Algebraic Varieties Lecture Notes

Note taker: Jacky567

Qiuzhen College, Tsinghua University $2025~{\rm Spring}$

Contents

1	Affi	ne varieties	1
	1.1	The Zariski topology	1
	1.2	Irreducibility and decomposition	5
	1.3	Finiteness properties and the Hilbert theorems	9
	1.4	The affine category	12

Chapter 1

Affine varieties

1.1 The Zariski topology

Notation 1.1.1. We use k to denote an algebraic closed field, e.g. $k = \mathbb{C}, \overline{\mathbb{F}}_p, \overline{\mathbb{C}(x)}$, etc.

Def 1.1.1. An affine space for the k-vector space k^n is a set A together with an action of k^n on A, say $k^n \times A \to A, (v, a) \mapsto v + a$, such that

- (1) for any $a \in A$, 0 + a = a.
- (2) for any $v, w \in k^n, a \in A, v + (w + a) = (v + w) + a$
- (3) for any $a \in A$, the map $k^n \to A, v \mapsto v + a$ is bijection.

Def 1.1.2. \mathbb{A}_k^n is the underlying affine space of k^n , call an affine *n*-space over *k*.

Remark 1.1.1. The underlying set of k^n and \mathbb{A}^n_k are actually the same, but we need to "forget" the rule of 0 as origin on \mathbb{A}^n_k .

Def 1.1.3. A polynomial $f \in k[x_1, \dots, x_n]$ gives a map $f : \mathbb{A}^n \to k$, and we call a k-valued function on \mathbb{A}^n regular if it is defined by a polynomial.

Prop 1.1.1. A polynomial $f \in k[x_1, \dots, x_n]$ is completely determined by the regular function it defines.

Proof. Let g be another polynomial such that the regular function of f, g agree at every point. When n = 1, $f - g \in k[x_1]$ has infinity many roots, *i.e.* $f = g \in k[x_1]$. Assume $f = g \in k[x_1, \dots, x_k]$ for k < n and let

$$f - g = \sum_{i=0}^{d} h_i(x_1, \cdots, x_{n-1}) x_n^i,$$

where $h_i \in k[x_1, \dots, x_{n-1}]$. Then for any fixed x_1, \dots, x_{n-1} , we must have $h_i(x_1, \dots, x_{n-1}) = 0$. So the regular function of h_i is zero at every point. Therefore by the induction assumption, $h_i = 0$, *i.e.* f = g. Hence f is completely determined by the regular function it defines.

Def 1.1.4. For $f \in k[x_1, \dots, x_n]$, denote Z(f) be the zero locus of $f : \mathbb{A}^n \to k$ and $\mathbb{A}_f^n = \mathbb{A}^n \setminus Z(f)$.

Prop 1.1.2. If $\deg(f) > 0$, then $Z(f) \neq \mathbb{A}^n, \emptyset$.

Proof. If $Z(f) = \mathbb{A}^n$, then the regular function of f is zero everywhere, *i.e.* f = 0. Let

$$f = \sum_{i=0}^{d} h_i(x_1, \cdots, x_{n-1}) x_n^i,$$

where $h_i \in k[x_1, \cdots, x_{n-1}]$. Then $h_d \neq 0$, *i.e.* $Z(h_d) \neq \mathbb{A}^{n-1}$ and fix (x_1, \cdots, x_{n-1}) such that $h_d(x_1, \cdots, x_{n-1}) \neq 0$. So $f(x_1, \cdots, x_{n-1}, \bullet)$ has a root by fundamental theorem of algebra. Hence $Z(f) \neq \mathbb{A}^n, \emptyset$.

Def 1.1.5. A principal subset of \mathbb{A}^n is a subset of form \mathbb{A}^n_f .

Def 1.1.6. A hypersurface of \mathbb{A}^n is a subset of form Z(f) with $\deg(f) > 0$.

Prop 1.1.3. The collection of principal subsets of \mathbb{A}^n form a basis of a topology on \mathbb{A}^n , called the Zariski topology on \mathbb{A}^n .

Proof.
$$\mathbb{A}_{f_1}^n \cap \mathbb{A}_{f_2}^n = \mathbb{A}^n \setminus (Z(f_1) \cup Z(f_2)) = \mathbb{A}_{f_1 f_2}^n.$$

Prop 1.1.4. For the Zariski topology, an open subset is a union of certain principal subsets, a closed subset is an intersection of certain Z(f).

Proof. By definition of the basis of topology.

Def 1.1.7. For a subset $J \subset k[x_1, \dots, x_n]$, denote $Z(J) = \bigcap_{f \in J} Z(f)$, these are exactly all Zariski-closed subsets.

