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Chapter 1

Affine varieties

1.1 The Zariski topology

Notation 1.1.1. We use k to denote an algebraic closed field, e.g. k = C,F,, C(x), etc.

Def 1.1.1. An affine space for the k-vector space k™ is a set A together with an action of k"
on A, say k" x A — A, (v,a) — v + a, such that

(1) foranya € A, 0+ a = a.

(2) for any v,w € k™, a€ A,v+ (w+a)=(v+w)+a

(3) for any a € A, the map k™ — A,v — v + a is bijection.

Def 1.1.2. A} is the underlying affine space of k", call an affine n—space over k.

Remark 1.1.1. The underlying set of k™ and A} are actually the same, but we need to “forget”
the rule of 0 as origin on A}.

Def 1.1.3. A polynomial f € k[x1,--- ,z,] gives a map f : A" — k, and we call a k-valued
function on A" regular if it is defined by a polynomial.

Prop 1.1.1. A polynomial f € kl[x1,--- ,xy,] is completely determined by the regular function
it defines.

Proof. Let g be another polynomial such that the regular function of f, g agree at every point.
When n =1, f — g € k[z1] has infinity many roots, i.e. f =g € k[z1].

Assume f =g € k[z1, -+ ,zx) for kK < n and let
d
f —g= Zhi(xla 7xn—1)x27
i=0
where h; € k[z1,--- , zp_1].
Then for any fixed x1,--- ,x,_1, we must have h;(x1,--+ ,x,-1) = 0.

So the regular function of h; is zero at every point.
Therefore by the induction assumption, h; = 0,.e.f = g.
Hence f is completely determined by the regular function it defines. O

Def 1.1.4. For f € k[z1, - ,z,], denote Z(f) be the zero locus of f : A — k and A} =
A™Z(f).

Prop 1.1.2. Ifdeg(f) > 0, then Z(f) # A", @.
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Proof. If Z(f) = A™, then the regular function of f is zero everywhere, i.e. f = 0.
Let

d
f= th‘(wl, S Tp—1)Ty,
i=0
where h; € klx1, -, xp-1].
Then hq # 0, i.e. Z(hg) # A" ! and fix (21, - ,2,_1) such that hg(x1,- -+ ,2n_1) # 0.
So f(x1, -+ ,Zn—1,e) has a root by fundamental theorem of algebra.
Hence Z(f) # A", @. O

Def 1.1.5. A principal subset of A" is a subset of form A?.
Def 1.1.6. A hypersurface of A" is a subset of form Z(f) with deg(f) > 0.

Prop 1.1.3. The collection of principal subsets of A™ form a basis of a topology on A™, called
the Zariski topology on A™.

Proof. A} NA} = A"\(Z(f1) U Z(f2)) = A}, 4, -

Prop 1.1.4. For the Zariski topology, an open subset is a union of certain principal subsets, a
closed subset is an intersection of certain Z(f).

Proof. By definition of the basis of topology. O
Def 1.1.7. For a subset J C k[z1,--- ,2zy], denote Z(J) = () Z(f), these are exactly all
fedJ

Zariski-closed subsets.

Exam 1.1.1. The Zariski topology on A' is the cofinite topology: closed subsets are the finite
subsets.

Def 1.1.8. For subsets X C A", denote by I(X) the set of polynomials vanishing on X.
Prop 1.1.5. I(X) is an ideal of k[z1,- - ,xy).

Proof. For any f € I(X) and g € klx1,--- ,zy], Z(fg) D X.
So I(X) is the set of polynomials. O

Remark 1.1.2. We have the following commutative diagram:

1

{subsets of A"} ———— {ideals of k[z1, -, x,]}
u n
{closed subsets of A"} +Z— {subsets of k[zy,--- ,zn]}
Eventually, closed subsets of A™ +~radical ideals of klxyi,- -, xy|(we will prove this later).

Prop 1.1.6. (1) X; C Xy C A", then I(X;) D I(X2).
(2) J1 C Jy Cklwy, - ,xn], then Z(J1) D Z(Ja).

(3) 1(X1 U Xs) =1(X1) N I(X2).

(4) Z(J1U Jo) = Z(J1) N Z(J2).

Proof. (1) For f € I(X2), Z(f) D Xo D Xy, t.e.f € I(X1).
(2) 2(h)= N 2(Hc U 2(f) = Z(D)

fE€J2 FeJiCJs
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(3) I(X1UXy) C I(X1), I(X2).
And for f € I(X1) N I(X3), Z(f) D X1 U Xa, ice.f € I(X1 U Xa).

(4) Z(hudy)= N Z(f)= < N Z(f)) n ( N Z(f)) =Z(J1) N Z(J2).
feJiuda fen feJ2

Def 1.1.9. For any X C A", denote by X the Zariski closure of X.

Prop 1.1.7. (1) Z(I(X)) = X.

(2) I(Y)=1(Y).

(3) two polynomials f,g € k[x1,--- ,x,] have same restriction to Y iff f—ge I(Y) =1 (Y)

(4) klx1, -+ ,2,]/I(Y) contains distinct k-valued functions on'Y . (also on'Y')

Proof. (1) Since Z
So X ¢ Z(I(X
And since Z(I(
Hence Z(I(X)) =

f) D X for every f € I(X).
)C Z(I(X))=X.
X)) is closed.

(
)

(2) For feI(Y), Z(f) D Y,ief e I(Y).
And since I(Y) D I(Y).

So I(Y)=I(Y).
(3) Since f=ginY.
Sof—g=0inY,ie f—gelY)=I(Y).

(4) For [f] # [g] € k[z1, -+ ,zn]/I(Y), [f — 9] #0.

