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Chapter 1

Affine varieties

1.1 The Zariski topology
Notation 1.1.1. We use k to denote an algebraic closed field, e.g. k = C, F̄p,C(x), etc.

Def 1.1.1. An affine space for the k-vector space kn is a set A together with an action of kn
on A, say kn ×A→ A, (v, a) 7→ v + a, such that

(1) for any a ∈ A, 0 + a = a.

(2) for any v, w ∈ kn, a ∈ A, v + (w + a) = (v + w) + a

(3) for any a ∈ A, the map kn → A, v 7→ v + a is bijection.

Def 1.1.2. An
k is the underlying affine space of kn, call an affine n−space over k.

Remark 1.1.1. The underlying set of kn and An
k are actually the same, but we need to “forget”

the rule of 0 as origin on An
k .

Def 1.1.3. A polynomial f ∈ k[x1, · · · , xn] gives a map f : An → k, and we call a k-valued
function on An regular if it is defined by a polynomial.

Prop 1.1.1. A polynomial f ∈ k[x1, · · · , xn] is completely determined by the regular function
it defines.

Proof. Let g be another polynomial such that the regular function of f, g agree at every point.
When n = 1, f − g ∈ k[x1] has infinity many roots, i.e. f = g ∈ k[x1].
Assume f = g ∈ k[x1, · · · , xk] for k < n and let

f − g =
d∑

i=0

hi(x1, · · · , xn−1)x
i
n,

where hi ∈ k[x1, · · · , xn−1].
Then for any fixed x1, · · · , xn−1, we must have hi(x1, · · · , xn−1) = 0.
So the regular function of hi is zero at every point.
Therefore by the induction assumption, hi = 0, i.e.f = g.
Hence f is completely determined by the regular function it defines.

Def 1.1.4. For f ∈ k[x1, · · · , xn], denote Z(f) be the zero locus of f : An → k and An
f =

An\Z(f).

Prop 1.1.2. If deg(f) > 0, then Z(f) 6= An,∅.

1
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Proof. If Z(f) = An, then the regular function of f is zero everywhere, i.e. f = 0.
Let

f =
d∑

i=0

hi(x1, · · · , xn−1)x
i
n,

where hi ∈ k[x1, · · · , xn−1].
Then hd 6= 0, i.e. Z(hd) 6= An−1 and fix (x1, · · · , xn−1) such that hd(x1, · · · , xn−1) 6= 0.
So f(x1, · · · , xn−1, •) has a root by fundamental theorem of algebra.
Hence Z(f) 6= An,∅.

Def 1.1.5. A principal subset of An is a subset of form An
f .

Def 1.1.6. A hypersurface of An is a subset of form Z(f) with deg(f) > 0.

Prop 1.1.3. The collection of principal subsets of An form a basis of a topology on An, called
the Zariski topology on An.

Proof. An
f1
∩ An

f2
= An\(Z(f1) ∪ Z(f2)) = An

f1f2
.

Prop 1.1.4. For the Zariski topology, an open subset is a union of certain principal subsets, a
closed subset is an intersection of certain Z(f).

Proof. By definition of the basis of topology.

Def 1.1.7. For a subset J ⊂ k[x1, · · · , xn], denote Z(J) =
⋂
f∈J

Z(f), these are exactly all

Zariski-closed subsets.

Exam 1.1.1. The Zariski topology on A1 is the cofinite topology: closed subsets are the finite
subsets.

Def 1.1.8. For subsets X ⊂ An, denote by I(X) the set of polynomials vanishing on X.

Prop 1.1.5. I(X) is an ideal of k[x1, · · · , xn].

Proof. For any f ∈ I(X) and g ∈ k[x1, · · · , xn], Z(fg) ⊃ X.
So I(X) is the set of polynomials.

Remark 1.1.2. We have the following commutative diagram:

{subsets of An} {ideals of k[x1, · · · , xn]}

{closed subsets of An} {subsets of k[x1, · · · , xn]}

I

∪

Z

∩

Eventually, closed subsets of An 1:1←−−→radical ideals of k[x1, · · · , xn](we will prove this later).

Prop 1.1.6. (1) X1 ⊂ X2 ⊂ An, then I(X1) ⊃ I(X2).

(2) J1 ⊂ J2 ⊂ k[x1, · · · , xn], then Z(J1) ⊃ Z(J2).

(3) I(X1 ∪X2) = I(X1) ∩ I(X2).

(4) Z(J1 ∪ J2) = Z(J1) ∩ Z(J2).

Proof. (1) For f ∈ I(X2), Z(f) ⊃ X2 ⊃ X1, i.e.f ∈ I(X1).

(2) Z(J2) =
⋂

f∈J2
Z(f) ⊂

⋃
F∈J1⊂J2

Z(f) = Z(J1).
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(3) I(X1 ∪X2) ⊂ I(X1), I(X2).
And for f ∈ I(X1) ∩ I(X2), Z(f) ⊃ X1 ∪X2, i.e.f ∈ I(X1 ∪X2).

(4) Z(J1 ∪ J2) =
⋂

f∈J1∪J2
Z(f) =

( ⋂
f∈J1

Z(f)

)
∩

( ⋂
f∈J2

Z(f)

)
= Z(J1) ∩ Z(J2).

Def 1.1.9. For any X ⊂ An, denote by X̄ the Zariski closure of X.

Prop 1.1.7. (1) Z(I(X)) = X̄.

(2) I(Y ) = I
(
Ȳ
)
.

(3) two polynomials f, g ∈ k[x1, · · · , xn] have same restriction to Y iff f − g ∈ I(Y ) = I
(
Ȳ
)
.

(4) k[x1, · · · , xn]/I(Y ) contains distinct k-valued functions on Y . (also on Ȳ )

Proof. (1) Since Z(f) ⊃ X for every f ∈ I(X).
So X ⊂ Z(I(X)) ⊂ Z

(
I
(
X̄
))

= X̄.
And since Z(I(X)) is closed.
Hence Z(I(X)) = X̄.

(2) For f ∈ I(Y ), Z(f) ⊃ Ȳ , i.e.f ∈ I(Ȳ ).
And since I(Y ) ⊃ I(Ȳ ).
So I(Y ) = I(Ȳ ).

(3) Since f = g in Y .
So f − g = 0 in Y , i.e. f − g ∈ I(Y ) = I(Ȳ ).

(4) For [f ] 6= [g] ∈ k[x1, · · · , xn]/I(Y ), [f − g] 6= 0.
So f − g /∈ I(Y ), i.e. f and g are distinct on Y .

