Sn−2(X) is zero.

Proof. By linearity, it suffices to check d ◦ d(σ) = 0 for any σ ∈ sinn(x).

d ◦ d(σ) =
∑
i,j

(−1)i+jdi ◦ dj(σ) =
∑
i,j

(−1)i+j(σ ◦ di ◦ dj) = 0.

The last equality holds since

di ◦ dj =

{
dj+1 ◦ dj i < j

dj ◦ di+1 i ⩾ j
.

Def 1.1.6. For n ⩾ 0, we define the n-th singular homology of X:

Hn(X) =
ker(d : Sn(X) → Sn−1(X))

im(d : Sn+1(X) → Sn(X))
.

It is not hard to see that Hn(X) is abelian.

Def 1.1.7. A chain complex is a graded abelian group

C =
⊕
n∈Z

Cn,

together with a homomorphism d : C → C of degree −1 such that d2 = 0.
d is called the boundary operator and elements in Cn are called n-chains, define

Zn = ker
(
Cn

d−−→ Cn−1

)
= {n-cycles} = {closed n-chains},

Bn = Im
(
Cn+1

d−−→ Cn

)
= {n-boundaries} = {exact n-chains}.

Since d2 = 0, so Bn ⊂ Zn.
Homology of the chain complex is

Hn(C, d) = Hn(C) :=
Zn

Bn
.
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Remark 1.1.1. (
S∗(X) =

⊕
n⩾0

Sn(X), d =
n∑

i=0

(−1)idi

)
is a chain complex called the singular chain complex of X and

Hn(X) = Hn(S∗(X), d).

The singular chain complex is very big, so it is hard for us to compute for us to compute
the singular homology now.

Exam 1.1.4. X is a point, then

sinn(X) = {constant σn : ∆n → X}, Sn(X) = Z · σn.

d(σn) =

n∑
i=0

(−1)idi(σn) =

n∑
i=0

(−1)iσn−1 =

{
σn−1 2|n
0 2 ∤ n

So the chain complex S∗(X) is

S−1(X) = 0 Z Z Z Z · · ·0 Id 0

Hence the singular homology of a point is

Hn(X) =

{
Z n = 0

0 n 6= 0

More generally, we have

Prop 1.1.1. For any space X,
H0(X) ∼= ZΠ0(X),

where Π0(X) = {path components of X}.

Proof.

Z0(X) = S0(X) =

{
k∑

i=1

aixi

∣∣∣∣∣ai ∈ Z, xi ∈ X

}
.

B0(X) is generated by{
σ(e1)− σ(e0)

∣∣path σ : ∆1 → X
}
= {x1 − x0|[x1] = [x0] ∈ Π0(X)}.

So 0-th singular homology of X is

H0(X) =
Z0(X)

B0(X)
∼= ZΠ0(X).

Thm 1.1.1. Hn(Sk) ∼=


Z⊕ Z k = n = 0

Z k > 0, n = 0, k

0 otherwise

Proof. We need to develop a lot of theories to prove this theorem.

Thm 1.1.2. Let X be a path-connected space, then there is a surjective homomorphism π1(X) →
H1(X) that sends each loop to its homology class.
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Proof. Let γ1, γ2 : ∆
1 → X be two loops starting at p that are homotopic relative to boundary

and H : [0, 1]× [0, 1] → X is their homotopy, then

H(0, s) = γ1(0),H(1, s) = γ1(1),H(t, 0) = γ1(t),H(t, 1) = γ2(t).

So consider the singular 2-simplex

σ : ∆2 → X, (t0e0 + t1e1 + t2e2) 7→ H

(
1− t0,

t2
1− t0

)
.

Then σ(e0) = γ1(0) is well-defined and

σ(t0e0 + (1− t0)e1) = H(1− t0, 0) = γ1(1− t0),

σ(t0e0 + (1− t0)e2) = H(1− t0, 1) = γ2(1− t0),

σ(t1e1 + (1− t1)e2) = H(1, 1− t1) = γ1(1).

Therefore the boundary of σ is

d(σ) = d0σ − d1σ + d2σ = σ1(1)− σ2 + σ1.

And σ1(1) is the boundary of the singular 2-simplex σc : ∆2 → X,x → g(1).
So σ1 − σ2 = d(σ − σc) ∈ B1(X)
And since d(γ1) = d(γ2) = p− p = 0.
Therefore [γ1] = [γ2] ∈ Z1(X)/B1(X) = H1(X).
Let f : π1(X) → H1(X) be the map that sends each loop to its homology class.
We now assume γ1, γ2 are two arbitrary loops start at p, consider the map

σ1 : ∆
2 → X, (t0e0 + t1e1 + t2e2) 7→

{
γ1(1 + t2 − t0) t0 ⩾ t2

γ2(t2 − t0) t2 > t0

Then σ1 is continuous since γ1(1) = γ2(0) = p and its boundary is

d(σ1) = γ1 + γ2 − (γ1 ◦ γ2).

So f(γ1 ◦ γ2) = f(γ1) + f(γ2).
And f(γ1) + f (γ1) = f (γ1 ◦ γ1) = 0, i.e.f (γ1) = −f(γ1).
Therefore f is a homomorphism.
We now prove that f is surjective.
For any element

[c] =

[
n∑

i=1

aiγi

]
∈ H1(X),

WLOG, assume ai = 1 for any i.
If some γi is not a loop, then there must be another γj whose start point is the terminal

point of γi since c is closed.
Then we can replace γi, γj by γi · γj .
WLOG, we can assume every γi is a loop.
Since X is path-connected.
For a fixed point p, we can find a path fi from p to the start point of γi, and then[

fi · γi · fi
]
= [γi] ∈ H1(X).

WLOG, we can assume every γi start at p.
Hence we obtain [

n∑
i=1

γi

]
= f(γ1 · γ2 · · · · · γn),

i.e. f is surjective.
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More generally, we have

Thm 1.1.3 (Poincarè). H1(X) ∼=
⊕

[b]∈Π0(X)

Ab(π1(X, b)).