So f—g¢I(Y),ie fand g are distinct on Y.
O

Def 1.1.10. Let Y C A™ be closed, denote k[Y] = k[x1, -+ ,x,]/I(Y), called the coordinate
ring of Y, and k-valued function on Y is called regular if it is determined by a element in k[Y].

Remark 1.1.3. We can say that the coordinate ring of Y is the set of regular functions on Y.

Def 1.1.11. Given a closed subset Y C A™ Y also has a topology.
denote Iy (X) = I(X)/I(Y) when X C Y, for subset J C k[Y], let Zy(J) be the zero locus
of JUI(Y), then Zy(J) is a closed subset of Y.

Remark 1.1.4. Similar to remark 1.1.2, we have the commutative diagram:

{subsets of Y'} o, {ideals of k[Y] = k[A"]/I(Y)}

@] N

{closed subsets of Y} — {subsets of k[Y]}

Prop 1.1.8. Zy(Iy (X)) = X.

>
O

Proof. Zy(Iy(X)) = ({ m( )Z(f)) NY = ZI(X))NY =

flely (X
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Def 1.1.12. Let R be a ring, J C R is an ideal, define the radical of J
V.J={a€R|3m e Z* s.ta™ e J}.

We say J is a radical ideal if J = v/J.
We say R is reduced ring if (0) is radical, i.e. R has no nonzero nilpotents.

Prop 1.1.9. (1) A prime ideal is radical.
(2) J C R is a ideal, then J is radical iff R/J is reduced.

Proof. (1) Suppose p is a prime ideal and ™ € p but a ¢ p.
WLOG, we assume a™ ! ¢ p.
Then a -a™ ! ¢ p, contradiction!

So p is a radical ideal.

(2) J is radicaleFor any a ¢ J and n € ZT, a™ ¢ J
&For any [a] #0 in R/J and n € Z*, [a]™ # (0).
< R/J is reduced.

0
Prop 1.1.10. (1) For subset X CY, we have Iy (X) C k[Y] is radical.
(2) For subset J C kY], we have Zy (J) = Zy ((J)) = Zy ( <J>>
Proof. (1) Let f € \/Iy(X).
Then there exist m € Z*, such that f™ € Iy (X), i.e. fm‘X =0.
So f|y =0,i.ef € Iy(X).
(2) Let [f] € J.
Then Zy([fg)) > Zv ([f]) > Zr(J) for [g] € K[Y].
And for [h] € k[Y] such that [h]" = [fg], Z([h]) D Z([fg]) D Zy(J).
So Zy (VD)) 2y (7)) > 2y ().
And since Zy ( (J)) Zy (1)) C Zy (J).
Hence Zy ( <J>) = Zy ((J)) = Zy (J).
O

Remark 1.1.5. We now have the correspondence

I
{close subsets of A"} " {radical ideals of k[A"]}
z

I
{close subsets of Y'} é’ {radical ideals of k[Y]}
Zy

Actually, I(Iy resp.) and Z(Zy resp.) are inverse to each other, thanks to:
Thm 1.1.1 (Hilbert’s Nullstellensatz). For any ideal J C k[xy,--- ,x,], we have [(Z(J)) = \/J

We will prove this theorem in the third section.
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Exam 1.1.2. For a point p = (a1, - ,a,) € A", then I({p}) = (x1 — a1, - ,zp — ayn) is a
mazimal ideal.

Proof. Let m = (x1 —aq, -+ ,Tp — ap).
Then Z(m) = p,i.em C I({p}).
And since k[xi,--- ,zp)/m =k is a field.
So m is maximal.
And since x1 — q ¢ I({p}) for q # a;.
Hence I({p}) # k[x1,--- ,zp], i.em = I({p}). O

Prop 1.1.11. Given a mazimal ideal m C k[z1,--- ,z,], m corresponds to a point.

Proof. Since Z(m) is a nonempty closed set of A™ and m is maximal.
So there is no nonempty closed set strictly contained in Z(m), i.e. Z(m) = {p}.
Hence m C I(Z(m)) = I({p}) = (z1 — a1, -+ ,xp —ap),te. m = (1 —ai, - ,Tp — ap). O

1.2 Irreducibility and decomposition

Def 1.2.1. Let Y be a nonempty topological space, we say that Y is irreducible if it is not the
union of two closed proper subsets.

Prop 1.2.1. nonempty Y is irreducible iff any nonempty open subset of Y is dense in'Y .

Proof. If Y = Y; with proper closed Y7,Ys, then Y — Y; C Y5 is nonempty open subset of Y
but not dense. ) )
Conversely, suppose U C Y is nonempty open and U ; Y,thenY =UU (Y - U). O

Def 1.2.2. We call a maximal irreducible subset of Y an irreducible component of Y.
Lemma 1.2.1. If A; C Ay C --- CY, A; is irreducible, then |J A; is also irreducible.

Proof. Suppose | J A; = C1 U Cy where C1,Cy are proper closed subsets.
Then A; = (Az NnCy) U (Az N CQ)
And since A; are irreducible.
So A; C Cqor A; C Cs.
Therefore C7 or Cy contains all Aj;.
Hence Cy = |J A; or Cy = | 4;, contradiction! O

Thm 1.2.1. Every irreducible subset of Y is contained in an irreducible component.
In particular, Y equals to the union of its irreducible components.

Proof. By Zorn’s lemma. O
Prop 1.2.2. A Hausdorff topological space is irreducible iff it is one point.