Def 1.1.10. Let Y ⊂ An be closed, denote k[Y ] = k[x1, · · · , xn]/I(Y ), called the coordinate
ring of Y , and k-valued function on Y is called regular if it is determined by a element in k[Y ].

Remark 1.1.3. We can say that the coordinate ring of Y is the set of regular functions on Y .

Def 1.1.11. Given a closed subset Y ⊂ An, Y also has a topology.
denote IY (X) = I(X)/I(Y ) when X ⊂ Y , for subset J ⊂ k[Y ], let ZY (J) be the zero locus

of J ∪ I(Y ), then ZY (J) is a closed subset of Y .

Remark 1.1.4. Similar to remark 1.1.21.1.2, we have the commutative diagram:

{subsets of Y } {ideals of k[Y ] = k[An]/I(Y )}

{closed subsets of Y } {subsets of k[Y ]}

IY

∪
ZY

∩

Prop 1.1.8. ZY (IY (X)) = X̄.

Proof. ZY (IY (X)) =

( ⋂
[f ]∈IY (X)

Z(f)

)
∩ Y = Z(I(X)) ∩ Y = X̄.
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Def 1.1.12. Let R be a ring, J ⊂ R is an ideal, define the radical of J
√
J = {a ∈ R|∃m ∈ Z+, s.t.am ∈ J}.

We say J is a radical ideal if J =
√
J .

We say R is reduced ring if (0) is radical, i.e. R has no nonzero nilpotents.

Prop 1.1.9. (1) A prime ideal is radical.

(2) J ⊂ R is a ideal, then J is radical iff R/J is reduced.

Proof. (1) Suppose p is a prime ideal and am ∈ p but a /∈ p.
WLOG, we assume am−1 /∈ p.
Then a · am−1 /∈ p, contradiction!
So p is a radical ideal.

(2) J is radical⇔For any a /∈ J and n ∈ Z+, an /∈ J

⇔For any [a] 6= 0 in R/J and n ∈ Z+, [a]n 6= (0).
⇔ R/J is reduced.

Prop 1.1.10. (1) For subset X ⊂ Y , we have IY (X) ⊂ k[Y ] is radical.

(2) For subset J ⊂ k[Y ], we have ZY (J) = ZY (〈J〉) = ZY

(√
〈J〉
)

Proof. (1) Let f ∈
√
IY (X).

Then there exist m ∈ Z+, such that fm ∈ IY (X), i.e. fm
∣∣
X

= 0.
So f

∣∣
X

= 0, i.e.f ∈ IY (X).

(2) Let [f ] ∈ J .
Then ZY ([fg]) ⊃ ZY ([f ]) ⊃ ZY (J) for [g] ∈ k[Y ].
And for [h] ∈ k[Y ] such that [h]n = [fg], Z([h]) ⊃ Z([fg]) ⊃ ZY (J).

So ZY

(√
〈J〉
)
, ZY (〈J〉) ⊃ ZY (J).

And since ZY

(√
〈J〉
)
, ZY (〈J〉) ⊂ ZY (J).

Hence ZY

(√
〈J〉
)
= ZY (〈J〉) = ZY (J).

Remark 1.1.5. We now have the correspondence

{close subsets of An} {radical ideals of k[An]}
I

Z

{close subsets of Y } {radical ideals of k[Y ]}
IY

ZY

Actually, I(IY resp.) and Z(ZY resp.) are inverse to each other, thanks to:

Thm 1.1.1 (Hilbert’s Nullstellensatz). For any ideal J ⊂ k[x1, · · · , xn], we have I(Z(J)) =
√
J

We will prove this theorem in the third section.
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Exam 1.1.2. For a point p = (a1, · · · , an) ∈ An, then I({p}) = (x1 − a1, · · · , xn − an) is a
maximal ideal.

Proof. Let m = (x1 − a1, · · · , xn − an).
Then Z(m) = p, i.e.m ⊂ I({p}).
And since k[x1, · · · , xn]/m = k is a field.
So m is maximal.
And since x1 − q /∈ I({p}) for q 6= a1.
Hence I({p}) 6= k[x1, · · · , xn], i.e.m = I({p}).

Prop 1.1.11. Given a maximal ideal m ⊂ k[x1, · · · , xn], m corresponds to a point.

Proof. Since Z(m) is a nonempty closed set of An and m is maximal.
So there is no nonempty closed set strictly contained in Z(m), i.e. Z(m) = {p}.
Hence m ⊂ I(Z(m)) = I({p}) = (x1 − a1, · · · , xn − an), i.e. m = (x1 − a1, · · · , xn − an).

1.2 Irreducibility and decomposition
Def 1.2.1. Let Y be a nonempty topological space, we say that Y is irreducible if it is not the
union of two closed proper subsets.

Prop 1.2.1. nonempty Y is irreducible iff any nonempty open subset of Y is dense in Y .

Proof. If Y = Y1 with proper closed Y1, Y2, then Y − Y1 ⊂ Y2 is nonempty open subset of Y
but not dense.

Conversely, suppose U ⊂ Y is nonempty open and Ū ⫋ Y , then Y = Ū ∪ (Y − U).

Def 1.2.2. We call a maximal irreducible subset of Y an irreducible component of Y .

Lemma 1.2.1. If A1 ⊂ A2 ⊂ · · · ⊂ Y , Ai is irreducible, then
⋃
Ai is also irreducible.

Proof. Suppose
⋃
Ai = C1 ∪ C2 where C1, C2 are proper closed subsets.

Then Ai = (Ai ∩ C1) ∪ (Ai ∩ C2).
And since Ai are irreducible.
So Ai ⊂ C1 or Ai ⊂ C2.
Therefore C1 or C2 contains all Ai.
Hence C1 =

⋃
Ai or C2 =

⋃
Ai, contradiction!

Thm 1.2.1. Every irreducible subset of Y is contained in an irreducible component.
In particular, Y equals to the union of its irreducible components.

Proof. By Zorn’s lemma.

Prop 1.2.2. A Hausdorff topological space is irreducible iff it is one point.

Proof. Suppose X contain two points a, b.
Then there exist two disjoint open set U, V such that a ∈ U, b ∈ V .
So (X\U) ∪ (X\V ) = X\(U ∩ V ) = X, i.e. X is not irreducible, contradiction!
Hence X consists of a single point.

Lemma 1.2.2. If Y is irreducible, then every open nonempty subset of Y is irreducible.
Conversely, if C ⊂ Y is an irreducible, then C̄ is also irreducible.
In particular, an irreducible component of Y is closed.
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Proof. Suppose Y is irreducible, ∅ 6= U ⊂ Y is open, then every nonempty open subset of U is
dense in Y .