Let us first look at an example:

Exam 1.1.5. When X = S1, we want to show that H1(S1) ∼= Z.
Let f : R → S1 be the universal cover, for a path σ : ∆1 → S1, pick any lift σ̃ : ∆1 → R.
Define winding number w(σ) := σ̃(e1)− σ̃(e0) ∈ R.
For an 1-chain c =

∑
aiσi, define

w(c) =
k∑

i=1

aiω(σi),

this gives a morphism w : S1(X) → R.
We then have the following facts:

Prop 1.1.2. (1) c ∈ Z1(X) ⇒ w(c) ∈ Z

(2) c ∈ B1(X) ⇒ w(c) = 0

(3) w : H1(X) → Z is an isomorphism.

Proof. (1) Define
g : S1 → [0, 1), e2πiθ 7→ θ,

h : S0(S1) → R,
n∑

i=1

aici 7→
n∑

i=1

aif(ci).

Then we have

h(d(σ)) = g(σ(e1))− g(σ(e0)) = σ̃(e1)− σ̃(e0) + n = w(σ) + n

for some n ∈ Z
So w(c) + n = h(d(c)) = h(0) = 0 for some n ∈ Z, i.e.w(c) = −n ∈ Z.

(2) For a map σ : ∆2 → S1, let γ1 = d0σ, γ2 = d1σ, γ3 = d2σ.
Let σ̃ be a lift of σ and γ̃1 = d0σ̃, γ̃2 = d1σ, γ̃3 = d2σ.
Then γ̃1(1) = γ̃2(0), γ̃2(1) = γ̃3(0), γ̃3(1) = γ̃1(0), moreover,

w(d(σ)) =w(γ1)− w(γ2) + w(γ3)

=γ̃1(1)− γ̃1(0) + γ̃2(1)− γ̃2(0) + γ̃3(1)− γ̃3(0) = 0

Hence

w(c) = 0 for c = d

(
n∑

i=1

aiσi

)
∈ B1(S1).

(3) Consider the map g : H1(S1) → Z, c 7→ w(c).
By (1) and (2), g is well-defined homomorphism.
And for loop γ : I → S1, θ 7→ e2nπiθ, we have g(γ) = n.
So g is surjective.
By theorem 1.1.21.1.2, there is a surjective homomorphism from π1(S1) ∼= Z to H1(S1).
Hence H1(S1) ∼= Z.
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Proof of theorem 1.1.31.1.3. We first assume X is path-connected.
By theorem 1.1.21.1.2, let f : π1(X) → H1(X) sends each loop to its homology class.
Since H1(X) is abelian.
So [π1(X), π1(X)] ⊂ ker f .
It suffices to proof that f̃ : Ab(π1(X)) → H1(X) is injective.
Let [γ] ∈ Ab(π1(X)) is in the kernel of f̃ .
Then f̃([γ]) is the boundary of a 2-chain c =

∑
aiσi.

WLOG, we assume ai = ±1 and let djσi = τij , then

f̃([γ]) = ∂c =
∑

ai(τi0 − τi1 + τi2).

And since f̃([γ]) is a singular 1-cycle.
So after identify the canceling pairs and glue together the 2-simplices, we can get a ∆-

complex K and a map σ : K → X.
Let A be the vertices of K with the segment corresponding to γ.
For a point p in X, we can slide the image of each vertex along a path from its original

image to p by a homotopy.
For example, when K is a triangle, the map is:

p ⇒
p

Then by the homotopy extension property, we can extend the homotopy to all of K.
Therefore we can assume that f̃([γ]) is the boundary of c such that τij are loops at p.
Moreover, we obtain

[γ] =
∑

ai([τi0]− [τi1] + [τi2]) =
∑

ai[τi0 · τ̄i1 · τi2] = 0,

since the map σ : ∆2 → X natural gives a homotopy τi0 · τ̄i1 · τi2 ' 0.
Hence H1(X) ∼= Ab(π1(X)).
For general X, we have

Sn(X) ∼=
⊕

Y ∈Π0(X)

Sn(Y ).

So
H1(X) ∼=

⊕
Y ∈Π0(X)

H1(Y ) ∼=
⊕

[b]∈Π0(X)

Ab(π1(X, b)).

Def 1.1.8. Let (C∗, d), (D∗, d) be two chain complexes, a chain map is a group homomorphism
f : C∗ → D∗ of degree-0 that commutes with d:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

d

f

d

f f

d d

Prop 1.1.3. A chain map f sends cycles to cycles and boundary to boundary.
So a chain map f induces a homomorphism f∗ : Hn(C) → Hn(D).
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Proof. For c ∈ Zn(C), df(c) = f(dc) = 0.
For c = dc0 ∈ Bn(C), f(c) = f(dc0) = df(c0).
So f(Zn(C)) = Zn(D), f(Bn(C)) = Bn(D).
And the homomorphism f∗ : Hn(C) → Hn(D) is well-defined.

Prop 1.1.4. Given a continuous f : X → Y , it induces a map

f∗ : sinn(X) → sinn(Y )

(σ : ∆n → X) 7→ (f ◦ σ : ∆n → Y )

And f∗ : S∗(X) → S∗(Y ) is a chain map.

Proof.
di(f ◦ σ) = f ◦ σ ◦ di = f ◦ di(σ).

So df∗ = f∗d, i.e. f∗ is a chain map.

Exam 1.1.6. Id∗ = Id, (f ◦ g)∗ = f∗ ◦ g∗.

1.2 Basis category theory
Def 1.2.1. A category C consist of:

(1) a class of objects ob(C)

(2) For any X,Y ∈ ob(C), a set of morphisms, denoted by C(X,Y )

(3) For any X,Y, Z ∈ ob(C), a map C(X,Y )× C(Y, Z) → C(X,Z), (f, g) 7→ g ◦ f .

(4) For any X ∈ ob(C), an element 1X ∈ C(X,X).

And they satisfy:

(1) For any f ∈ C(Y,X), 1X ◦ f = f, f ◦ 1Y = f .

(2) (h ◦ g) ◦ f = h ◦ (g ◦ f).

Remark 1.2.1. (1) If ob(C) is a set, we call C a small category.

(2) We often write X ∈ C instead of X ∈ ob(C) and write f ∈ C(X,Y ) as f : X → Y

(3) Given f : X → Y , we say f is an isomorphism if ∃g : Y → X, s.t. f ◦ g = 1Y , g ◦ f = 1X .