Proof. Suppose X contain two points a, b.
Then there exist two disjoint open set U,V such that a € U,b € V.
So (X\U)U(X\V)=X\(UNV)=X, ie X is not irreducible, contradiction!
Hence X consists of a single point. O

Lemma 1.2.2. IfY is irreducible, then every open nonempty subset of Y is irreducible.
Conversely, if C CY is an irreducible, then C is also irreducible.
In particular, an irreducible component of Y is closed.
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Proof. Suppose Y is irreducible, @ # U C Y is open, then every nonempty open subset of U is
dense in Y.

So it is also dense in U,i.e. U is irreducible.

Suppose C C Y is irreducible subspace and V' C C' is nonempty open subset.

Then VN C # @ is open in C.

Therefore V N C is dense in C and C.

Hence V is dense in C, i.e. C is irreducible. ]

Prop 1.2.3. A closed subset Y of A™ is irreducible iff I(Y') is prime ideals k[Y] = E[A™]/I(Y)
is a domain.

Proof. Suppose Y is irreducible, let f,g € k[z1,--- ,x,] with fg € I(Y).
Then Y C Z(fg) = Z(f)U Z(g).
SoY CZ(f)orY C Z(g),ie. feI(Y)orgelI(Y).
Suppose Y = Y7 UYs with Y; closed proper subsets.
Then for i € {1,2}, 3f; € I(Y;))\I(Y).
So fifz € I(Y) but fi, fa ¢ I(Y). O

Exam 1.2.1. In A", point s mazimal ideal
irreducible closed set +=1 prime tdeal
irreducible component Ay minimal prime ideal
A" ELs (0)

Given closed Y C A", Y +=1s (0) C k[Y].

closed subset of Y <+~ radical ideal of E[Y].

point < mazimal ideal of k[Y]

irreducible closed subset of Y PN prime ideal of k[Y].

irreducible components Ay minimal prime ideal of kY]

Def 1.2.3. A ring R is called a UFD if it has no zero divisors and each principal ideal is a
product of principal prime ideals: (a) = (p1)--- (ps) and (p1),- -, (ps) is unique up to order.

Remark 1.2.1. (p) is principal prime ideal iff plab = p|a or p|b and we call p prime element.
Prop 1.2.4. In UFD, irreducible element is equivalent to prime element.

Proof. Suppose (p) is irreducible.
For ab € (p), let ab = cp for some ¢ € R.
Then by the uniqueness of factorization, a € (p) or b € (p).
Suppose (p) is prime.
Then the factorization of (p) is (p), i.e. (p) is irreducible. O

Thm 1.2.2. If R is UFD, then R|x] is UFD.

Proof. Let F be the field of fraction of R.
For f € R[x], we can uniquely factorize it into prime elements in F'[z].
And since f € F[x] can be written as f = ag where g € R[z] is primitive and a € R.
So we can write

,
f=;glgz~-gn7

where g; € R[] is primitive and irreducible in F[z].
Let f = af where f is primitive and a € R.
Then by Gauss lemma, r = usa for some unit v and so

f=wuagy---gn.
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And since R is UFD.
Hence R[z] is UFD. O

Prop 1.2.5. A principal prime ideal of k[x1,- -+ ,xy,] is of form (f) with f is irreducible poly-
nomial with positive degree.

Proof. By theorem 1.2.2, k[x1,--- ,z,] is UFD and the proof is complete by proposition 1.2.4.
O

Lemma 1.2.3. Suppose Y =Y U---UY; such that Y; is closed and irreducible and Y; ¢ Y,
then Yi,--- ,Ys are all irreducible components of Y.

Proof. Suppose C is an irreducible component of Y.
Then C = (CNY)U---U(CNY5).
So there exists 7 such that C C Y;, i.e.C =Y.
Suppose Y; is not irreducible component.
then 7 irreducible component C' 2 Y;.
Therefore Y; G Y; = C, contradiction! O

Coro 1.2.1. Let f € k[xy,- - , x| has positive degree, then f is irreducible iff Z(f) irreducible.
More generally, if f = f1--- fs with f; irreducible, then Z(f1), -+, Z(fs) are all irreducible
components of Z(f), that is

S

z(5) = 2(5).

=1

Proof. f is irreducible < (f) is prime< Z(f) is irreducible subset of A™.
If f=f1--fs, then we have

S

z(H =2
i=1
with each Z(f;) irreducible.
Assume (f1),---, (fs) distinct.
Then for i # j, we must have Z(f;) € Z(f;).
Otherwise, Z(f;) G Z(f;),i.e.fj|fi but f;, f; are irreducible, contradiction!
By lemma 1.2.3, {Z(f;)} is the set of irreducible components of Z(f). O

Lemma 1.2.4. For a partially ordered set (A, <), TFAE:
(1) (A, <) satisfies ACC(ascending chain condition):

Every ascending chain a1 < as < --- becomes stationary, that is, for n sufficiently large,
an:an+1:.-._

(2) Every nonempty subset B C A has a maximal element.
Proof. By Zorn’s lemma. O
Remark 1.2.2. Similar for DCC(descending chain condition).

Def 1.2.4. We say a ring R is noetherian if its collection of ideals satisfies ACC.
We say a topological space Y is noetherian if its collection of closed subsets satisfies DCC.

Prop 1.2.6. (1) A subspace of a noetherian set is noetherian.

(2) A quotient of a noetherian ring is noetherian.
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Proof. (1) Let X C Y and Y is noetherian.
For any descending closed subset chain {U;} in X, let U; = V; N X where V; is closed in Y.
Then there exists ¢ such that V; = V41 =---.

SoU; =U;41 = -+, i.e. X is noetherian.

(2) Let R is noetherian and I is an ideal of R, S = R/I.

For any ascending ideal chain {J;} in S, let I; = 7—1(.J;) is an ideal of R, where 7 : R — S
is the canonical homomorphism.