Exam 1.1.1. The Zariski topology on \mathbb{A}^1 is the cofinite topology: closed subsets are the finite subsets.

Def 1.1.8. For subsets $X \subset \mathbb{A}^n$, denote by I(X) the set of polynomials vanishing on X.

Prop 1.1.5. I(X) is an ideal of $k[x_1, \dots, x_n]$.

Proof. For any $f \in I(X)$ and $g \in k[x_1, \dots, x_n]$, $Z(fg) \supset X$. So I(X) is the set of polynomials.

Remark 1.1.2. We have the following commutative diagram:

$$\{ \text{subsets of } \mathbb{A}^n \} \xrightarrow{I} \{ \text{ideals of } k[x_1, \cdots, x_n] \}$$
$$\cup \qquad \cap$$
$$\{ \text{closed subsets of } \mathbb{A}^n \} \xleftarrow{Z} \{ \text{subsets of } k[x_1, \cdots, x_n] \}$$

Eventually, closed subsets of $\mathbb{A}^n \xleftarrow{1:1}$ radical ideals of $k[x_1, \cdots, x_n]$ (we will prove this later).

Prop 1.1.6. (1) $X_1 \subset X_2 \subset \mathbb{A}^n$, then $I(X_1) \supset I(X_2)$. (2) $J_1 \subset J_2 \subset k[x_1, \cdots, x_n]$, then $Z(J_1) \supset Z(J_2)$. (3) $I(X_1 \cup X_2) = I(X_1) \cap I(X_2)$. (4) $Z(J_1 \cup J_2) = Z(J_1) \cap Z(J_2)$. Proof. (1) For $f \in I(X_2)$, $Z(f) \supset X_2 \supset X_1$, *i.e.* $f \in I(X_1)$. (2) $Z(J_2) = \bigcap_{f \in J_2} Z(f) \subset \bigcup_{F \in J_1 \subset J_2} Z(f) = Z(J_1)$. (3) $I(X_1 \cup X_2) \subset I(X_1), I(X_2).$ And for $f \in I(X_1) \cap I(X_2), Z(f) \supset X_1 \cup X_2, i.e. f \in I(X_1 \cup X_2).$

(4)
$$Z(J_1 \cup J_2) = \bigcap_{f \in J_1 \cup J_2} Z(f) = \left(\bigcap_{f \in J_1} Z(f)\right) \cap \left(\bigcap_{f \in J_2} Z(f)\right) = Z(J_1) \cap Z(J_2).$$

Def 1.1.9. For any $X \subset \mathbb{A}^n$, denote by \overline{X} the Zariski closure of X.

Prop 1.1.7. (1) $Z(I(X)) = \overline{X}$.

$$(2) I(Y) = I(Y).$$

- (3) two polynomials $f, g \in k[x_1, \dots, x_n]$ have same restriction to Y iff $f g \in I(Y) = I(\overline{Y})$.
- (4) $k[x_1, \dots, x_n]/I(Y)$ contains distinct k-valued functions on Y. (also on \overline{Y})
- Proof. (1) Since $Z(f) \supset X$ for every $f \in I(X)$. So $X \subset Z(I(X)) \subset Z(I(\bar{X})) = \bar{X}$. And since Z(I(X)) is closed. Hence $Z(I(X)) = \bar{X}$.
- (2) For $f \in I(Y)$, $Z(f) \supset \overline{Y}$, *i.e.* $f \in I(\overline{Y})$. And since $I(Y) \supset I(\overline{Y})$. So $I(Y) = I(\overline{Y})$.
- (3) Since f = g in Y. So f - g = 0 in Y, *i.e.* $f - g \in I(Y) = I(\overline{Y})$.
- (4) For $[f] \neq [g] \in k[x_1, \cdots, x_n]/I(Y), [f-g] \neq 0.$ So $f - g \notin I(Y)$, *i.e.* f and g are distinct on Y.

Def 1.1.10. Let $Y \subset \mathbb{A}^n$ be closed, denote $k[Y] = k[x_1, \dots, x_n]/I(Y)$, called the coordinate ring of Y, and k-valued function on Y is called regular if it is determined by a element in k[Y].

Remark 1.1.3. We can say that the coordinate ring of Y is the set of regular functions on Y.

Def 1.1.11. Given a closed subset $Y \subset \mathbb{A}^n$, Y also has a topology.

denote $I_Y(X) = I(X)/I(Y)$ when $X \subset Y$, for subset $J \subset k[Y]$, let $Z_Y(J)$ be the zero locus of $J \cup I(Y)$, then $Z_Y(J)$ is a closed subset of Y.