In this case, we write f : X
∼=−−→ Y , write g as f−1.

Exam 1.2.1. (1) Given a group G, CG: ob(CG) = {∗},C(∗, ∗) = G, ◦ : G×G → G, (g, f) 7→ gf .

(2) C = Set, ob(C) = {all sets},C(X,Y ) = {all maps X → Y }.

(3) C = Top, ob(C) = {all topological spaces},C(X,Y ) = {all continuous maps X → Y }

(4) C = Ab, ob(C) = {all abelian groups},C(X,Y ) = {group homomorphisms X → Y }

(5) C = Gp, ob(C) = {all groups},C(X,Y ) = {group homomorphisms X → Y }

(6) C = ∆ is the simplicial category, ob(∆) = {{0}, {0, 1}, · · · } = {[0], [1], · · · } and

∆([m], [n]) = {order preserving maps [m]
f−−→ [n]}
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(7) alternative definition of ∆: ob(∆′) = {∆n}n∈N and
∆′(∆m,∆n) = {f : ∆m → ∆n|f is linear, f(ei) = ei′ , i ⩽ j ⇒ i′ ⩽ j′}.

(8) Given a space X, we define fundamental groupoid Π1(X): ob(Π1(X)) = {points in X} and
C(p, q) = {paths I

γ−−→ X from p to q}/{homotopy related to ∂I}, [γ] ◦ [η] = [γ · η].

Remark 1.2.2. (1) Π1(X)(p, p) = π1(X, p).

(2) all morphisms in C are isomorphisms, we call such category a groupoid(a groupoid with
single object is group).

Def 1.2.2. Let C,D be categories, a (covariant) functor F : C → D consists of:

(1) an assignment F : ob(C) → ob(D)

(2) for all X,Y ∈ ob(C), a map F : C(X,Y ) → D(F (X), F (Y )) satisfying that:

(a) For any X ∈ ob(C), F (1X) = 1F (X)

(b) For any f ∈ C(X,Y ), g ∈ C(Y, Z), F (g ◦ f) = F (g) ◦ F (f).

Exam 1.2.2. (1) For n ∈ N, we have a functor Hn(−) : Top → Ab, X 7→ Hn(X) and morphism
(f : X → Y ) 7→ (f∗ : Hn(X) → Hn(Y )).

(2) π1(−) : Top∗ → Gp, (X, b) 7→ π1(X, b).

(3) Given space X, we have a functor F : Π1(X) → Gp, F (b) = π1(X, b), for [γ] ∈ Π1(X)(b, b′),
set F ([γ]) : π1(X, b) → π1(X, b′), [α] 7→ [γ ◦ α ◦ γ̄].

Def 1.2.3. Given category C, define its opposite category Cop as ob (Cop) = ob(C), the morphism
Cop(X,Y ) := C(Y,X), (fop : Y → X) ↔ (f : Y → X), (fop ◦ gop) = (g ◦ f)op.

Def 1.2.4. A contravariant functor F : C → D is defined as a covariant functor F : Cop → D.
That is, F : C → D consists of:

(1) an assignment F : ob(C) → ob(D)

(2) a map F : C(X,Y ) → D(F (Y ), F (X)), F (1X) = 1F (X), F (f ◦ g) = F (g) ◦ F (f).

Exam 1.2.3. (1) Fix any space Y , we can define a contravariant functor F : Top → Set with
F (X) = Map(X,Y ) and

F : Top(X1, X2) → Set(F (X2), F (X1))

Map(X1, X2) → {all maps Map(X2, Y ) → Map(X,Y )}
f 7→ (g 7→ g ◦ f)

(2) Given any C and any Y ∈ ob(C), we can define a contravariant functor F : C → Set with
F (X) = C(X,Y ) and

F : C(X1, X2) → Set(C(X2, Y ),C(X1, Y ))

f 7→ (g 7→ (g ◦ f))

(3) We also have a covariant functor F ′ : C → Set with F ′(X) = C(Y,X).
We call F and F ′ the functor represented by the object Y .

Def 1.2.5. A simplicial set is a contravariant functor K : ∆ → Set.
More concretely, a simplical set consists of:



CHAPTER 1. SINGULAR HOMOLOGY 9

(1) a set K([n]) for all n ∈ N

(2) a map K(f) : K([n]) → K([m]) for all order preserving f : [m] → [n], such that K(f ◦ g) =
K(g) ◦K(f) for any [m]

g−−→ [n]
f−−→ [l].

Exam 1.2.4. Let X be a space, then we have a simplicial set K = sin∗(X) with

K : [m] 7→ sinn(X) = Map(∆n, X).

And for any f : [m] → [n], we have if : ∆m → ∆n, ek 7→ ef(k), define

K(f) : sinn(X) → sinm(X), σ 7→ σ ◦ f ′.

Remark 1.2.3. dk : sinn(X) → sinn−1(X) is exactly K(f) for f : [n− 1] ↪→ [n].
So H∗(X) can be recovered from K.
Actually, the simplicial set K = sin∗(X) contains strictly more information that is enough

to recover the (weak) homotopy type of X.
But H∗(CP2) ∼= H∗(S2 ∧ S4) although CP2 6∼= S2 ∧ S4.

Def 1.2.6. Given covariant functors F1, F2 : C → D, a natural transformation T from F1 to F2

is an assignment T (X) ∈ D(F1(X), F2(X)) such that the diagram

F1(X) F2(X)

F1(Y ) F2(Y )

T (X)

F1(f) F2(f)

T (Y )

commutes for any f : X → Y .
If T (X) is an isomorphism ∀X ∈ ob(C), we call T a natural isomorphism.

Remark 1.2.4. Similar definition works for contravariant functors.

Exam 1.2.5. Given continuous map f : X → Y , we have a natural transformation f∗ from
sin∗(X) : ∆ → Set to sin∗(Y ) : ∆ → Set and f∗([n]) : sinn(X) → sinn(Y ), σ 7→ ρ ◦ σ.