So it is also dense in U ,i.e. U is irreducible.
Suppose C ⊂ Y is irreducible subspace and V ⊂ C̄ is nonempty open subset.
Then V ∩ C 6= ∅ is open in C.
Therefore V ∩ C is dense in C and C̄.
Hence V is dense in C̄, i.e. C̄ is irreducible.

Prop 1.2.3. A closed subset Y of An is irreducible iff I(Y ) is prime ideal⇔ k[Y ] = k[An]/I(Y )
is a domain.

Proof. Suppose Y is irreducible, let f, g ∈ k[x1, · · · , xn] with fg ∈ I(Y ).
Then Y ⊂ Z(fg) = Z(f) ∪ Z(g).
So Y ⊂ Z(f) or Y ⊂ Z(g),i.e. f ∈ I(Y ) or g ∈ I(Y ).
Suppose Y = Y1 ∪ Y2 with Yi closed proper subsets.
Then for i ∈ {1, 2}, ∃fi ∈ I(Yi)\I(Y ).
So f1f2 ∈ I(Y ) but f1, f2 /∈ I(Y ).

Exam 1.2.1. In An, point 1:1←−−→ maximal ideal
irreducible closed set 1:1←−−→ prime ideal
irreducible component 1:1←−−→ minimal prime ideal
An 1:1←−−→ (0)

Given closed Y ⊂ An, Y 1:1←−−→ (0) ⊂ k[Y ].
closed subset of Y 1:1←−−→ radical ideal of k[Y ].
point 1:1←−−→ maximal ideal of k[Y ]

irreducible closed subset of Y 1:1←−−→ prime ideal of k[Y ].
irreducible components 1:1←−−→ minimal prime ideal of k[Y ]

Def 1.2.3. A ring R is called a UFD if it has no zero divisors and each principal ideal is a
product of principal prime ideals: (a) = (p1) · · · (ps) and (p1), · · · , (ps) is unique up to order.

Remark 1.2.1. (p) is principal prime ideal iff p|ab⇒ p|a or p|b and we call p prime element.

Prop 1.2.4. In UFD, irreducible element is equivalent to prime element.

Proof. Suppose (p) is irreducible.
For ab ∈ (p), let ab = cp for some c ∈ R.
Then by the uniqueness of factorization, a ∈ (p) or b ∈ (p).
Suppose (p) is prime.
Then the factorization of (p) is (p), i.e. (p) is irreducible.

Thm 1.2.2. If R is UFD, then R[x] is UFD.

Proof. Let F be the field of fraction of R.
For f ∈ R[x], we can uniquely factorize it into prime elements in F [x].
And since f ∈ F [x] can be written as f = ag where g ∈ R[x] is primitive and a ∈ R.
So we can write

f =
r

s
g1g2 · · · gn,

where gi ∈ R[x] is primitive and irreducible in F [x].
Let f = af̃ where f̃ is primitive and a ∈ R.
Then by Gauss lemma, r = usa for some unit u and so

f = uag1 · · · gn.
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And since R is UFD.
Hence R[x] is UFD.

Prop 1.2.5. A principal prime ideal of k[x1, · · · , xn] is of form (f) with f is irreducible poly-
nomial with positive degree.

Proof. By theorem 1.2.21.2.2, k[x1, · · · , xn] is UFD and the proof is complete by proposition 1.2.41.2.4.

Lemma 1.2.3. Suppose Y = Y1 ∪ · · · ∪ Ys such that Yi is closed and irreducible and Yi ⊈ Yj,
then Y1, · · · , Ys are all irreducible components of Y .

Proof. Suppose C is an irreducible component of Y .
Then C = (C ∩ Y1) ∪ · · · ∪ (C ∩ Ys).
So there exists i such that C ⊂ Yi, i.e.C = Yi.
Suppose Yi is not irreducible component.
then ∃ irreducible component C ⫌ Yi.
Therefore Yi ⫋ Yj = C, contradiction!

Coro 1.2.1. Let f ∈ k[x1, · · · , xn] has positive degree, then f is irreducible iff Z(f) irreducible.
More generally, if f = f1 · · · fs with fi irreducible, then Z(f1), · · · , Z(fs) are all irreducible

components of Z(f), that is

Z(f) =
s⋃

i=1

Z(fi).

Proof. f is irreducible ⇔ (f) is prime⇔ Z(f) is irreducible subset of An.
If f = f1 · · · fs, then we have

Z(f) =
s⋃

i=1

Z(fi)

with each Z(fi) irreducible.
Assume (f1), · · · , (fs) distinct.
Then for i 6= j, we must have Z(fi) ⊈ Z(fj).
Otherwise, Z(fi) ⫋ Z(fj), i.e.fj |fi but fi, fj are irreducible, contradiction!
By lemma 1.2.31.2.3, {Z(fi)} is the set of irreducible components of Z(f).

Lemma 1.2.4. For a partially ordered set (A,⩽), TFAE:

(1) (A,⩽) satisfies ACC(ascending chain condition):
Every ascending chain a1 ⩽ a2 ⩽ · · · becomes stationary, that is, for n sufficiently large,
an = an+1 = · · · .

(2) Every nonempty subset B ⊂ A has a maximal element.

Proof. By Zorn’s lemma.

Remark 1.2.2. Similar for DCC(descending chain condition).

Def 1.2.4. We say a ring R is noetherian if its collection of ideals satisfies ACC.
We say a topological space Y is noetherian if its collection of closed subsets satisfies DCC.

Prop 1.2.6. (1) A subspace of a noetherian set is noetherian.

(2) A quotient of a noetherian ring is noetherian.
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Proof. (1) Let X ⊂ Y and Y is noetherian.
For any descending closed subset chain {Ui} in X, let Ui = Vi ∩X where Vi is closed in Y .
Then there exists i such that Vi = Vi+1 = · · · .
So Ui = Ui+1 = · · · , i.e. X is noetherian.

(2) Let R is noetherian and I is an ideal of R, S = R/I.
For any ascending ideal chain {Ji} in S, let Ii = π−1(Ji) is an ideal of R, where π : R→ S
is the canonical homomorphism.
Then there exists i such that Ii = Ii+1 = · · · .
So Ji = Ji+1 = · · · , i.e. S is noetherian.

Thm 1.2.3 (Hilbert’s basis). If R is noetherian, then R[x] is noetherian.

Coro 1.2.2. If R is noetherian, so is any finitely generated R-algebra.

Coro 1.2.3. Any closed subspace Y of An is notherian.