Remark 1.1.4. Similar to remark 1.1.2, we have the commutative diagram:

 $\{ \text{subsets of } Y \} \xrightarrow{I_Y} \{ \text{ideals of } k[Y] = k[\mathbb{A}^n]/I(Y) \}$ $\cup \qquad \cap$ $\{ \text{closed subsets of } Y \} \xleftarrow{Z_Y} \{ \text{subsets of } k[Y] \}$

Prop 1.1.8. $Z_Y(I_Y(X)) = \bar{X}$.

Proof.
$$Z_Y(I_Y(X)) = \left(\bigcap_{[f]\in I_Y(X)} Z(f)\right) \cap Y = Z(I(X)) \cap Y = \overline{X}.$$

Def 1.1.12. Let R be a ring, $J \subset R$ is an ideal, define the radical of J

 $\sqrt{J} = \{ a \in R | \exists m \in \mathbb{Z}^+, s.t.a^m \in J \}.$

We say J is a radical ideal if $J = \sqrt{J}$.

We say R is reduced ring if (0) is radical, *i.e.* R has no nonzero nilpotents.

Prop 1.1.9. (1) A prime ideal is radical.

(2) $J \subset R$ is a ideal, then J is radical iff R/J is reduced.

- Proof. (1) Suppose \mathfrak{p} is a prime ideal and $a^m \in \mathfrak{p}$ but $a \notin \mathfrak{p}$. WLOG, we assume $a^{m-1} \notin \mathfrak{p}$. Then $a \cdot a^{m-1} \notin \mathfrak{p}$, contradiction! So \mathfrak{p} is a radical ideal.
- (2) J is radical \Leftrightarrow For any $a \notin J$ and $n \in \mathbb{Z}^+$, $a^n \notin J$ \Leftrightarrow For any $[a] \neq 0$ in R/J and $n \in \mathbb{Z}^+$, $[a]^n \neq (0)$. $\Leftrightarrow R/J$ is reduced.

Prop 1.1.10. (1) For subset $X \subset Y$, we have $I_Y(X) \subset k[Y]$ is radical.

(2) For subset $J \subset k[Y]$, we have $Z_Y(J) = Z_Y(\langle J \rangle) = Z_Y\left(\sqrt{\langle J \rangle}\right)$

Proof. (1) Let $f \in \sqrt{I_Y(X)}$. Then there exist $m \in \mathbb{Z}^+$, such that $f^m \in I_Y(X)$, *i.e.* $f^m|_X = 0$. So $f|_X = 0$, *i.e.* $f \in I_Y(X)$.

(2) Let $[f] \in J$. Then $Z_Y([fg]) \supset Z_Y([f]) \supset Z_Y(J)$ for $[g] \in k[Y]$. And for $[h] \in k[Y]$ such that $[h]^n = [fg], Z([h]) \supset Z([fg]) \supset Z_Y(J)$. So $Z_Y\left(\sqrt{\langle J \rangle}\right), Z_Y(\langle J \rangle) \supset Z_Y(J)$. And since $Z_Y\left(\sqrt{\langle J \rangle}\right), Z_Y(\langle J \rangle) \subset Z_Y(J)$. Hence $Z_Y\left(\sqrt{\langle J \rangle}\right) = Z_Y(\langle J \rangle) = Z_Y(J)$.

Remark 1.1.5. We now have the correspondence

$$\{\text{close subsets of } \mathbb{A}^n\} \xrightarrow[Z]{I} \{\text{radical ideals of } k[\mathbb{A}^n]\}$$
$$\{\text{close subsets of } Y\} \xrightarrow[Z_Y]{I_Y} \{\text{radical ideals of } k[Y]\}$$

Actually, $I(I_Y \text{ resp.})$ and $Z(Z_Y \text{ resp.})$ are inverse to each other, thanks to:

Thm 1.1.1 (Hilbert's Nullstellensatz). For any ideal $J \subset k[x_1, \dots, x_n]$, we have $I(Z(J)) = \sqrt{J}$

We will prove this theorem in the third section.

Exam 1.1.2. For a point $p = (a_1, \dots, a_n) \in \mathbb{A}^n$, then $I(\{p\}) = (x_1 - a_1, \dots, x_n - a_n)$ is a maximal ideal.

Proof. Let $\mathfrak{m} = (x_1 - a_1, \dots, x_n - a_n)$. Then $Z(\mathfrak{m}) = p, i.e.\mathfrak{m} \subset I(\{p\})$. And since $k[x_1, \dots, x_n]/\mathfrak{m} = k$ is a field. So \mathfrak{m} is maximal. And since $x_1 - q \notin I(\{p\})$ for $q \neq a_1$. Hence $I(\{p\}) \neq k[x_1, \dots, x_n], i.e.\mathfrak{m} = I(\{p\})$.