1.3 Homotopy invariance of homology
Def 1.3.1. Let C∗, D∗ be chain complexes, f0∗, f1∗ : C∗ → D∗ be two chain maps.

A chain homotopy h from f0∗ to f1∗ is a degree-1 map h : C∗ → D∗+1 such that

dh+ hd = f1∗ − f0∗.

In this case, we say f0, f1 are chain homotopic, denoted by f0∗
h' f1∗.

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

d

f0∗ f1∗

d

f0∗ f1∗
h

f0∗ f1∗
h

d d

Lemma 1.3.1. If f0∗
h' f1∗, then f0∗ = f1∗ : Hn(C∗) → Hn(D∗) for any n.

Proof. Take [c] ∈ Hn(C∗), then dc = 0.
So dh(c) = dh(c) + h d(c) = f1∗(c)− f0∗(c) ∈ Bn(D∗) = im

(
Dn+1

d−−→ Dn

)
Hence [f1∗(c)] = [f0∗(c)] ∈ Hn(D∗).
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Prop 1.3.1. f0, f1 : X → Y, f0
H' f1, then f0∗, f1∗ : S∗(X) → S∗(Y ) are chain homotopic.

The ideal is to subdivide ∆n× I(domain of the restriction of H in a simplex) into simplices,
denote the map by P . Once we have this, we know the domain f1∗−f0∗ are the top and bottom
of this triangular prism, which is the difference of the boundary of prism and the side of prism.
In particular, side of prism is given by ∂∆n × I. So we have

∂P + P∂ = f1∗ − f0∗.

This means that P is a chain homotopy. And to subdivide ∆n×I, we let the bottom surface
of prism to be the “bottom” of the first simplex. Every time, we vertically drag a vertex in
the bottom to the top, and let the new surface be the “top” of previous simplex, as well as the
“bottom” of next simplex. For example, for n = 2:

v0 v1

v2

w0 w1

w2

=

v0 v1

v2

w2

+
v0 v1

w1

w2

+
v0

w0 w1

w2

Proof. Given σ : ∆n → X, we have ∆n × I
σ×Id−−−→ X × I

H−−→ Y .
Let ∆n = {e0, · · · , en} and denote vi = ei × {0}, wi = ei × {1}.
Consider the singular simplex ηi : ∆

n+1 → ∆n × I such that

e0 7→ v0, · · · , ei 7→ vi, ei+1 7→ wi, · · · , en+1 7→ wn.

Then we have
∆n × I =

n⋃
i=0

ηi(∆
n).

Denote the simplex ∆n+1 ηi−−→ ∆n × I
σ×Id−−−→ X × I by

(σ × Id)
∣∣
[v0,··· ,vi,wi,··· ,wn]

∈ sinn(X × I).

Define prism operator P : Sn(X) → Sn+1(Y ) by

P (σ) :=

n∑
i=0

(−1)i

(
H ◦ (σ × Id)

∣∣∣∣
[v0,··· ,vi,wi,··· ,wn]

)
.

We claim that P is a chain homotopy: dP (σ) + P d(σ) = f1∗(σ)− f0∗(σ).

dP (σ) =
n∑

i=0

i∑
j=0

(−1)i+j

(
H ◦ (σ × Id)

∣∣∣∣
[v0,··· ,v̂j ,··· ,vi,wi,··· ,wn]

)

+
n∑

i=0

n∑
j=i

(−1)i+j+1

(
H ◦ (σ × Id)

∣∣∣∣
[v0,··· ,vi,wi,··· ,ŵj ,··· ,wn]

)

P d(σ) =
n∑

j=0

j−1∑
i=0

(−1)j+i

(
H ◦ (σ × Id)

∣∣∣∣
[v0,··· ,vi,wi,··· ,ŵj ,··· ,wn]

)

+
n∑

i=0

n∑
i=j+1

(−1)i+j−1

(
H ◦ (σ × Id)

∣∣∣∣
[v0,··· ,v̂j ,··· ,vi,wi,··· ,wn]

)
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So we obtain that

dP (σ) + P d(σ) =
n∑

i=0

(
H0 (σ × Id)

∣∣∣∣
[v0,··· ,vi−1,wi,··· ,wn]

)

−
n∑

i=0

(
H ◦ (σ × Id)

∣∣∣∣
v0,v··· ,vi,wi+1,···wn

)

=H ◦ (σ × Id)

∣∣∣∣
[w0,··· ,wn]

− H ◦ (σ × Id)

∣∣∣∣
[v0,··· ,vn]

=f1∗(σ)− f0∗(σ)

Coro 1.3.1. If f : X → Y is a homotopy equivalence, then f∗ : Hn(X)
∼=−−→ Hn(Y )

Proof. Let g be the homotopy inverse of f .
Then g ◦ f ' IdX , f ◦ g ∼= IdY .
So g∗ ◦ f∗ = IdH∗(X), f∗ ◦ g∗ = IdH∗(Y ).
Hence g∗ = f−1

∗ are isomorphism.

Exam 1.3.1. If X is contractible, then Hn(X) ∼=

{
Z n = 0

0 n 6= 0

If Y is a deformation retract of X, then Hn(Y ) ∼= Hn(X) for any n.

Def 1.3.2. H0(Top) is the homotopy category of Top with
obj(H0(Top)) = obj(Top) = {spaces},
H0(Top)(X,Y ) = [X,Y ] := Map(X,Y )/homotopy = {homotopy classes of maps X → Y }.

Prop 1.3.2. The functor Hn(−) : Top → Ab can be factorized as Top → H0(Top) → Ab.

Proof. Follows by the homotopy invariance of Hn(−).

Def 1.3.3. For any X, define its reduced homology H̃n(X) := ker(f∗ : Hn(X) → Hn(∗)) where
f : X → ∗ is the constant map.

We can also define H̃n(X) as the homology group of chain complex

· · · C2(X) C1(X) C0(X) Z 0d d ε

where ε (
∑

niσi) =
∑

ni.



Chapter 2

Properties of Homology

2.1 Relative homology
Def 2.1.1. Let C∗ =

⊕
n
Cn be a chain complex, a subcomplex is a graded subgroup B∗ =

⊕
n
Bn

such that Bn ⊂ Cn, d(Bn) ⊂ Bn−1.
In this case, we define the quotient chain complex

C∗
B∗

:=
⊕
n

Cn

Bn
, d[a] = [da].