We will prove these three proposition in the next section.

Prop 1.2.7. Let Y be a noetherian space, then its irreducible components are finite in number
and their union equals Y .

Proof. We first show: every closed subset of Y is a finite union of closed irreducible subset.
Let B be the collection of the closed subsets of Y which are not the finite union of closed

irreducible subset.
If B 6= ∅, then there exists a minimal element Z ∈ B.
Let Z = Z1 ∪ Z2 and then Z1, Z2 /∈ B.
So Z1, Z2 is a finite union of closed irreducible subset, so is Z, contradiction!
Now Y = Y1 ∪ · · · ∪ Ys with Yi is closed and irreducible, Yi ⊈ Yj .
Hence {Y1, · · · , Ys} is the set of all irreducible components of Y .

Coro 1.2.4. Every subset of An has a finite number of irreducible components.

Proof. Follows by corollary 1.2.31.2.3 and proposition 1.2.71.2.7.

Def 1.2.5. R is a ring, S ⊂ R is multiplicative and 1 ∈ S, the ring S−1R and homomorphism
R→ S−1R as follows:

elements in S−1R are equivalence classes of r
s with r ∈ R, s ∈ S and r

s ∼
r′

s′ iff there exists
s′′ ∈ S such that s′′(rs′ − r′s) = 0

φ : R→ S−1R, r 7→
[
r
1

]
and image of elements of S in S−1R is invertible, i.e.

[
s
1

]
·
[
1
s

]
= 1.

Exam 1.2.2. If 0 ∈ S, then S−1R = (0).
If S = {sn|n ∈ N} for certain s ∈ R, denote R

[
1
s

]
= S−1R.

For S = S(R) := R− {zero divisors}, write Frac(R) = S−1R called fraction ring.
If R is a domain, Frac(R) is the fraction field.
If p is a prime ideal of R, then R− p is multiplicative, denote Rp = (R− p)−1R.

Lemma 1.2.5. Let I be an ideal of a ring R, then
√
I =

⋂
p⊃I

p is prime

p.

In particular,
√

(0) =
⋂

p prime
p =

⋂
p is minimal

p.
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Proof. First we prove
√

(0) =
⋂

p is prime
p.

It is easy to see that
√
(0) is contained in any prime ideal.

Now for a non-nilpotent a ∈ R, consider R→ R
[
1
a

]
.

Since R
[
1
a

]
6= (0).

So there exists a maximal ideal m ⊂ R
[
1
a

]
.

Consider R→ R
[
1
a

]
→ R

[
1
a

]
/m =: F .

Then image of a is nonzero in F ,i.e. ker(R→ F ) is a prime ideal not containing a.
So

⋂
p is prime

p = {all nilpotent elements in R} =
√
(0).

For any ideal I ⊂ R, consider
√

(0) in R/I, then
√
I =

⋂
p⊃I

p is prime

p in R.

Prop 1.2.8. R is a noetherian ring, then for every ideal I ⊂ R, the minimal elements of the
collection of prime ideals containing I are finite in number.

In particular, the minimal prime ideals of R are finite in number with intersection
√
(0).

Proof. If R is noetherian, then R/I is noetherian.
Let B be the collection of radical ideals that cannot be written as intersection of finitely

many prime ideals.
Suppose B 6= ∅, then R /∈ B and prime ideal is not in B.
And since R is noetherian
So B has a maximal element and I0 6= R is not prime.
Therefore ∃a1, a2 ∈ R\I0 with a1a2 ∈ I0.
Consider Ji =

√
I0 +Rai.

Then J1, J2 ⫌ I0.
So J1, J2 /∈ B, i.e.Ji can be written as intersection of finitely many prime ideals.
We claim that I0 = J1 ∩ J2, then this lead to the contradiction.
If a ∈ J1 ∩ J2, then ∃n1, n2 ∈ N+, s.t. an1 ∈ I0 +Ra1, a

n2 ∈ I0 +Ra2.
So an1+n2 = (I0 +Ra1)(I0 +Ra2) ⊂ I0, i.e.a ∈ I0.
We conclude B = ∅,i.e. every radical ideal of R is an intersection of finitely many prime

ideals.
Now take arbitrary ideal I ⊂ R and let

√
I = p1 ∩ · · · ∩ ps.

WLOG, we assume pi ⊉ pj for i 6= j.
Suppose p is a prime ideal containing I, we show p contains certain pi.
If not, suppose for any i, p ⊉ pi.
Then we can take ai ∈ pi\p.
So a1 · · · as ∈ p1 ∩ · · · ∩ ps =

√
I ⊂ p, contradiction!

Hence a minimal prime ideal containing I must belong to {p1, · · · , ps}.

1.3 Finiteness properties and the Hilbert theorems
Def 1.3.1. We say an R-module M is noetherian, if the collection of R-submodules of M
satisfies ACC.

Prop 1.3.1. (1) Every quotient of a noetherian R-module is still noetherian.

(2) A ring R is noetherian as ring iff R is noetherian as an R-module.

Proof. (1) Let M be noetherian R-module and M ′ be an submodule of M , N = M/M ′.
For any ascending module chain {Ni} in N , let Mi = π−1(Ni) is a submodule of M , where
π : M → N is the canonical homomorphism.
Then there exists i such that Mi = Mi+1 = · · · .
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So Ni = Ni+1 = · · · , i.e. N is a noetherian R-module.

(2) R-submodules of R are the ideals of R.
So R is noetherian as an R-module iff R is noetherian.

Prop 1.3.2. An R-module M is noetherian iff every R-submodule of M is finitely generated as
R-module.

Proof. Suppose M is noetherian, take N ⊂M is a submodule, let N0 be a maximal element in
the collection of finitely generated R-submodule of N .

Then N0 is finite generated as R-module.
If N0 ⫋ N , take x ∈ N\N0, then N0 +Rx is finitely generated, contradiction!
So N = N0.
Suppose every R-submodule of M is finite generated.
Take N1 ⊂ N2 ⊂ · · · , let N =

⋃
Ni be finite generated by {s1, · · · , sk}.

Then ∃j, s.t.{s1, · · · , sk} ⊂ Nj , i.e.N = Nj = Nj+1 = · · · .
Therefore M is noetherian.

Prop 1.3.3. Suppose R is noetherian ring, then every finitely generated R-module is noetherian.