Prop 1.1.11. Given a maximal ideal $\mathfrak{m} \subset k[x_1, \cdots, x_n]$, \mathfrak{m} corresponds to a point.

Proof. Since $Z(\mathfrak{m})$ is a nonempty closed set of \mathbb{A}^n and \mathfrak{m} is maximal. So there is no nonempty closed set strictly contained in $Z(\mathfrak{m})$, *i.e.* $Z(\mathfrak{m}) = \{p\}$. Hence $\mathfrak{m} \subset I(Z(\mathfrak{m})) = I(\{p\}) = (x_1 - a_1, \cdots, x_n - a_n)$, *i.e.* $\mathfrak{m} = (x_1 - a_1, \cdots, x_n - a_n)$. \Box

1.2 Irreducibility and decomposition

Def 1.2.1. Let Y be a nonempty topological space, we say that Y is irreducible if it is not the union of two closed proper subsets.

Prop 1.2.1. nonempty Y is irreducible iff any nonempty open subset of Y is dense in Y.

Proof. If $Y = Y_1$ with proper closed Y_1, Y_2 , then $Y - Y_1 \subset Y_2$ is nonempty open subset of Y but not dense.

Conversely, suppose $U \subset Y$ is nonempty open and $\overline{U} \subsetneq Y$, then $Y = \overline{U} \cup (Y - U)$. \Box

Def 1.2.2. We call a maximal irreducible subset of Y an irreducible component of Y.

Lemma 1.2.1. If $A_1 \subset A_2 \subset \cdots \subset Y$, A_i is irreducible, then $\bigcup A_i$ is also irreducible.

- Proof. Suppose $\bigcup A_i = C_1 \cup C_2$ where C_1, C_2 are proper closed subsets. Then $A_i = (A_i \cap C_1) \cup (A_i \cap C_2)$. And since A_i are irreducible. So $A_i \subset C_1$ or $A_i \subset C_2$. Therefore C_1 or C_2 contains all A_i . Hence $C_1 = \bigcup A_i$ or $C_2 = \bigcup A_i$, contradiction! Thus 1.2.1. From irreducible subset of Y is contained in an irreducible component.
- **Thm 1.2.1.** Every irreducible subset of Y is contained in an irreducible component. In particular, Y equals to the union of its irreducible components.

Proof. By Zorn's lemma.

Prop 1.2.2. A Hausdorff topological space is irreducible iff it is one point.

Proof. Suppose X contain two points a, b. Then there exist two disjoint open set U, V such that $a \in U, b \in V$. So $(X \setminus U) \cup (X \setminus V) = X \setminus (U \cap V) = X$, *i.e.* X is not irreducible, contradiction! Hence X consists of a single point. **Lemma 1.2.2.** If Y is irreducible, then every open nonempty subset of Y is irreducible. Conversely, if $C \subset Y$ is an irreducible, then \overline{C} is also irreducible. In particular, an irreducible component of Y is closed.

Proof. Suppose Y is irreducible, $\emptyset \neq U \subset Y$ is open, then every nonempty open subset of U is dense in Y.

So it is also dense in U, i.e. U is irreducible. Suppose $C \subset Y$ is irreducible subspace and $V \subset \overline{C}$ is nonempty open subset. Then $V \cap C \neq \emptyset$ is open in C. Therefore $V \cap C$ is dense in C and \overline{C} . Hence V is dense in \overline{C} , *i.e.* \overline{C} is irreducible.

Prop 1.2.3. A closed subset Y of \mathbb{A}^n is irreducible iff I(Y) is prime ideal $\Leftrightarrow k[Y] = k[\mathbb{A}^n]/I(Y)$ is a domain.

Proof. Suppose Y is irreducible, let $f, g \in k[x_1, \dots, x_n]$ with $fg \in I(Y)$. Then $Y \subset Z(fg) = Z(f) \cup Z(g)$. So $Y \subset Z(f)$ or $Y \subset Z(g)$, *i.e.* $f \in I(Y)$ or $g \in I(Y)$. Suppose $Y = Y_1 \cup Y_2$ with Y_i closed proper subsets. Then for $i \in \{1, 2\}, \exists f_i \in I(Y_i) \setminus I(Y)$. So $f_1 f_2 \in I(Y)$ but $f_1, f_2 \notin I(Y)$.