It is easy to check that
(
C∗
B∗

, d
)

is still a chain complex.

Exam 2.1.1. Let (X,A) be a space pair, i.e. A is a subspace of X.
Then sinn(A) = {σ ∈ sinn(X)|σ(∆n) ⊂ A} ⊂ sinn(X) and S∗(A) is a subcomplex of S∗(X).

Def 2.1.2. Define S∗(X,A) = S∗(X)
S∗(A) , called relative singular chain complex.

And we define the relative homology Hn(X,A) := Hn(S∗(X,A)).

Remark 2.1.1. Hn(−,−) is a functor Top2 → Ab, where obj(Top2) = {(X,A)|A ⊂ X} with
Top2((X,A), (Y,B)) = {f : X → Y |f(A) ⊂ B}.

For f : X → Y , then f∗ : S∗(X) → S∗(Y ) maps S∗(A) into S∗(B).
So we can induce the maps f∗ : S∗(X,A) → S∗(Y,B), f∗ : H∗(X,A) → H∗(Y,B).
Given f0, f1 : (X,A) → (Y,B) with f0

H' f1, then f0∗ = f1∗ : Hn(X,A) → Hn(Y,B).
And we will prove that

Prop 2.1.1. If A is a subcomplex of a CW complex X, then Hn(X,A) ∼= H̃n(X/A).

Def 2.1.3. A sequence of abelian group consists of maps:

· · · Cn+1 Cn Cn−1 · · ·fn+1 fn

such that fn ◦ fn+1 = 0, we say the sequence is exact at Cn if ker fn = imfn+1.

Remark 2.1.2. A sequence of abelian group is a chain complex, and exact at Cn iff Hn(C∗) = 0.

Def 2.1.4. We say the sequence is exact if it is exact everywhere.
A short exact sequence is an exact sequence of the form

0 A B C 0i q

Prop 2.1.2. i is injective( i.e. A is subgroup of B), q is surjective and B/A ∼= C.

12
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Proof. ker i = im(0 → A) = {0}, imq = ker(C → 0) = C.
So C = imq ∼= B/ ker q = B/imi ∼= B/(A/ ker i) = B/A

Def 2.1.5. A short exact sequence of chain complexes consists of

0 A∗ B∗ C∗ 0
f g

such that f, g are chain maps and 0 −−→ An
f−−→ Bn

g−−→ Cn −−→ 0 is exact for every n.

Exam 2.1.2. 0 → S∗(A) → S∗(X) → S∗(X,A) → 0 is a short exact sequence of chain
complexes.

Prop 2.1.3. Let 0 −−→ A
i−−→ B

p−−→ C −−→ 0 be a short exact sequence, show that the following
three sets are in bijection with one another:

(1) The set of homomorphisms σ : C → B such that pσ = 1C .

(2) The set of homomorphisms π : B → A such that πi = 1A.

(3) The set of homomorphisms α : A ⊕ C → B such that α(a, 0) = ia, pα(a, c) = c for all
a ∈ A, c ∈ C.

Moreover, show that any homomorphism as in (3) is an isomorphism.

Proof. (i) ⇒ (ii): Since p(IdB − σp) = p− p = 0 and A = ker p.
So there is a morphism π : B → A, such that iπ = IdB − σp.
Therefore iπi = i− σpi = i.
And since i is injective.
Hence πi = IdA.
Similarly, we have (ii) ⇒ (i).
(i) ⇒ (iii): Let α : A⊕ C → B, (a, c) 7→ i(a) + σ(c).
Then α(a, 0) = ia, pα(a, c) = pi(a) + pσ(c) = c.
(iii) ⇒ (i): Let σ : C → B, c 7→ α(0, c).
Then pσ(c) = pα(0, c) = c.
Moreover, let β : B 7→ A⊕ C, b 7→ (π(b), p(b)).
Then βα(a, c) = β(ia+ σc) = (a, c).
And αβ(b) = α(π(b), p(b)) = iπ(b) + σp(b) = b− σp(b) + σp(b) = b.
Hence α is isomorphism.

Def 2.1.6. Any one of those structures in the previous proposition is a splitting of the short
exact sequence, and the sequence is then said to be split.

Prop 2.1.4. H̃n(X) = Hn(X) for n > 0 and H0(X) = H̃0(X)⊕ Z.

Proof. Since Hn(∗) = 0 for n > 0.
So it sufficient to prove 0 −−→ H̃0(X)

f−−→ H0(X)
g−−→ Z −−→ 0 is split.

Let a ∈ H0(X) such that g(a) = 1.
Then h : Z → H0(X), 1 7→ a satisfies that hg = 1C .
By proposition 2.1.32.1.3, H0(X) = H̃0(X)⊕ Z.

Lemma 2.1.1 (Snake). Let 0 −−→ A∗
i−−→ B∗

q−−→ C∗ −−→ 0 be a short exact sequence of chain
complexes.

Then there is a well-define map ∂ : Hn(C∗) → Hn−1(A∗) that fits into the long exact
sequence:
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· · · Hn+1(C∗)

Hn(A∗) Hn(B∗) Hn(C∗)

Hn−1(A∗) · · ·

∂

i∗ q∗

∂

Proof. Take [C] ∈ Hn(C∗), pick b ∈ q−1(C).
Then q(db) = dc = 0, i.e.db ∈ ker q = Im i.
So there exists a ∈ An−1 such that i(a) = db.
And since i(da) = d(ia) = 0 and i is injective.
Therefore da = 0, i.e.[a] ∈ Hn−1(A∗).
This define the map ∂ : Hn(C∗) → Hn−1(A∗), [c] 7→ [a].

b c

a db 0

0 0

d

q

d

i

d

q

d

i

If we choose another b′ ∈ q−1(c), then b− b′ ∈ ker q = Im i.
So there exists ã ∈ An such that b− b′ = i(ã).
Therefore i(a− a′) = db− db′ = i(dã), i.e.[a] = [a′].