Proof. Let M = RS for finite set S ⊂M , we induct on #S.
If #S = 0, then it is trivial.
Suppose #S ⩾ 1, take s ∈ S, let S′ := S\{s},M ′ = RS′ ⊂M .
Then M ′ is noetherian as R-module.
Since R→M/M ′, 1 7→ [s], r 7→ [rs] is epimorphism of R-module.
So M/M ′ is noetherian as R-module.
Now take N1 ⊂ N2 ⊂ · · · in M .
Then N1 ∩M ′ ⊂ N2 ∩M ′ ⊂ · · · in M ′ is stabilizes.
Therefore there exists j1 ∈ Z+, such that Nk ∩M ′ = Nj1 ∩M ′ for k ⩾ j1.
For k ⩾ j1, Nk/(Nj1 ∩M) = Nk/(Nk ∩M ′) ∼= (Nk +M ′)/M ′ ⊂M/M ′.
When k is large, (Nk +M ′)/M ′ is stabilizes, i.e. Nk stabilizes.

Thm 1.3.1 (Hilbert basis). R is noetherian⇒ R[x] is noetherian.

Proof. R[x] is noetherian ring⇔ R[x] is noetherian as R[x]-module⇔ every ideal I of R[x] is
finitely generated as R[x]-module.

For polynomial f ∈ R[x], denote in(f) is the initial coefficient of f ,i.e. the highest degree
coefficient.

And let in(I) := {in(f)|f ∈ I}, in(0) = 0.
Then in(I) is an ideal of R.
So in(I) is finitely generated as R-module.
Therefore there exist f1, · · · , fk ∈ I\{0} such that in(I) = R{in(f1), · · · , in(fk)}.
Let d0 = max{deg f1, · · · , deg fk}.
We claim that I = R[x]f1 + · · ·+R[x]fk + (I ∩R[x]<d0).
Actually any polynomial in I with deg ⩾ d0 can be reduced to a polynomial in I with lower

degree by modulo R[x]f1 + · · ·+R[x]fk by induction.
So I ∩R[x]<d0 is finite generated as R-module, take generators set as fk+1, · · · , fk+l.
Hence I = R[x]{f1, · · · , fk+l} is finitely generated.

Thm 1.3.2 (Artin-Tate). R is noetherian ring, B is an R-algebra, A ⊂ B is R-subalgebra.
Assume B is finite generated as A-module, then A is finite as R-algebra iff B is so.
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Proof. Suppose b1, · · · , bm ∈ B, s.t.B = Ab1 + · · ·+Abm.
Now assume B is finitely generated as R-algebra by b1, · · · , bm, WLOG.
Then bibj ∈ B, let

bibj =

m∑
k=1

akijbk

for akij ∈ A.
Let A0 ⊂ A be a R-subalgebra of A generated by akij .
By Hilbert basis theorem, A0 is a noetherian ring.
Since bibj ∈ A0b1 + · · ·A0bm for any i, j.
So B is finitely generated A0-module, i.e. B is noetherian as A0-module.
And since A ⊂ B as A0-submodule, i.e. A is finitely generated as A0-module.
Hence A is finitely generated as R-module.

Lemma 1.3.1 (Zariski). Field extension L/K is finite iff L is finite generated as a K-algebra.

Proof. ⇒ is obvious, now assume L is finitely generated as K-algebra.
Take b1, · · · , bm ∈ L generates L as K-algebra.
We need to show b1, · · · , bm are algebraic over K, so that L = K[b1, · · · , bm] = K(b1, · · · , bm)

is finite over K.
If not, WLOG, assume b1, · · · , br are algebraic independent over K and br+1, · · · , bm are

algebraic over K(b1, · · · , br).
Then L/K(b1, · · · , br) is finite.
By Artin-Tate theorem, K(b1, · · · , br) is finitely generated as K-algebra.
Let S generates k(b1, · · · , br) and g ∈ K[b1, · · · , br] be a common denominator of S.
Then K(b1, · · · , br) = K[S] = K[b1, · · · , br]

[
1
g

]
.

Consider 1
1−g ∈ K(b1, · · · , br).

So 1
1−g = f

gN
for certain f ∈ K[b1, · · · , br], N ∈ N.

Therefore f = gN + fg But g ∤ f , contradiction!

Coro 1.3.1. A is a finitely generated k-algebra, then for every maximal ideal m ⊂ A, the map
k ↪→ A→ A/m is an isomorphism of fields.

Proof. A/m is a field and a finitely generated as k-algebra.
By Zariski lemma, A/m ⊃ k is finite.
So A/m = k since k is algebraic closed.

Coro 1.3.2. A is finitely generated k-algebra, then there is bijection:

{m|m is maximal ideal of A} ↔ {surjective morphism A→ k as k-algebra}
m 7→ (A ↠ A/m ∼= k)

Thm 1.3.3 (Hilbert Nullstellensatz). I(Z(J)) =
√
J .

Proof. I(Z(J)) ⊃
√
J is clear.

Suppose I(Z(J)) ⫌
√
J , let f ∈ I(Z(J))\

√
J .

Then the image f̄ of f in k[x1, · · · , xn]/J is not nilpotent.
Let A = (k[x1, · · · , xn]/J)

[
1
J

]
, which is not (0) and finitely generated as k-algebra.

Take m ⊂ A be a maximal ideal, then we have A→ A/m ∼= k.
Consider φ : k[x1, · · · , xn]→ A→ A/m ∼= k.
Let pi = φ(xi) ∈ k, p = (p1, · · · , pn) ∈ An.
For any polynomial g ∈ k[x1, · · · , xn], the image φ(g) ∈ k equals to g(p).
If g ∈ J ⊂ k[x1, · · · , xn], then φ(g) = 0, i.e.g(p) = 0.
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So p ∈ Z(J).
And since f̄ invertible in A.
Therefore φ(f) 6= 0, i.e.f(p) 6= 0.
But f ∈ I(Z(J)), contradiction!

1.4 The affine category
Def 1.4.1. X ⊂ Am, Y ⊂ An are closed, a map f : X → Y is called regular if the components
f1, · · · , fn of f are regular functions on X.

Lemma 1.4.1. For X
f−−→ Y

g−−→ Z, if f, g is regular, then g ◦ f : X → Z is regular.

Proof. It suffices to show each components of g ◦ f is regular function.
Only need to consider case Z = A1.
Then g is the restriction of a polynomial function on An to Y .
Let f = (f1, · · · , fn) where fi is the restriction of the polynomial function Fi(x1, · · · , xn)

defined on Am to X.
So g ◦f : X → k is the restriction of the polynomial G(F1(x1, · · · , xm), · · · , Fn(x1, · · · , xm))

to X.

Def 1.4.2. A affine category is consist of

(1) objects: closed subsets of affine spaces

(2) morphism: regular maps X → Y .