Exam 1.2.1. In \mathbb{A}^n , point $\langle \stackrel{1:1}{\longrightarrow} maximal \ ideal$ irreducible closed set $\langle \stackrel{1:1}{\longrightarrow} prime \ ideal$ irreducible component $\langle \stackrel{1:1}{\longrightarrow} minimal \ prime \ ideal$ $\mathbb{A}^n \langle \stackrel{1:1}{\longrightarrow} (0)$ Given closed $Y \subset \mathbb{A}^n$, $Y \langle \stackrel{1:1}{\longrightarrow} (0) \subset k[Y]$. closed subset of $Y \langle \stackrel{1:1}{\longrightarrow} radical \ ideal \ of \ k[Y]$. point $\langle \stackrel{1:1}{\longrightarrow} maximal \ ideal \ of \ k[Y]$ irreducible closed subset of $Y \langle \stackrel{1:1}{\longrightarrow} prime \ ideal \ of \ k[Y]$. irreducible closed subset of $Y \langle \stackrel{1:1}{\longrightarrow} minimal \ prime \ ideal \ of \ k[Y]$.

Def 1.2.3. A ring R is called a UFD if it has no zero divisors and each principal ideal is a product of principal prime ideals: $(a) = (p_1) \cdots (p_s)$ and $(p_1), \cdots, (p_s)$ is unique up to order.

Remark 1.2.1. (p) is principal prime ideal iff $p|ab \Rightarrow p|a$ or p|b and we call p prime element.

Prop 1.2.4. In UFD, irreducible element is equivalent to prime element.

Proof. Suppose (p) is irreducible. For $ab \in (p)$, let ab = cp for some $c \in R$. Then by the uniqueness of factorization, $a \in (p)$ or $b \in (p)$. Suppose (p) is prime. Then the factorization of (p) is (p), *i.e.* (p) is irreducible.

Thm 1.2.2. If R is UFD, then R[x] is UFD.

Proof. Let F be the field of fraction of R. For $f \in R[x]$, we can uniquely factorize it into prime elements in F[x]. And since $f \in F[x]$ can be written as f = ag where $g \in R[x]$ is primitive and $a \in R$. So we can write

$$f = \frac{r}{s}g_1g_2\cdots g_n$$

where $g_i \in R[x]$ is primitive and irreducible in F[x]. Let $f = a\tilde{f}$ where \tilde{f} is primitive and $a \in R$. Then by Gauss lemma, r = usa for some unit u and so

$$f = uag_1 \cdots g_n.$$

And since R is UFD. Hence R[x] is UFD.

Prop 1.2.5. A principal prime ideal of $k[x_1, \dots, x_n]$ is of form (f) with f is irreducible polynomial with positive degree.

Proof. By theorem 1.2.2, $k[x_1, \dots, x_n]$ is UFD and the proof is complete by proposition 1.2.4.

Lemma 1.2.3. Suppose $Y = Y_1 \cup \cdots \cup Y_s$ such that Y_i is closed and irreducible and $Y_i \not\subseteq Y_j$, then Y_1, \cdots, Y_s are all irreducible components of Y.

Proof. Suppose C is an irreducible component of Y. Then $C = (C \cap Y_1) \cup \cdots \cup (C \cap Y_s)$. So there exists *i* such that $C \subset Y_i, i.e.C = Y_i$. Suppose Y_i is not irreducible component. then \exists irreducible component $C \supseteq Y_i$. Therefore $Y_i \subseteq Y_j = C$, contradiction!

Coro 1.2.1. Let $f \in k[x_1, \dots, x_n]$ has positive degree, then f is irreducible iff Z(f) irreducible. More generally, if $f = f_1 \cdots f_s$ with f_i irreducible, then $Z(f_1), \dots, Z(f_s)$ are all irreducible components of Z(f), that is

$$Z(f) = \bigcup_{i=1}^{s} Z(f_i).$$

Proof. f is irreducible \Leftrightarrow (f) is prime \Leftrightarrow Z(f) is irreducible subset of \mathbb{A}^n . If $f = f_1 \cdots f_s$, then we have

$$Z(f) = \bigcup_{i=1}^{\circ} Z(f_i)$$

with each $Z(f_i)$ irreducible. Assume $(f_1), \dots, (f_s)$ distinct. Then for $i \neq j$, we must have $Z(f_i) \notin Z(f_j)$. Otherwise, $Z(f_i) \subsetneqq Z(f_j), i.e.f_j | f_i$ but f_i, f_j are irreducible, contradiction! By lemma 1.2.3, $\{Z(f_i)\}$ is the set of irreducible components of Z(f).

Lemma 1.2.4. For a partially ordered set (A, \leq) , TFAE:

(1) (A, \leq) satisfies ACC(ascending chain condition):

Every ascending chain $a_1 \leq a_2 \leq \cdots$ becomes stationary, that is, for n sufficiently large, $a_n = a_{n+1} = \cdots$.