ã b− b′ 0

dã db− db′

i

d

q

d

i

If we choose c′ with [c′] = [c], then c′ − c = dc̃.
Pick any b̃ ∈ q−1(c̃) and let b′ = b+ db̃.
So q(b′) = q(b) + q(db̃) = c+ dc̃ = c′.
Therefore db′ = db+ d2b̃ = db, i.e.a′ = a.

b̃ c̃

b′ − b c′ − c

0

q

d d

q

d

Since q ◦ i = 0.
So q∗ ◦ i∗ = 0.
Take [b] ∈ ker q∗, [q(b)] = 0 ∈ Hn(C∗).
Then there exists c ∈ Cn+1 such that dc = q(b).
Pick b′ ∈ q−1(c).
Then q(b− db′) = dc− d(q(b′)) = dc− dc = 0.
So there exists a ∈ An such that i(a) = b− db′, i.e.i(da) = db− d2b′ = 0.
Therefore da = 0, i.e.i∗[a] = [b− db′] = [b] ∈ Im i∗.
Consider [b] ∈ Hn(B∗) with b ∈ q−1(c).
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So q∗[b] = [q(b)] and db = 0, i.e. ∂q∗[b] = 0.
If ∂[c] = 0, then there exists ã ∈ An such that a = dã.
Therefore d(b− i(ã)) = i(a)− i(a) = 0.
Hence [b− i(ã)] ∈ Hn(B∗), i.e.q∗[b− i(ã)] = [q(b)] = [c] ∈ Im q∗.

Remark 2.1.3. Happy year of the Snake!

Prop 2.1.5. Triple (X,A,B) with B ⊂ A ⊂ X, then sinn(B) ⊂ sinn(A) ⊂ sinn(X).
We have exact sequence

0 → S∗(A)

S∗(B)

i∗−−→ S∗(X)

S∗(B)

j∗−−→ S∗(X)

S∗(A)
→ 0.

And long exact sequence

· · · → Hn+1(X,A)
∂−−→ Hn(A,B)

i∗−−→ Hn(X,B)
j∗−−→ Hn(X,A)

∂−−→ Hn−1(A,B) → · · ·

Proof. Follows by Snake lemma.

Coro 2.1.1. If we set B = ∗, we get

· · · → Hn+1(X,A) → H̃n(A) → H̃n(X) → Hn(X,A) → · · ·

Remark 2.1.4. ∂ : Hn+1(X,A) → Hn(A) is “natural”, that is, for any f : (X,A) → (Y,B), the
following diagram is commutes:

Hn+1(X,A) Hn+1(Y,B)

Hn(A) Hn(B)

∂

f∗

∂

f∗

Lemma 2.1.2 (Five). Given commutative diagram

A4 A3 A2 A1 A0

B4 B3 B2 B1 B0

d

f4

d

f3

d

f2

d

f1 f0

d d d d

assume first row si exact at A3, A2, A1, second row exact at B3, B2, B1, then

(1) f0 injective, f1, f3 surjective then f2 surjective.

(2) f4 surjective, f1, f3 injective then f2 injective.

(3) f0, f1, f3, f4 isomorphism then f2 is isomorphism.

Proof. (2) If f2(a2) = 0, let a1 = da2.
Then f1(a1) = df2(a2) = 0.
So a1 = 0, i.e.a2 = da3 for a3 ∈ A3.
Let b3 = f3a3.
Then db3 = f2(a2) = 0, i.e. there exists b4 ∈ B4, such that db4 = b3.
Take a4 ∈ A4, s.t.f4(a4) = b4.
Let a′3 = da4.
Then f3(a

′
3) = db4 = b3 = f3(a3).

So a′3 = a3 = da4, i.e.a2 = da3 = 0.
(1) is similar and (3) follows by (1)+(2).
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Def 2.1.7. A map f : (X,A) → (Y,B) is called a homology isomorphism if f∗ : Hn(X,A) →
Hn(Y,B) is an isomorphism for any n.

Coro 2.1.2. Given f : (X,A) → (Y,B), if 2 out of the 3 maps

f : (X,A) → (Y,B), f ′ : X → Y, f
∣∣
A
: A → B

are homology isomorphisms, then so is the third one.

Proof. WLOG, assume f ′
∗,
(
f
∣∣
A

)
∗ are isomorphism, then

Hn(A) Hn(X) Hn(X,A) Hn−1(A) Hn−1(X)

Hn(B) Hn(Y ) Hn(Y,B) Hn−1(B) Hn−1(Y )

∼= ∼=

∂

∼= ∼=

∂

The proof is complete by five lemma.

Exam 2.1.3. For triple (X,A,B) such that B is a deformation retract of A, then we have the
inclusion IdX : (X,B) → (X,A) that B ↪→ A.

So H∗(X) ∼= H∗(X),H∗(B) ∼= H∗(A), i.e.H∗(X,B) → H∗(X,A) is an isomorphism.
This can also be proved by long exact sequence of triple, since Hn(A,B) = 0.

Def 2.1.8. A triple (X,A,U) is called excisive if Ū ⊂ int(A).
In this case, the inclusion (X − U,A− U) ↪→ (X,A) is called an excision.

Thm 2.1.1. Any excision is a homology isomorphism.

This theorem is powerful but hard as well, so we will prove it in the next section. We now
first give some of its corollaries.

Coro 2.1.3. Given (X,A), suppose B ⊂ X, Ā ⊂ int(B) and A is a deformation retract of B,
then the quotient map q : (X,A) → (X/A, ∗) is a homology isomorphism.

Proof. We have the following commutative diagram, and we claim that they are all isomorphism.

(X,A) (X,B) (X −A,B −A)

(X/A, ∗) (X/A,B/A) (X/A− ∗, B/A− ∗)

(5)

(1) (2)

(6)

(3) (4)

(6) is a homeomorphism so is a homology isomorphism.
(2),(4) are excision.
(1) By example 2.1.32.1.3
(3) ∗ ↪→ B/A is deformation retract so by example.
So (5) is isomorphism.

Prop 2.1.6. H̃m(Sn) =

{
Z〈[ιn]〉 m = n

0 m 6= n

where ιn ∈ Sn(Dn, ∂Dn), [ιn] ∈ Hn(Dn, ∂Dn) ∼= H̃n(Sn).
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Proof. When n = 0, H̃m(S0) ∼= H̃m(D0/∅) ∼= Hm(D0,∅) = Hm(∗) =

{
Z〈[l0]〉 m = 0

0 m 6= 0
.