Then there exists ¢ such that I; = ;11 = ---.

So J; = Jip1 = ---, i.e. S is noetherian.

Thm 1.2.3 (Hilbert’s basis). If R is noetherian, then R|x| is noetherian.
Coro 1.2.2. If R is noetherian, so is any finitely generated R-algebra.
Coro 1.2.3. Any closed subspace Y of A™ is notherian.

We will prove these three proposition in the next section.

Prop 1.2.7. Let Y be a noetherian space, then its irreducible components are finite in number
and their union equals Y .

Proof. We first show: every closed subset of Y is a finite union of closed irreducible subset.

Let B be the collection of the closed subsets of Y which are not the finite union of closed
irreducible subset.

If B # &, then there exists a minimal element Z € B.

Let Z = Z1 U Z5 and then 77, Zo ¢ B.

So Z1, Zs is a finite union of closed irreducible subset, so is Z, contradiction!

Now Y =Y, U---UY; with Y; is closed and irreducible, Y; Q Y;.

Hence {Y1,---,Ys} is the set of all irreducible components of Y. O

Coro 1.2.4. Every subset of A™ has a finite number of irreducible components.
Proof. Follows by corollary 1.2.3 and proposition 1.2.7. O

Def 1.2.5. R is a ring, S C R is multiplicative and 1 € S, the ring S™'R and homomorphism
R — S7'R as follows:

elements in S™'R are equivalence classes of twithr € R,s € Sand £ ~ ’S"—; iff there exists
s € S such that s”(rs’ —r's) =0

¢:R— SR, 1 [ﬂ and image of elements of S in S™!R is invertible, i.e. [ﬂ . [l] =1.

s

Exam 1.2.2. If0 € S, then S7'R = (0).
If S = {s"|n € N} for certain s € R, denote R [1] = S7IR.
For S = S(R) := R — {zero divisors}, write Frac(R) = S™'R called fraction ring.
If R is a domain, Frac(R) is the fraction field.
If p is a prime ideal of R, then R — p is multiplicative, denote Ry = (R —p)~'R.

Lemma 1.2.5. Let I be an ideal of a ring R, then /I = N »p

pDI
p is prime

In particular, \/(0) = (] p= N »

p prime p is minimal
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Proof. First we prove \/(0) = [) »p.

p is prime
It is easy to see that \/@ is contained in any prime ideal.
Now for a non-nilpotent a € R, consider R — R [%]
Since R [1] # (0).
So there exists a maximal ideal m C R [é]
Consider R —» R[1] = R[] /m = F.
Then image of a is nonzero in Fi.e. ker(R — F) is a prime ideal not containing a.
So () p={all nilpotent elements in R} = 1/(0).

p is prime
For any ideal I C R, consider 1/(0) in R/I, then VI = (] pin R. O
pDI
p is prime

Prop 1.2.8. R is a noetherian ring, then for every ideal I C R, the minimal elements of the
collection of prime ideals containing I are finite in number.
In particular, the minimal prime ideals of R are finite in number with intersection +/(0).

Proof. If R is noetherian, then R/I is noetherian.

Let B be the collection of radical ideals that cannot be written as intersection of finitely
many prime ideals.

Suppose B # &, then R ¢ B and prime ideal is not in B.

And since R is noetherian

So B has a maximal element and Iy # R is not prime.

Therefore Jay,as € R\Iy with ajas € Ip.

Consider J; = /1y + Ra;.

Then Jl, J2 ;ﬁ) Io.

So Ji,J2 ¢ B,i.e.J; can be written as intersection of finitely many prime ideals.

We claim that Iy = J; N Jo, then this lead to the contradiction.

If a € Jy N Jo, then Ing,ne € NT, s.t. a™ € Iy + Ray,a™ € Iy + Rao.

So @™ t"2 = (IO + Ral)(I(] + RCLQ) C Iy, t.e.a € 1.

We conclude B = @,i.e. every radical ideal of R is an intersection of finitely many prime
ideals.

Now take arbitrary ideal I C R and let v/ =p; N---Np,.

WLOG, we assume p; 2 p; for i # j.

Suppose p is a prime ideal containing I, we show p contains certain p;.

If not, suppose for any i, p 2 p;.

Then we can take a; € p;\p.

Soa---as € p1N---Nps =1 Cp, contradiction!

Hence a minimal prime ideal containing I must belong to {p1,--- ,ps}- O

1.3 Finiteness properties and the Hilbert theorems

Def 1.3.1. We say an R-module M is noetherian, if the collection of R-submodules of M
satisfies ACC.

Prop 1.3.1. (1) Every quotient of a noetherian R-module is still noetherian.
(2) A ring R is noetherian as ring iff R is noetherian as an R-module.

Proof. (1) Let M be noetherian R-module and M’ be an submodule of M, N = M/M’.

For any ascending module chain {N;} in N, let M; = 7~ 1(NN;) is a submodule of M, where
m: M — N is the canonical homomorphism.

Then there exists ¢ such that M; = M; 41 =---.
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So N; = Njy1 = -+, i.e. N is a noetherian R-module.

(2) R-submodules of R are the ideals of R.

So R is noetherian as an R-module iff R is noetherian.
O

Prop 1.3.2. An R-module M is noetherian iff every R-submodule of M is finitely generated as
R-module.

Proof. Suppose M is noetherian, take N C M is a submodule, let Ny be a maximal element in
the collection of finitely generated R-submodule of N.

Then Ny is finite generated as R-module.

If Ny ; N, take x € N\ Ny, then Ny + Rz is finitely generated, contradiction!

So N = No.

Suppose every R-submodule of M is finite generated.