Remark 1.4.1. For any X
f−−→ Y and regular function Y → k, we have a regular function

X
f
== Y → k, that is, f induces a k-algebra morphism f∗ : k[Y ]→ k[X].
So we have the contravariant functor Y 7→ k[Y ], f 7→ f∗.

Def 1.4.3. A regular map f : X → Y is called an isomorphism if f is bijective and f−1 : Y → X
is regular.

Prop 1.4.1. Isomorphism f : X → Y induce isomorphism f∗ : k[Y ]→ k[X].

Proof. (f−1)∗(f∗(p)) = f∗(p) ◦ f−1 = p ◦ f ◦ f−1 = p.
And f∗((f−1)∗(p)) = (f−1)∗(p) ◦ f = p ◦ f−1 ◦ f = p.
So (f−1)∗ and f∗ are isomorphism.

Prop 1.4.2. f : X → Y is any map, if for any regular function g : Y → k, the composition
g ◦ f : X → k is regular, then f is a regular map.

Proof. Take g = yi, then g ◦ f = fi is the i-th component of f .

Prop 1.4.3. Given X ⊂ Am, Y ⊂ An and k-algebra homomorphism φ : k[Y ]→ k[X].
Then there is a unique regular map f : X → Y with φ = f∗.
That is, Homreg(X,Y )

∼=−−→ Homk-alg(k[Y ], k[X]).

Proof. The inclusion j : Y ⊂ An defines j∗ : k[y1, · · · , yn]→ k[Y ] = k[y1, · · · , yn]/I(Y ).
Then ker(j∗) = I(Y ).
Consider k[X]

ϕ←−− k[Y ]
j∗←−− k[y1, · · · , yn], fi ← [ yi.

Let f = (f1, · · · , fn) : X → An is a regular map.
Then k[y1, · · · , yn]→ k[X], yi 7→ f∗(yi) = yi ◦ f = fi = (φj∗)(yu).
So f∗ = φj∗,i.e. f∗(I(Y )) = (0).
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Therefore ∀g ∈ I(Y ), g ◦ f ≡ 0, i.e.f(X) ⊂ Y = Z(I(Y )) and f∗ = φ.
Suppose f, f ′ : X → Y are different regular map.
Then there exists i such that fi 6= f ′

i .
So f∗([yi]) 6= (f ′)∗([yi]), i.e.f∗ 6= (f ′)∗.
Hence f is unique.

Coro 1.4.1. (1) isomorphism k[Y ]
∼=−−→ k[X] comes from a unique isomorphism X

∼=−−→ Y .

(2) For Z ⊂ Y ⊂ An, the induced surjective map k[Y ]→ k[Z] has kernel IY (Z) = I(Z)/I(Y ).

Proof. (1) Let φ : k[Y ]
∼=−−→ k[X] and f∗ = φ, g∗ = φ−1.

So (g ◦ f)∗ = f∗ ◦ g∗ = Idk[X], (f ◦ g)∗ = g∗ ◦ f∗ = Idk[Y ].
And since f ◦ g, g ◦ f are the unique regular map such that (g ◦ f)∗ = Id∗X , (f ◦ g)∗ = Id∗Y .
Hence f is the unique isomorphism with f−1 = g.

(2) Let φ : k[Y ]→ k[Z] such that φ = i∗.
Then φ(p) = p ◦ i = p

∣∣
Z

.
So kerφ =

{
p ∈ k[Y ]

∣∣p∣∣
Z
≡ 0
}
= IY (Z).

Def 1.4.4. A regular map f : X → Y is called a closed immersion if f(X) ⊂ Y is closed and
f : X → f(X) is an isomorphism.

Prop 1.4.4. f : X → Y is a closed immersion iff f∗ : k[Y ]→ k[X] is surjective.

Proof. If f is closed immersion, then f∗ : k[X]
∼=←−− k[f(X)] ↞ k[Y ] with ker = IY (f(X)).

So k[Y ]→ k[X] is surjective.
Conversely, if f∗ is surjective, then ker(f∗) is a radical ideal of k[Y ], let it corresponds to a

closed subset Z ⊂ Y .
By definition of f∗, every element in ker(f∗) vanishes on f(X).
So f(X) ⊂ Z.
And since morphism k[Y ] ↠ k[Z] also has kernel IY (Z) = ker(f∗).
Hence k[Z]→ k[X] is isomorphism, i.e. f : X

∼=−−→ Z → Y is a closed immersion.

Exam 1.4.1. Consider the mapf : A1 → A2, t 7→ (t2, t3).
The image is an irreducible curve C defined by x3 − y2 = 0 and the inverse map C → A1 is

given by (0, 0) 7→ 0, (x, y) 7→ y
x if x 6= 0.

The Zariski topology on both C and A1 are the cofinite topology.
So f : A1 → C is a homeomorphism, but not an isomorphism:
Since k[C] = k[x, y]/(x3 − y2), k[A1] = k[t].
And f∗ : k[C]→ k[A1] is given by [x] 7→ t2, [y] 7→ t3.
Therefore image of f∗ does not contain t, i.e. f∗ is not surjective.

Prop 1.4.5. For regular map f : X → Y with f∗ : k[Y ]→ k[X], for any point x ∈ X, we have
mf(x) = (f∗)−1(mx).

Proof. First k[Y ]
f∗
−−→ k[X]

ρx−−→ k[X]/mx
∼= k

So ker(ρx ◦ f∗) = (f∗)−1(mx) is a maximal ideal.
It suffices to check f∗(mf(x)) ⊂ mx.
Actually, for any g ∈ mf(x), g(f(x)) = 0.
So f∗(g) vanishes at x, i.e. f∗(g) ∈ mx.
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Def 1.4.5. For any ring R, let Spm(R) be the set of maximal ideals of R.
For x ∈ Spm(R), we also denote mx the corresponding maximal ideal .
For any ideal I ⊂ R, let Z(I) be the set of x ∈ Spm(R) with mx ⊃ I.
For s ∈ R, write Z(s) = Z(Rs) = {x|s ∈ mx}, apparently: Z(0) = Spm(R), Z(R) = ∅.

Prop 1.4.6. For arbitrary ideals I, J, {Iα}α∈A of R, we have

Z(I) ∪ Z(J) = Z(I ∩ J),
⋂
α∈A

Z(Iα) = Z

(∑
α∈A

Iα

)
.

So {Z(I)} forms all closed subsets for a topology: Zariski topology on Spm(R).