Consider triple (Dn, Sn−1, ∗), by corollary 2.1.32.1.3, Hm(Dn, Sn−1) ∼= Hm(Sn, ∗) = H̃m(Sn).
Then we have

Hm(Dn, ∗) Hm(Dn, Sn−1) Hm−1(Sn−1, ∗) Hm−1(Dn, ∗)

0 H̃m(Sn) H̃m(Sn−1) 0

= ∼= ∼= =

So H̃m(Sn) ∼= H̃m−1(Sn−1) and this concludes the desired formula.

Coro 2.1.4. (1) For n 6= m, Sn 6' Sm,Rn 6' Rm.

(2) Sn−1 is not a retraction of Dn.

Proof. (1) H̃n(Sn) ∼= Z 6∼= 0 ∼= H̃n(Sm).
So Sn 6' Sm and Rn\{0} ∼= Sn−1 6' Sm−1 ∼= Rm\{0}.
Hence Rn 6' Rm.

(2) Z ∼= H̃n−1(Sn−1) → H̃n−1(Dn) ∼= 0 has no left inverse.
So Sn−1 → Dn has no left inverse.

Thm 2.1.2 (Brouwer fixed point). f : Dn → Dn is continuous, then Fix(f) 6= ∅.

Proof. Suppose f(x) 6= x for any x ∈ Dn.
Define f̃ : Dn → Sn−1 that map x to the intersection of Sn−1 and the ray lx from x to f(x).
Then f̃

∣∣∣
Sn−1

= Id, i.e. f is a retraction, contradiction!

2.2 Locality principle of homology
Def 2.2.1. X is a space and A = {a collection of subsets of X}, we say A is a cover of X if

X =
⋃
A∈A

int(A).

And we can define a chain complex:

sinAn (X) = {σ : ∆n → X|σ(∆n) ∈ A for some A ∈ A} = {A-small simplices} ⊂ sinn(X).

SA
n (X) = Z sinAn (X) = {A-small chains} ⊂ Sn(X).

Then SA
∗ is a subcomplex of S∗(X).

Thm 2.2.1. The inclusion SA
∗ (X)

i−−→ S∗(X) is a quasi-isomorphism, that is, it induces an
isomorphism on homology group:

i∗ : Hn(S
A
∗ (X))

∼=−−→ Hn(S∗(X)).

The idea to prove this theorem is to prove that we can divide a simplex into some small
piece that are as small as we want. This operator is done by the barycentric subdivision. For
a simplex [v0, · · · , vn], we decomposite it into some n-simplex [b, w0, · · · , wn−1] where b is the
barycenter and [w0, · · · , wn−1] is the barycentric subdivision of a face [v0, · · · , v̂i, · · · , vn]. In
particular, the figures below show the cases when n = 1, 2:
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v0
b v1

v0 b01 v1

v2

b02 b12
b

Using this idea, we now try to prove this theorem rigorously.

Proof. We define $ : S∗(X) → S∗(X) called barycentric subdivision, which is natural chain
map, naturally homotopic to Id.

By linearity, suffices to define $(σ) for σ ∈ sinn(X).
Let σ∗ : sinn(∆n) → sinn(X), by naturality, $σ = σ∗($ιn), where ιn : ∆n Id

=== ∆n ∈ sinn(∆
n)

is the universal singular simplex.
So we just need to define $ιn.
Given star shaped (X, b) and σ : ∆n → X, define

b ∗ σ : ∆n+1 → X, (x0, · · · , xn+1) 7→ x0 · b+ (1− x0)σ

(
x1

1− x0
, · · · , xn+1

1− x0

)
.

This extends to a linear map b ∗ − : Sn(X) → Sn+1(X).
We inductively define $ιn as $c0 = c0, $ιn = bn ∗ ($dιn), for example,

$ι1 = [b, v1]− [b, v0],

$ι2 = [b, b01, v1]− [b, b01, v0] + [b, b12, v2]− [b, b12, v1] + [b, b02, v0]− [b, b02, v2].

For barycentric subdivision, we have the following propositions:

Prop 2.2.1. $ : S∗(X) → S∗(X) is a chain map.

Proof. By naturality of d, $, it suffices to check d$(ιn) = $ d(ιn).
When n = 1, $dι1 = $(e1 − e0) = e1 − e0 and d($ι1) = d(b1e1 − b1e0) = e1 − e0.
For n ⩾ 2, we have d(b ∗ c) = c− b ∗ dc for c ∈ S⩾1(X).

d
b

c
= c −

b

+
b

−
b

︸ ︷︷ ︸
−b(dc)

So d$ιn = d(bn ∗ $dιn) = $dιn − bn ∗ d$dιn = $dιn − bn ∗ $d2ιn = $dιn.

Prop 2.2.2. There exists a natural chain homotopy T : S∗(X) → S∗+1(X) from $ to Id.

Proof. Set Tιn = bn ∗ (ιn − Tdιn).

= + + +

Geometrically, this formula inductively defined a subdivision of ∆n × I by join all simplices
of ∆n × {0} ∪ ∂∆n × I to the barycenter of ∆n × {1}, as the figure above shown.
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We now prove that dT + Td = Id− $ by induction.
It suffices to prove dTιn + Tdιn = ιn − $ιn:

dTιn =dbn ∗ (ιn − Tdιn)

=ιn − Tdιn − bn ∗ (dιn − dTndιn)

=ιn − Tdιn − bn ∗ ($dιn + Td2ιn)

=ι− Tdιn − $ιn

Lemma 2.2.1. Given any cover A of ∆n, there exists m such that $mιn ∈ SA
n (∆

n).

Proof. For σ ∈ sinn(∆
n), we define diam(σ) := sup

x,y∈∆n
|σ(x)− σ(y)|.

And for a chainc =
∑

aiσi ∈ Sn(∆
n), diam(c) = maxdiam(σi).

Then by induction, diam($σ) ⩽ max{n−1
n diam(σ), |σ(bn)− σ(v0)|} ⩽ n

n+1diam(σ).
So by Lebesgue lemma, there exists m such that $m(ιn) ∈ SA

∗ (∆
n).