(2) Every nonempty subset $B \subset A$ has a maximal element.

Proof. By Zorn's lemma.

Remark 1.2.2. Similar for DCC(descending chain condition).

Def 1.2.4. We say a ring R is noetherian if its collection of ideals satisfies ACC. We say a topological space Y is noetherian if its collection of closed subsets satisfies DCC.

Prop 1.2.6. (1) A subspace of a noetherian set is noetherian.

(2) A quotient of a noetherian ring is noetherian.

Proof. (1) Let $X \subset Y$ and Y is noetherian.

For any descending closed subset chain $\{U_i\}$ in X, let $U_i = V_i \cap X$ where V_i is closed in Y. Then there exists i such that $V_i = V_{i+1} = \cdots$. So $U_i = U_{i+1} = \cdots$, *i.e.* X is noetherian.

(2) Let R is noetherian and I is an ideal of R, S = R/I.
For any ascending ideal chain {J_i} in S, let I_i = π⁻¹(J_i) is an ideal of R, where π : R → S is the canonical homomorphism.
Then there exists i such that I_i = I_{i+1} = ···.
So J_i = J_{i+1} = ···, *i.e.* S is noetherian.

Thm 1.2.3 (Hilbert's basis). If R is noetherian, then R[x] is noetherian.

Coro 1.2.2. If R is noetherian, so is any finitely generated R-algebra.

Coro 1.2.3. Any closed subspace Y of \mathbb{A}^n is notherian.

We will prove these three proposition in the next section.

Prop 1.2.7. Let Y be a noetherian space, then its irreducible components are finite in number and their union equals Y.

Proof. We first show: every closed subset of Y is a finite union of closed irreducible subset.

Let B be the collection of the closed subsets of Y which are not the finite union of closed irreducible subset.

If $B \neq \emptyset$, then there exists a minimal element $Z \in B$. Let $Z = Z_1 \cup Z_2$ and then $Z_1, Z_2 \notin B$. So Z_1, Z_2 is a finite union of closed irreducible subset, so is Z, contradiction! Now $Y = Y_1 \cup \cdots \cup Y_s$ with Y_i is closed and irreducible, $Y_i \notin Y_j$. Hence $\{Y_1, \cdots, Y_s\}$ is the set of all irreducible components of Y.

Coro 1.2.4. Every subset of \mathbb{A}^n has a finite number of irreducible components.

Proof. Follows by corollary 1.2.3 and proposition 1.2.7.

Def 1.2.5. *R* is a ring, $S \subset R$ is multiplicative and $1 \in S$, the ring $S^{-1}R$ and homomorphism $R \to S^{-1}R$ as follows:

elements in $S^{-1}R$ are equivalence classes of $\frac{r}{s}$ with $r \in R, s \in S$ and $\frac{r}{s} \sim \frac{r'}{s'}$ iff there exists $s'' \in S$ such that s''(rs' - r's) = 0

 $\phi: R \to S^{-1}R, r \mapsto \begin{bmatrix} r\\ 1 \end{bmatrix}$ and image of elements of S in $S^{-1}R$ is invertible, *i.e.* $\begin{bmatrix} s\\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ s \end{bmatrix} = 1$.

Exam 1.2.2. If $0 \in S$, then $S^{-1}R = (0)$.

If $S = \{s^n | n \in \mathbb{N}\}\$ for certain $s \in R$, denote $R\left[\frac{1}{s}\right] = S^{-1}R$. For $S = S(R) := R - \{\text{zero divisors}\}\$, write $\operatorname{Frac}(R) = S^{-1}R$ called fraction ring. If R is a domain, $\operatorname{Frac}(R)$ is the fraction field. If \mathfrak{p} is a prime ideal of R, then $R - \mathfrak{p}$ is multiplicative, denote $R_{\mathfrak{p}} = (R - \mathfrak{p})^{-1}R$.

Lemma 1.2.5. Let I be an ideal of a ring R, then $\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \supset I \\ \mathfrak{p} \text{ is prime}}} \mathfrak{p}.$

In particular, $\sqrt{(0)} = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p} = \bigcap_{\mathfrak{p} \text{ is minimal}} \mathfrak{p}.$