Take Ny C No C ---, let N =|JN; be finite generated by {s1,- -, sk}

Then 37, S.t.{Sl, cee ,Sk} C Nj, i.e.N = Nj = Nj+1 = .-,

Therefore M is noetherian. O

Prop 1.3.3. Suppose R is noetherian ring, then every finitely generated R-module is noetherian.

Proof. Let M = RS for finite set S C M, we induct on #5.
If #5 = 0, then it is trivial.
Suppose #S > 1, take s € S, let S’ := S\{s}, M’ = RS’ C M.
Then M’ is noetherian as R-module.
Since R — M /M’ 1+ [s],r — [rs] is epimorphism of R-module.
So M /M’ is noetherian as R-module.
Now take Ny C No C --- in M.
Then Ny N M' C NoNM' C - in M’ is stabilizes.
Therefore there exists j; € ZT, such that N, N M' = N; N M’ for k > j;.
For k > j1, Nk/(le N M) = Nk/(Nk N M/) = (Nk + M/)/M/ C M/M/.
When k is large, (N + M')/M’ is stabilizes, i.e. Ny stabilizes. O

Thm 1.3.1 (Hilbert basis). R is noetherian= R[z| is noetherian.

Proof. R|x] is noetherian ring< R|x] is noetherian as R[x]-module< every ideal I of R[z] is
finitely generated as R[x]-module.

For polynomial f € Rx], denote in(f) is the initial coefficient of f,i.e. the highest degree
coefficient.

And let in(I) := {in(f)|f € I'},in(0) = 0.

Then in(]) is an ideal of R.

So in(7) is finitely generated as R-module.

Therefore there exist fi,---, fr € I\{0} such that in(I) = R{in(f1),--- ,in(fx)}.

Let dp = max{deg f1, - ,deg fi}.

We claim that I = R[x]f1 + -+ + R[z|fx + (I N R[x]<q,)-

Actually any polynomial in I with deg > dg can be reduced to a polynomial in I with lower
degree by modulo R[z|fi + - - + Rx]fx by induction.

So I N R[x]<q, is finite generated as R-module, take generators set as fri1,-- - , fr+i-

Hence I = R[z]{f1,-- -, fx+:} is finitely generated. O

Thm 1.3.2 (Artin-Tate). R is noetherian ring, B is an R-algebra, A C B is R-subalgebra.
Assume B is finite generated as A-module, then A is finite as R-algebra iff B is so.
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Proof. Suppose by, by, € B,s.t.B = Aby + --- + Abn,.
Now assume B is finitely generated as R-algebra by by, , by, WLOG.

Then b;b; € B, let
bib; = > _afiby
k=1

for afj € A.

Let Ag C A be a R-subalgebra of A generated by afj.

By Hilbert basis theorem, Ag is a noetherian ring.

Since b;b; € Agby + - - - Agbyy, for any i, j.

So B is finitely generated Ag-module, i.e. B is noetherian as Ag-module.

And since A C B as Ag-submodule, i.e. A is finitely generated as Ag-module.

Hence A is finitely generated as R-module. O

Lemma 1.3.1 (Zariski). Field extension L/K is finite iff L is finite generated as a K-algebra.

Proof. = is obvious, now assume L is finitely generated as K-algebra.

Take by,--- ,by, € L generates L as K-algebra.

We need to show by, - - - , by, are algebraic over K, so that L = K[by,- -+ ,by] = K(b1, -+ ,bm)
is finite over K.

If not, WLOG, assume by,--- ,b, are algebraic independent over K and b,y1, -+ , by, are
algebraic over K(by, - ,b.).

Then L/K(by,--- ,b,) is finite.

By Artin-Tate theorem, K (b, - ,b,) is finitely generated as K-algebra.

Let S generates k(by,--- ,b,) and g € K[b1,--- ,b;] be a common denominator of S.

Then K (b1, - ,by) = K[S] = Kby, ,by] H

Consider ﬁ € K(by, - ,by).

So ﬁ = giN for certain f € K[by,---,b,], N € N.

Therefore f = g™V 4+ fg But g1 f, contradiction! O

Coro 1.3.1. A is a finitely generated k-algebra, then for every maximal ideal m C A, the map
k— A — A/m is an isomorphism of fields.

Proof. A/m is a field and a finitely generated as k-algebra.
By Zariski lemma, A/m D k is finite.
So A/m = k since k is algebraic closed. O]

Coro 1.3.2. A is finitely generated k-algebra, then there is bijection:

{m|m is maximal ideal of A} <> {surjective morphism A — k as k-algebra}
m— (A—» A/m=k)

Thm 1.3.3 (Hilbert Nullstellensatz). I(Z(J)) = v/J.

Proof. I(Z(J)) D +/J is clear.
Suppose I(Z(J)) 2 VJ, let f € I(Z(J))\VJ.
Then the image f of f in k[z1,--- ,2,]/J is not nilpotent.
Let A = (k[z1, - ,3,]/J) [$], which is not (0) and finitely generated as k-algebra.
Take m C A be a maximal ideal, then we have A — A/m = k.
Consider ¢ : k[z1, -+ 2] > A —> A/m = k.
Let p; = ¢(z;) € k,p = (p1,--- ,pn) € A™.
For any polynomial g € k[z1,- - ,xzy,], the image ¢(g) € k equals to g(p).
Ifge J Cklxy, - ,xy], then ¢(g) = 0,i.e.g(p) = 0.
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Sope Z(J).
And since f invertible in A.

Therefore ¢(f) # 0,i.e.f(p) # 0.
But f € I(Z(J)), contradiction! O

1.4 The affine category

Def 1.4.1. X C A™ Y C A" are closed, a map f: X — Y is called regular if the components
fi,-++, fn of f are regular functions on X.