Coro 2.2.1. For any cover A of X and any c ∈ S∗(X), there exists m such that $mc ∈ SA
∗ (X).

Proof. By finiteness, it suffices to assume c = σ : ∆n → X.
Let A′ = {σ−1(A)|A ∈ A}.
Then A′ is a cover of ∆n.
By lemma 2.2.12.2.1, ∃m >> 0, s.t.$mιn ∈ SA′

n (∆n).
So $mσ = $mσ∗(ιn) = σ∗($

mιn) ∈ SA
∗ (X).

proof of theorem 2.2.12.2.1. Consider i∗ : Hn(S
A
∗ (X)) → Hn(S∗(X)).

Surjectivity: take [C] ∈ Hn(S∗(X)) with dc = 0, then there exists m such that $mc ∈ SA
∗ (X)

and d($mc) = $mdc = 0.
So [$mc] ∈ Hn(S

A
∗ (X)) and i∗[$

mc] = [$mc] = [c] since $
T' Id.

Injectivity: Take [c] ∈ ker i∗, then c ∈ SA
n (X) and dα = c for some α ∈ Sn+1(X).

Then there exists m, such that $mα ∈ SA
n+1(X).

So d($mα) = $mdα = $mc, i.e. [c] = [$mc] = 0 ∈ H∗(S
A
∗ (X)).

Hence i∗ is isomorphism.

Coro 2.2.2. If (X,A,U) is excisive, i.e. Ū ⊂ int(A), then the excision (X\U,A\U) ↪→ (X,A)
induces isomorphism on homology.

Proof. Let B = X\U , A = {A,B} is a cover of X, then (X\U,A\U) = (B,A ∩B).
So sinAn (X) = sinn(A) ∪ sinn(B), SA

∗ (X) = S∗(A) + S∗(B) and S∗(A) ∩ S∗(B) = S∗(A ∩B).

0 S∗(A) SA
∗ (X) S∗(B)/S∗(A ∩B) 0

0 S∗(A) S∗(X) S∗(X)/S∗(A) 0

= i∗ j∗

By 5-lemma, j∗ is an isomorphism.
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Thm 2.2.2 (Mayer-Vietoris sequence). A = {A1, A2} is a cover of X, then we have a long
exact sequence

· · · Hn+1(X)

Hn(A1 ∩A2) H1(A1)⊕H1(A2) Hn(X)

Hn−1(A1 ∩A2) · · ·

∂

(j1∗,i2∗)

i1∗−i2∗

∂

where
A1 ∩A2 A2

A1 X

j1

j2 i2

i1

Proof. SA
∗ (X) = S∗(A1) + S∗(A2), S∗(A1) ∩ S∗(A2) = S∗(A1 ∩A2).

So we have a short exact sequence

0 S∗(A1 ∩A2) S∗(A1)⊕ S∗(A2) SA
∗ (X) 0

(i1∗,i2∗)

And the proof is complete by snake lemma.

Prop 2.2.3. If X is a CW complex, X = A1 ∪ A2 are subcomplex, then we also have the MV
sequence

2.3 The Eilen-Steenrod axioms
Def 2.3.1. A homology theory is

(1) a sequence of functors {hn : Top2 → Ab}n∈Z

(2) a natural transformation ∂ : hn(X,A) → hn−1(A,∅) that satisfy:

(a) (homotopy invariance axiom)f ' g ⇒ f∗ = g∗ : hn(X,Y ) → hn(X
′, Y ′) for any n and

f, g : (X,Y ) → (X ′, Y ′).
(b) (excision axiom)Any excision (X−U,A−U) → (X,A) induces isomorphisms on hn(−)

for any n.

(c) (long exact sequence) · · · → hq+1(X,A)
∂−−→ hq(A) → hq(X) → hq(X,A)

∂−−→ · · · is
exact.

(d) (dimension axiom)hq(∗) ∼=
{
Z q = 0

0 q 6= 0

(e) (Milnor axiom)Given a collection of spaces {Xk}k∈I , the inclusion maps

ik : Xk →
⊔
k∈I

Xk, ik,∗ : hn(Xk) → hn

(⊔
k∈I

Xk

)

induces an isomorphism

α :=
⊕
k∈I

ik,∗ :
⊕
k∈I

hn(Xk) → hn

(⊔
k∈I

Xk

)
.
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Thm 2.3.1 (Milnor). Let hn(−) be a homology theory, then for any CW pairs (X,A), we have
natural isomorphism hn(X,A) ∼= Hn(X,A), i.e. these axioms determines homology theory.

Def 2.3.2. A generalized homology theory consists of a sequence of functors {hn : Top2 →
Ab}n∈Z and natural transformations ∂ : hn+1(X,A) → hnX that satisfy all axioms other than
the dimension axiom.

Exam 2.3.1. For an abelian group G and space X, we define the chain complex

Sn(X;G) = Sn(X)⊗G, d : Sn(X;G) → Sn−1(X;G).

And the homology with G-coefficient:

Hn(X;G) := Hn(S∗(X;G)),Hn(X,A;G) := Hn

(
S∗(X;G)

S∗(A;G)

)
.

The dimension axiom is replaced by

Hn(∗;G) =

{
G n = 0

0 n 6= 0

Exam 2.3.2. For a space X and n ⩾ 0, define

Ωn(X) := {(M, f)|M is smooth n-dimensional closed manifold, f : M → Xcontinuous}/ ∼ .

And (M, f) ∼ (N, g) if there is some (n+1)-dim compact manifold W and h : W → X such
that ∂W ∼= M tN, h

∣∣
∂W

= f t g.
The group structure is given by [(M, f)] + [(N, g)] = [M tN.f t g].
Ω̃n(X) := ker(Ωn(X) → Ωn(∗)),Ωn(X,A) = Ω̃n(X/A) for CW pairs (X,A).
Ωn(−) is a generalized cobordism theory.
And Ωn(∗) ∼= Z/2, 0,Z/2, 0,Z/2⊕Z/2, · · · with generators ∗, 0, [RP2], 0, ([RP2×RP2], [RP4]).
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