Proof. First we prove $\sqrt{(0)} = \bigcap_{\substack{\mathfrak{p} \text{ is prime}}} \mathfrak{p}$. It is easy to see that $\sqrt{(0)}$ is contained in any prime ideal. Now for a non-nilpotent $a \in R$, consider $R \to R\left[\frac{1}{a}\right]$. Since $R\left[\frac{1}{a}\right] \neq (0)$. So there exists a maximal ideal $\mathfrak{m} \subset R\left[\frac{1}{a}\right]$. Consider $R \to R\left[\frac{1}{a}\right] \to R\left[\frac{1}{a}\right]/\mathfrak{m} =: F$. Then image of a is nonzero in $F, i.e. \ker(R \to F)$ is a prime ideal not containing a. So $\bigcap_{\substack{\mathfrak{p} \text{ is prime}}} \mathfrak{p} = \{\text{all nilpotent elements in } R\} = \sqrt{(0)}$. For any ideal $I \subset R$, consider $\sqrt{(0)}$ in R/I, then $\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \supset I\\ \mathfrak{p} \text{ is prime}}} \mathfrak{p}$ in R. □

Prop 1.2.8. *R* is a noetherian ring, then for every ideal $I \subset R$, the minimal elements of the collection of prime ideals containing I are finite in number.

In particular, the minimal prime ideals of R are finite in number with intersection $\sqrt{(0)}$.

Proof. If R is noetherian, then R/I is noetherian.

Let B be the collection of radical ideals that cannot be written as intersection of finitely many prime ideals.

Suppose $B \neq \emptyset$, then $R \notin B$ and prime ideal is not in B.

And since R is noetherian

So B has a maximal element and $I_0 \neq R$ is not prime.

Therefore $\exists a_1, a_2 \in R \setminus I_0$ with $a_1 a_2 \in I_0$.

Consider $J_i = \sqrt{I_0 + Ra_i}$.

Then $J_1, J_2 \supseteq I_0$.

So $J_1, J_2 \notin B$, *i.e.* J_i can be written as intersection of finitely many prime ideals.

We claim that $I_0 = J_1 \cap J_2$, then this lead to the contradiction.

If $a \in J_1 \cap J_2$, then $\exists n_1, n_2 \in \mathbb{N}^+$, s.t. $a^{n_1} \in I_0 + Ra_1, a^{n_2} \in I_0 + Ra_2$.

So $a^{n_1+n_2} = (I_0 + Ra_1)(I_0 + Ra_2) \subset I_0, i.e.a \in I_0.$

We conclude $B = \emptyset, i.e.$ every radical ideal of R is an intersection of finitely many prime ideals.

Now take arbitrary ideal $I \subset R$ and let $\sqrt{I} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_s$.

WLOG, we assume $\mathfrak{p}_i \not\supseteq \mathfrak{p}_j$ for $i \neq j$.

Suppose \mathfrak{p} is a prime ideal containing I, we show \mathfrak{p} contains certain \mathfrak{p}_i .

If not, suppose for any $i, \mathfrak{p} \not\supseteq \mathfrak{p}_i$.

Then we can take $a_i \in \mathfrak{p}_i \setminus \mathfrak{p}$.

So $a_1 \cdots a_s \in \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_s = \sqrt{I} \subset \mathfrak{p}$, contradiction!

Hence a minimal prime ideal containing I must belong to $\{\mathfrak{p}_1, \cdots, \mathfrak{p}_s\}$.

1.3 Finiteness properties and the Hilbert theorems

Def 1.3.1. We say an R-module M is noetherian, if the collection of R-submodules of M satisfies ACC.

Prop 1.3.1. (1) Every quotient of a noetherian *R*-module is still noetherian.

(2) A ring R is noetherian as ring iff R is noetherian as an R-module.

Proof. (1) Let M be notherian R-module and M' be an submodule of M, N = M/M'.

For any ascending module chain $\{N_i\}$ in N, let $M_i = \pi^{-1}(N_i)$ is a submodule of M, where $\pi: M \to N$ is the canonical homomorphism.

Then there exists *i* such that $M_i = M_{i+1} = \cdots$.

So $N_i = N_{i+1} = \cdots$, *i.e.* N is a noetherian R-module.

(2) R-submodules of R are the ideals of R.

So R is noetherian as an R-module iff R is noetherian.

Prop 1.3.2. An R-module M is noetherian iff every R-submodule of M is finitely generated as R-module.

Proof. Suppose M is noetherian, take $N \subset M$ is a submodule, let N_0 be a maximal element in the collection of finitely generated R-submodule of N.

Then N_0 is finite generated as R-module. If $N_0 \subsetneq N$, take $x \in N \setminus N_0$, then $N_0 + Rx$ is finitely generated, contradiction! So $N = N_0$. Suppose every R-submodule of M is finite generated. Take $N_1 \subset N_2 \subset \cdots$, let $N = \bigcup N_i$ be finite generated by $\{s_1, \cdots, s_k\}$. Then $\exists j, s.t.\{s_1, \cdots, s_k\} \subset N_j, i.e.N = N_j = N_{j+1} = \cdots$. Therefore M is noetherian.