Lemma 1.4.1. For X —f—> y £ Z, if f,q is reqular, then go f : X — Z is reqular.

Proof. 1t suffices to show each components of g o f is regular function.

Only need to consider case Z = Al.

Then g is the restriction of a polynomial function on A™ to Y.

Let f = (f1,--, fn) where f; is the restriction of the polynomial function Fj(zq,--- ,xzy)
defined on A™ to X.

So go f : X — k is the restriction of the polynomial G(Fy(x1, - ,Zm), -, Fn(x1,- -+ ,2m))
to X. O

Def 1.4.2. A affine category is consist of

(1) objects: closed subsets of affine spaces

(2) morphism: regular maps X — Y.

Remark 1.4.1. For any X L Y and regular function Y — k, we have a regular function
xLy k, that is, f induces a k-algebra morphism f*: k[Y] — k[X].
So we have the contravariant functor Y — k[Y], f — f*.

Def 1.4.3. A regular map f : X — Y is called an isomorphism if f is bijectiveand f~!:Y — X
is regular.

Prop 1.4.1. Isomorphism f: X — Y induce isomorphism f* : k[Y] — k[X].

Proof. (f~1)*(f*(p)) = f*(p)oft=pofoft=p.
And fX((f71)*(p) = (f D))o f=poflof=p.

So (f~1)* and f* are isomorphism. O

Prop 1.4.2. f: X — Y is any map, if for any reqular function g :' Y — k, the composition
go f: X — k is reqular, then [ is a regular map.

Proof. Take g = y;, then go f = f; is the i-th component of f. O

Prop 1.4.3. Given X C A™ Y C A" and k-algebra homomorphism ¢ : k[Y] — k[X].
Then there is a unique reqular map f: X — Y with ¢ = f*.

That is, Homye(X,Y) — Homy,_q(k[Y], k[X]).

Proof. The inclusion j : Y C A™ defines 5% : k[y1, -+ ,yn] = k[Y] = Ely1, -+ ,yn]/I(Y).
Then ker(5*) = I(Y).
Consider k[X] & kY] JEA K[y, ynl, fi < Ui
Let f=(f1,---,fn): X — A™ is a regular map.
Then k[y1, -+, yn] = k[X],yi = f*(yi) = wio f = fi = (65") (yu)-
So f* = ¢j* i.e. FHI(Y)) = (0).
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Therefore Vg € I(Y),go f =0,i.e.f(X) CY = Z(I(Y)) and f* = ¢.
Suppose f, f': X — Y are different regular map.
Then there exists ¢ such that f; # f.

So f*([wil) # (f)*([wil), d.e.f* # (F)".

Hence f is unique. O

Coro 1.4.1. (1) isomorphism k[Y] =, k[X] comes from a unique isomorphism X =Y.
(2) For Z C'Y C A", the induced surjective map k[Y]| — k[Z] has kernel Iy(Z) = 1(Z)/1(Y).

Proof. (1) Let ¢ : k[Y] — k[X] and f* = ¢, g* = ¢~ L.
So (go f)* = fog" =ldyx), (fog) =g o f* =1dyy)
And since f o g,go f are the unique regular map such that (go f)* =1Id%, (f o g)* = 1d5..
Hence f is the unique isomorphism with f=! = g.
(2) Let ¢ : k[Y] — k[Z] such that ¢ = i*.
Then ¢(p) =poi= p‘Z.
So kergb:{pEk[YHp‘ZEO}:Iy(Z). -

Def 1.4.4. A regular map f: X — Y is called a closed immersion if f(X) C Y is closed and
f: X — f(X) is an isomorphism.

Prop 1.4.4. f: X — Y is a closed immersion iff f*: k[Y]| — k[X] is surjective.

Proof. 1f f is closed immersion, then f* : k[X] — E[f(X)] « E[Y] with ker = Iy (f(X)).

So k[Y] — k[X] is surjective.

Conversely, if f* is surjective, then ker(f*) is a radical ideal of k[Y], let it corresponds to a
closed subset Z C Y.

By definition of f*, every element in ker(f*) vanishes on f(X).

So f(X) C Z.
And since morphism k[Y] — k[Z] also has kernel Iy (Z) = ker(f*).
Hence k[Z] — k[X] is isomorphism, i.e. f: X — Z — Y is a closed immersion. O

Exam 1.4.1. Consider the mapf : A' — A% t — (t2,13).

The image is an irreducible curve C defined by x3 — y?> = 0 and the inverse map C — Al is
given by (0,0) — 0, (z,y) — £ if x # 0.

The Zariski topology on both C and A' are the cofinite topology.

So f: Al — C is a homeomorphism, but not an isomorphism:

Since k[C] = k[z,y]/(x® — y?), k[AY] = k[t].

And f* : k[C] — k[AY] is given by [x] — 2, [y] — t3.

Therefore image of f* does not contain t, i.e. f* is not surjective.

Prop 1.4.5. For regular map f: X — Y with f* : k[Y] — k[X], for any point x € X, we have
My = (f*) 7 (mg).

Proof. First k[Y] L5 k[X] 25 k[X]/m, = k
So ker(pg o f*) = (f*)~!(m,) is a maximal ideal.
It suffices to check f*(my) C my.
Actually, for any g € my(,), g(f(z)) = 0.
So f*(g) vanishes at z, i.e. f*(g) € m,. O
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Def 1.4.5. For any ring R, let Spm(R) be the set of maximal ideals of R.
For z € Spm(R), we also denote m, the corresponding maximal ideal .
For any ideal I C R, let Z(I) be the set of x € Spm(R) with m; D I.
For s € R, write Z(s) = Z(Rs) = {x|s € my}, apparently: Z(0) = Spm(R), Z(R) = @.