Proof. If I ∩ J ⊂ mx, then IJ ⊂ mx.
So I ⊂ mx or J ⊂ mx.
Therefore Z(I ∩ J) = Z(I) ∪ Z(J).
Moreover, Iα ⊂ mx for every α ∈ A⇔the ideal generates by {Iα}α∈A contains in mx.

Hence
⋂

α∈A
Z(Iα) = Z

( ∑
α∈A

Iα

)
.

Def 1.4.6. Denote Spm(R)s := Spm(R)\Z(s) are the principal open subsets.

Remark 1.4.2. Principal open subsets form a basis of Zariski topology on Spm(R).

Lemma 1.4.2. Spm(R) is quasi-compact: every open covering admits a finite subcovering.

Proof. It suffices to show an open covering by principal open subsets admits a finite subcovering.
Suppose Spm(R) =

⋃
s∈S

Spm(R)s, then

Spm(R) =
⋃
s∈S

Spm(R)s = Spm(R)\

(⋂
s∈S

Z(s)

)
= Spm(R)\Z

(∑
s∈S

sR

)
.

So
∑
s∈S

sR = R.

Let 1 =
n∑

i=1
risi for ri ∈ R, si ∈ S.

Hence
n∑

i=1
siR = R, i.e. Spm(R) =

n⋃
i=1

Spm(R)si .

Remark 1.4.3. Bourbaki use this notion “quasi-compact” for non-Hausdorff space. One reason
of doing this is that when we consider the complex varieties, they also have a topology induced
by the euclidean topology of Cn. So we use “quasi-compact” to distinguish the compactness of
these two topology structures.

Now consider a finitely generated k-algebra A(may be not reduced), a choice of generators
gives A ∼= k[x1, · · · , xn]/I.

For any x ∈ Spm(A), we have a unique isomorphism A/mx
∼= k as k-algebra by Artin-Tate

theorem. So we have the correspondence x↔ mx ↔
(
A

ρx−−→ k
)

.
Any f ∈ A defines a “regular function” f̄ : Spm(A) → k which takes x ∈ Spm(A) to

ρx(f) ∈ k. The zero set of f̄ : Spm(A)→ k is Z(f) and f 7→ f̄ is a k-algebraic homomorphism
from A to the algebraic of k-valued functions on Spm(A). The kernel of this homomorphism is
exactly

√
(0) ⊂ A since we have the proposition:

Prop 1.4.7. √
(0) =

⋂
x∈Spm(A)

mx.



CHAPTER 1. AFFINE VARIETIES 15

Proof. If f /∈
√

(0), then consider the map ϕ : A → A
[
1
f

]
→ A

[
1
f

]
/m ∼= m where m is a

maximal ideal of A
[
1
f

]
.

So f /∈ kerϕ since ϕ(f) is invertible.
Therefore f /∈ mx for x such that ρx = ϕ.
And since

√
(0) =

⋂
p prime

p ⊂
⋂

x∈Spm(A)

mx.

Hence
√

(0) =
⋂

x∈Spm(A)

mx.

Remark 1.4.4. We have used this trick while proving the Hilbert nullstellensatz.
Let Ā = A/

√
(0) reduced, then Ā is the set of regular functions on Spm(A), also denote

Ā = k[Spm(A)]. So Ā ∼= k[x1, · · · , xn]/
√
I = k[Z], i.e. Spm(A) ∼= Spm(Ā) ∼= Z(I) ∼= Z(

√
I) ⊂

An as set. This gives (X, k[X]) in an intrinsic way: (Spm(A), Ā).
Now consider a morphism φ : A → B of finitely generated k-algebra, we have Spm(φ) :

Spm(B)→ Spm(A),my 7→ φ−1(my). So for regular function f ∈ A and its induced map f̄ ∈ Ā,
the composite of Spm(B)

Spm(ϕ)−−−−→ Spm(A)
f̄−−→ k is φ(f) and so it is regular.

In particular, the preimage of Z(f) in Spm(B) under Spm(φ) is Z(φ(f)). So the preimage
of Spm(A)f is Spm(B)ϕ(f) and preimage of Z(I) is Z(φ(I)). Thus Spm(φ) is continuous.

We refer to the pair (Spm(φ), φ) as a morphism from (Spm(B), B) to (Spm(A), A). In
particular, Spm(φ) is a geometric map and φ is an algebraic morphism.

Prop 1.4.8. Let A be a finitely generated k-algebra, then for any g ∈ A, A
[
1
g

]
is a finitely

generated k-algebra.
If A reduced, then A

[
1
g

]
is also reduced, then natural k-algebra homomorphism A→ A

[
1
g

]
induces a morphism Spm

(
A
[
1
g

])
→ Spm(A), which is a homeomorphism onto Spm(A)g.

Moreover, for g, g′ ∈ A, TFAE:

(1) Spm(A)g ⊂ Spm(A)g′.

(2) g′ divides some positive power of g, i.e. g ∈
√
(g′).

(3) ∃an A-homomorphism A
[
1
g′

]
→ A

[
1
g

]
. (which must then be unique)

Proof. If g nilpotent, then A
[
1
g

]
= (0), Spm

(
A
[
1
g

])
= ∅, Spm(A)g = ∅.

So A
[
1
g

]
is clearly finitely generated over k.

If A reduced, take f
gr ∈ A

[
1
g

]
, suppose

(
f
gr

)m
= 0 in A

[
1
g

]
.

Then fm is annihilated by a power of g in A.
We assume fmgn = 0.
Then (fgn)m = 0 in A, i.e. fgn = 0.
Hence f

gr = 0 in A
[
1
g

]
,i.e. A

[
1
g

]
is reduced.

Since an element of Spm
(
A
[
1
g

])
can maps to a map A→ A

[
1
g

]
→ k.

And it corresponds to the kernel of this map, which is an element in nSpm(A)g.
So we have Spm

(
A
[
1
g

])
→ Spm(A)g ⊂ Spm(A), which is clearly continuous.

A principal subset of Spm
(
A
[
1
g

])
is of form Spm

(
A
[
1
g

])
ϕ

with φ = f
gn in A

[
1
g

]
.

Suppose φ is not nilpotent in A
[
1
g

]
, i.e. f is not nilpotent in A.

Let A
[
1
g

] [
1
ϕ

]
∼= A

[
1
fg

]
.
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Then Spm
(
A
[
1
g

])
ϕ

is naturally identified with Spm(A)fg.

Hence the morphism Spm
(
A
[
1
g

])
→ Spm(A)g is open, i.e. homeomorphism.

Next we check (1)⇒ (2)⇒ (3)⇒ (1).
(1)⇒ (2): Since Spm(A)g ⊂ Spm(A)g′ .
So Z(g) ⊃ Z(g′), i.e. g ∈ I(Z(g′)) =

√
(g′).