Prop 1.4.6. For arbitrary ideals I,J,{I,}aca of R, we have

ZHUZ(J)=2(1INnJ), () ZI) =2 (Z Ia> :

acA acA
So {Z(I)} forms all closed subsets for a topology: Zariski topology on Spm(R).

Proof. If INJ C my, then IJ C m,.
Sol Cmy,orJ Cm,g.
Therefore Z(INJ) = Z(I)U Z(J).
Moreover, I, C m, for every o € A <the ideal generates by {I,},c contains in m,.

Hence (| Z(I.) = Z < D Ia>. 0

acA a€EA

Def 1.4.6. Denote Spm(R)s := Spm(R)\Z(s) are the principal open subsets.
Remark 1.4.2. Principal open subsets form a basis of Zariski topology on Spm(R).
Lemma 1.4.2. Spm(R) is quasi-compact: every open covering admits a finite subcovering.

Proof. 1t suffices to show an open covering by principal open subsets admits a finite subcovering.
Suppose Spm(R) = |J Spm(R)s, then

s€S
Spm(R) = | J Spm(R), = Spm(R)\ (ﬂ Z(s)) = Spm(R)\Z (Z SR> :
ses seS ses
So >  sR=R.
ses

Let 1 =Y rs; forr; € R,s; € S.

i=1
Hence }_ s;R = R, i.e. Spm(R) = |J Spm(R)s,. O

i=1 =1

Remark 1.4.3. Bourbaki use this notion “quasi-compact” for non-Hausdorff space. One reason
of doing this is that when we consider the complex varieties, they also have a topology induced
by the euclidean topology of C™. So we use “quasi-compact” to distinguish the compactness of
these two topology structures.

Now consider a finitely generated k-algebra A(may be not reduced), a choice of generators
gives A = klxy,--- ,zp]/1.

For any x € Spm(A), we have a unique isomorphism A/m, = k as k-algebra by Artin-Tate
theorem. So we have the correspondence = <> m, <+ (A Loy k>

Any f € A defines a “regular function” f : Spm(A) — k which takes x € Spm(4) to
pz(f) € k. The zero set of f: Spm(A) — k is Z(f) and f — f is a k-algebraic homomorphism
from A to the algebraic of k-valued functions on Spm(A). The kernel of this homomorphism is
exactly 1/(0) C A since we have the proposition:

Prop 1.4.7.

V= ) m

z€Spm(A)
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Proof. If f ¢ 1/(0), then consider the map ¢ : A — A [ﬂ — A [ﬂ /m = m where m is a

maximal ideal of A {ﬂ

So f ¢ ker ¢ since p(f) is invertible.
Therefore f ¢ m, for x such that p, = .

And since \/(0)= N pC N m,.

p prime z€Spm(A)
Hence /(0)= [ my. O
z€Spm(A)

Remark 1.4.4. We have used this trick while proving the Hilbert nullstellensatz.

Let A = A/+/(0) reduced, then A is the set of regular functions on Spm(A), also denote
A = k[Spm(A)]. So A = k[xy, - ,2,]/VI = k[Z], i.e. Spm(A) = Spm(A) = Z(I) = Z(\/I) C
A™ as set. This gives (X, k[X]) in an intrinsic way: (Spm(A), A).

Now consider a morphism ¢ : A — B of finitely generated k-algebra, we have Spm(¢) :
Spm(B) — Spm(A), m, — ¢~ (m,). So for regular function f € A and its induced map f € A,

the composite of Spm(B) Sem(9), Spm(A) L ks (f) and so it is regular.

In particular, the preimage of Z(f) in Spm(B) under Spm(¢) is Z(¢(f)). So the preimage
of Spm(A)y is Spm(B)g(s) and preimage of Z(I) is Z(¢(I)). Thus Spm(¢) is continuous.

We refer to the pair (Spm(¢),¢) as a morphism from (Spm(B),B) to (Spm(A),A). In
particular, Spm(¢) is a geometric map and ¢ is an algebraic morphism.

Prop 1.4.8. Let A be a finitely generated k-algebra, then for any g € A, A B} is a finitely
generated k-algebra.
If A reduced, then A [é] 1s also reduced, then natural k-algebra homomorphism A — A B}
induces a morphism Spm (A BD — Spm(A), which is a homeomorphism onto Spm(A),.
Moreover, for g,q' € A, TFAE:

(1) Spm(A)y C Spm(A)y .
(2) ¢ divides some positive power of g, i.e. g € \/(¢).

(8) Jan A-homomorphism A [%} — A B} . (which must then be unique)
Proof. 1f g nilpotent, then A [ﬂ = (0), Spm (A [%D =g,Spm(4), = 2.

So A [ﬂ is clearly finitely generated over k.

If A reduced, take gir eA [%], suppose (g%)m =0in A [ﬂ

Then f™ is annihilated by a power of g in A.

We assume f"g" = 0.

Then (f¢g™)™ =01in A, i.e. f¢g" =0.

Hence L =0in A [1] e A [l} is reduced.

g g g
Since an element of Spm (A [ﬂ) can maps to a map A — A [é] — k.
And it corresponds to the kernel of this map, which is an element in nSpm(A),.

So we have Spm (A [%D — Spm(A), C Spm(A), which is clearly continuous.
A principal subset of Spm (A BD is of form Spm (A [é])qﬁ with ¢ = gin in A [ﬂ

Suppose ¢ is not nilpotent in A [ﬂ, i.e. f is not nilpotent in A.

Let A [ﬂ [i] > A [ﬁ}
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Then Spm (A BDQ& is naturally identified with Spm(A)y,.

Hence the morphism Spm (A [%D — Spm(A), is open, i.e. homeomorphism.

Next we check (1) = (2) = (3) = (1).

(1) = (2): Since Spm(A), C Spm(A),.

So Z(g) D Z(g'), i-e. g € 1(Z(g)) = /().

(2) = (3): Suppose g" = f¢', f € A.

Then there exists an A-homomorphism A [i] — A [ﬁ} =A [L} =A [ﬂ which is inde-
pendent of choices of n and f.

(3) = (1): Since we have A — A [%} — A [l} and A — A [ﬂ

They induce Spm (A BD — Spm (A [%D RN Spm(A), and Spm (A BD EZN Spm(A)g.
So Spm(A), C Spm(A)y.

Lastly, the image of i, in A [ﬂ is the inverse of ng cA B] O

Now we consider the non-reduced cases: let X = Spm(A),Y = Spm(B) and f: X — Y be
regular. Then a fiber f~!({y}) or the preimage f~'(Z) of closed subset Z C Y is closed and
Iy(Z) C k[Y] = B. We claim that f~1(Z2) is actually the zero locus of f*Iy(Z) C Ix(f~1(2)),
which may be not radical. So we should think of f~1(Z) as Spm(k[X]/f*Iy(Z)), which has a

bijection to Spm (k[X]/\/f*Iy(Z)>.

Exam 1.4.2. Consider f : Al — Al a — a? with char(k) # 2.
Then f* : k[y] — k[z],y — 2 and for a € Y, the fiber is

9 di )
Fa) = different points a # 0
0 a=20

So f~1(a) should be thought as zero locus defined by f*(y — a) = (x® — a).
Fora #0, (2% — a) is radical ideal.
And for a # 0, f~(a) should be thought as a point 0 € X = A" with multiplicity 2.

Exam 1.4.3 (Frobenius morphism). Assume char(k) = p, consider ®, : A} — Al a > aP.
Then ®p(a —b) = (a — b)P = aP + (=b)P = aP — P = P4(a) — Pp(b), Pp(ab) = Pp(a)Py(b)
So @, is injective, and ¥, is also surjective since k is algebraic closed.
And since @y, : k[z] — k[z], z +— xP with image k[xP].
Therefore @, is not surjective, i.e. @}, is homeomorphism but not isomorphism.

Consider ®, ~ AL, Fix(®,) = {a € Alja? = a} =5 F, C k.
Dot Fis{By) = A1 (F) o A1 (B) i i (8]) = {o € Ao =)

Ifk =F,, then k= |J Fpr and A} = U AL (Fpr).
r=1 r=1

Every ®,-orbit in Agﬁ_is finite.
For higher dimension, ®, : Al — A}, A"(Fpr) = Fix(®}).

_ [e's)
If k =TF,, then A} = |J A" (Fyr) and every ®,-orbit in A} is finite.
r=1
Prop 1.4.9. For char(k) = p and q = p", we write ®, for @, prove that:

(a) f€klxy, -,z isin Fylzy, - xn) iff qf = f9.

b) an affine-linear transformation of A™ with coefficients in F, commutes with ®,.
q q



CHAPTER 1. AFFINE VARIETIES 17

(c) let Y C A} be common zero locus of a subset of Fylx1,--- ,xn] C k[x1,--- 5], then
Oy = Dy, : A" — A" restricts to a bijection @y, : Y — Y and the set of Fy-points of Y is
Y (Fy) :=Fix(®y,) = Y NFix(®,) =Y NA™(F,).

(d) If k = F,, then any closed subset Y C A" is defined over certain F, and so 'Y is invariant
under ®,.

Proof. (a) Let f= 3 Ciyoin @ - xin | then
,”'717’]‘

i1
_ SN 5 W q _ q qi1 | ,.qi
O, f = E Ciyoin®] xm, f1= E Ciyoni, X1 .

1,0 n 11, in

So @yf =fecl o =i in S Ciyin, €EFLde. fEF[x1, -, 2]

i1 in

(b) Let f - (fh"' 7fn)7f EFq[xly"' 7xn]-
Then Oqf = (g f1, -+, Pafn) = (fis -+ fi) = (f1,- -+ fa) g = [q.
(c) Let Y = Z(X) with € Fy[z1,--- , ).

Forany f e X,y €Y, f(P4(y)) = (®4f)(y) = f1(y) = 0.
So ®,(y) €Y.

And f1(2, 1 (y)) = (24f) (@, (1) = f(y) = 0.
Therefore f(®,(y)) =0,i.e.®, ' (y) €Y.

Hence ®y, : Y — Y is bijective and fixed point set is the intersection of Y and fixed point
set of @y, i.e. Y NA"(Fym).

(d) By Hilbert theorem, I(Y) is finite generated by certain {fi, -, fn}.
So there are only finitely many coefficients.
Let ¢ = p" such that all coefficients of fi,--- , f, are contain in F9.
Then Y is the common zero set of I(Y) C Fylzq,- -, xp].

Hence by (c), Y is invariant under some positive power of ®,.

Def 1.4.7 (Weil Zeta function).

Zy (1) = exp (Z rmqmni:) .
m=1

In particular,

—S - 1 —ms
(Y, 8) = Zy(q~%) = exp (Z Y (Fgm)|—q ) :
m=1
Thm 1.4.1 (Weil conjecture). Y is smooth, then

(1) Zy(t) is rational function(Dwork 1960)
(2) functional equation(Grothendieck 1965)

(8) “Riemann hypothesis”: roots of numberator and denominator of Zy (t) has absolute value
q_g with k € Z<Y. (proved by Deligne 1974)
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