(2)⇒ (3): Suppose gn = fg′, f ∈ A.
Then there exists an A-homomorphism A

[
1
g′

]
→ A

[
1
fg′

]
= A

[
1
gn

]
= A

[
1
g

]
which is inde-

pendent of choices of n and f .
(3)⇒ (1): Since we have A→ A

[
1
g′

]
→ A

[
1
g

]
and A→ A

[
1
g

]
.

They induce Spm
(
A
[
1
g

])
→ Spm

(
A
[
1
g′

])
1:1−−→ Spm(A)g′ and Spm

(
A
[
1
g

])
1:1−−→ Spm(A)g.

So Spm(A)g ⊂ Spm(A)g′ .
Lastly, the image of 1

g′ in A
[
1
g

]
is the inverse of g′

1 ∈ A
[
1
g

]
.

Now we consider the non-reduced cases: let X = Spm(A), Y = Spm(B) and f : X → Y be
regular. Then a fiber f−1({y}) or the preimage f−1(Z) of closed subset Z ⊂ Y is closed and
IY (Z) ⊂ k[Y ] ∼= B̄. We claim that f−1(Z) is actually the zero locus of f∗IY (Z) ⊂ IX(f−1(Z)),
which may be not radical. So we should think of f−1(Z) as Spm(k[X]/f∗IY (Z)), which has a
bijection to Spm

(
k[X]/

√
f∗IY (Z)

)
.

Exam 1.4.2. Consider f : A1 → A1, a 7→ a2 with char(k) 6= 2.
Then f∗ : k[y]→ k[x], y 7→ x2 and for a ∈ Y , the fiber is

f−1(a) =

{
2 different points a 6= 0

0 a = 0

So f−1(a) should be thought as zero locus defined by f∗〈y − a〉 = 〈x2 − a〉.
For a 6= 0, 〈x2 − a〉 is radical ideal.
And for a 6= 0, f−1(a) should be thought as a point 0 ∈ X = A1 with multiplicity 2.

Exam 1.4.3 (Frobenius morphism). Assume char(k) = p, consider Φp : A1
k → A1

k, a 7→ ap.
Then Φp(a− b) = (a− b)p = ap + (−b)p = ap − bp = Φa(a)− Φb(b),Φp(ab) = Φp(a)Φp(b)
So Φp is injective, and Φp is also surjective since k is algebraic closed.
And since Φ∗

p : k[x]→ k[x], x 7→ xp with image k[xp].
Therefore Φ∗

p is not surjective, i.e. Φp is homeomorphism but not isomorphism.
Consider Φp ↷ A1, Fix(Φp) = {a ∈ A1|ap = a} 1:1−−→ Fp ⊂ k.
Denote Fix(Φp) = A1(Fp) and A1 (Fpr) := Fix

(
Φr
p

)
=
{
a ∈ A1

∣∣apr = a
}

.

If k = F̄p, then k =
∞⋃
r=1

Fpr and A′
k =

∞⋃
r=1

A1(Fpr).

Every Φp-orbit in A′
k is finite.

For higher dimension, Φp : An
k → An

k ,An(Fpr) = Fix(Φr
p).

If k = F̄p, then An
k =

∞⋃
r=1

An (Fpr) and every Φp-orbit in An
k is finite.

Prop 1.4.9. For char(k) = p and q = pr, we write Φq for Φr
p, prove that:

(a) f ∈ k[x1, · · · , xn] is in Fq[x1, · · · , xn] iff Φqf = f q.

(b) an affine-linear transformation of An with coefficients in Fq commutes with Φq.
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(c) let Y ⊂ An
k be common zero locus of a subset of Fq[x1, · · · , xn] ⊂ k[x1, · · · , xn], then

Φq = Φr
p : An → An restricts to a bijection ΦY,q : Y → Y and the set of Fq-points of Y is

Y (Fq) := Fix(ΦY,q) = Y ∩ Fix(Φq) = Y ∩ An(Fq).

(d) If k = F̄p, then any closed subset Y ⊂ An is defined over certain Fq and so Y is invariant
under Φq.

Proof. (a) Let f =
∑

i1,··· ,in
ci1···inx

i1
1 · · ·xinn , then

Φqf =
∑

i1,··· ,in

ci1···inx
qi1
1 · · ·x

qin
n , f q =

∑
i1,··· ,in

cqi1···inx
qi1
1 · · ·x

qin
n .

So Φqf = f ⇔ cqi1···in = ci1··· ,in ⇔ ci1···in ∈ Fq, i.e. f ∈ Fq[x1, · · · , xn].

(b) Let f = (f1, · · · , fn), f ∈ Fq[x1, · · · , xn].
Then Φqf = (Φqf1, · · · ,Φqfn) = (f q

1 , · · · , f
q
n) = (f1, · · · , fn)Φq = fΦq.

(c) Let Y = Z(X) with x ∈ Fq[x1, · · · , xn].
For any f ∈ X, y ∈ Y , f(Φq(y)) = (Φqf)(y) = f q(y) = 0.
So Φq(y) ∈ Y .
And f q(Φ−1

q (y)) = (Φqf)(Φ
−1
q (y)) = f(y) = 0.

Therefore f(Φ−1
q (y)) = 0, i.e.Φ−1

p (y) ∈ Y .
Hence ΦY,q : Y → Y is bijective and fixed point set is the intersection of Y and fixed point
set of Φq, i.e. Y ∩ An(Fqm).

(d) By Hilbert theorem, I(Y ) is finite generated by certain {f1, · · · , fn}.
So there are only finitely many coefficients.
Let q = pr such that all coefficients of f1, · · · , fn are contain in Fq.
Then Y is the common zero set of I(Y ) ⊂ Fq[x1, · · · , xn].
Hence by (c), Y is invariant under some positive power of Φp.

Def 1.4.7 (Weil Zeta function).

ZY (t) := exp

( ∞∑
m=1

|Y (Fqm)|
tm

m

)
.

In particular,

ζ(Y, s) := ZY (q
−s) = exp

( ∞∑
m=1

|Y (Fqm)|
1

m
q−ms

)
.

Thm 1.4.1 (Weil conjecture). Y is smooth, then

(1) ZY (t) is rational function(Dwork 1960)

(2) functional equation(Grothendieck 1965)

(3) “Riemann hypothesis”: roots of numberator and denominator of ZY (t) has absolute value
q−

k
2 with k ∈ Z⩽0. (proved by Deligne 1974)
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