Prop 1.3.3. Suppose R is noetherian ring, then every finitely generated R-module is noetherian.

Proof. Let M = RS for finite set $S \subset M$, we induct on #S. If #S = 0, then it is trivial. Suppose $\#S \ge 1$, take $s \in S$, let $S' := S \setminus \{s\}, M' = RS' \subset M$. Then M' is noetherian as R-module. Since $R \to M/M', 1 \mapsto [s], r \mapsto [rs]$ is epimorphism of R-module. So M/M' is noetherian as R-module. Now take $N_1 \subset N_2 \subset \cdots$ in M. Then $N_1 \cap M' \subset N_2 \cap M' \subset \cdots$ in M' is stabilizes. Therefore there exists $j_1 \in \mathbb{Z}^+$, such that $N_k \cap M' = N_{j_1} \cap M'$ for $k \ge j_1$. For $k \ge j_1, N_k/(N_{j_1} \cap M) = N_k/(N_k \cap M') \cong (N_k + M')/M' \subset M/M'$. When k is large, $(N_k + M')/M'$ is stabilizes, *i.e.* N_k stabilizes. □

Thm 1.3.1 (Hilbert basis). R is noetherian $\Rightarrow R[x]$ is noetherian.

Proof. R[x] is noetherian ring $\Leftrightarrow R[x]$ is noetherian as R[x]-module \Leftrightarrow every ideal I of R[x] is finitely generated as R[x]-module.

For polynomial $f \in R[x]$, denote in(f) is the initial coefficient of f, i.e. the highest degree coefficient.

And let $in(I) := \{in(f) | f \in I\}, in(0) = 0.$ Then in(I) is an ideal of R. So in(I) is finitely generated as R-module.

Therefore there exist $f_1, \dots, f_k \in I \setminus \{0\}$ such that $in(I) = R\{in(f_1), \dots, in(f_k)\}$. Let $d_0 = \max\{\deg f_1, \dots, \deg f_k\}.$

We claim that $I = R[x]f_1 + \dots + R[x]f_k + (I \cap R[x]_{<d_0}).$

Actually any polynomial in I with deg $\geq d_0$ can be reduced to a polynomial in I with lower degree by modulo $R[x]f_1 + \cdots + R[x]f_k$ by induction.

So $I \cap R[x]_{\leq d_0}$ is finite generated as *R*-module, take generators set as f_{k+1}, \dots, f_{k+l} . Hence $I = R[x]\{f_1, \dots, f_{k+l}\}$ is finitely generated.

Thm 1.3.2 (Artin-Tate). *R* is noetherian ring, *B* is an *R*-algebra, $A \subset B$ is *R*-subalgebra. Assume *B* is finite generated as *A*-module, then *A* is finite as *R*-algebra iff *B* is so.

Proof. Suppose $b_1, \dots, b_m \in B$, s.t. $B = Ab_1 + \dots + Ab_m$. Now assume B is finitely generated as R-algebra by b_1, \dots, b_m , WLOG. Then $b_i b_i \in B$, let

$$b_i b_j = \sum_{k=1}^m a_{ij}^k b_k$$

for $a_{ij}^k \in A$.

Let $A_0 \subset A$ be a *R*-subalgebra of *A* generated by a_{ij}^k . By Hilbert basis theorem, A_0 is a noetherian ring. Since $b_i b_j \in A_0 b_1 + \cdots + A_0 b_m$ for any i, j. So *B* is finitely generated A_0 -module, *i.e. B* is noetherian as A_0 -module. And since $A \subset B$ as A_0 -submodule, *i.e. A* is finitely generated as A_0 -module. Hence *A* is finitely generated as *R*-module.

Lemma 1.3.1 (Zariski). Field extension L/K is finite iff L is finite generated as a K-algebra.

Proof. \Rightarrow is obvious, now assume L is finitely generated as K-algebra.

Take $b_1, \dots, b_m \in L$ generates L as K-algebra.

We need to show b_1, \dots, b_m are algebraic over K, so that $L = K[b_1, \dots, b_m] = K(b_1, \dots, b_m)$ is finite over K.

If not, WLOG, assume b_1, \dots, b_r are algebraic independent over K and b_{r+1}, \dots, b_m are algebraic over $K(b_1, \dots, b_r)$.

Then $L/K(b_1, \dots, b_r)$ is finite. By Artin-Tate theorem, $K(b_1, \dots, b_r)$ is finitely generated as K-algebra. Let S generates $k(b_1, \dots, b_r)$ and $g \in K[b_1, \dots, b_r]$ be a common denominator of S. Then $K(b_1, \dots, b_r) = K[S] = K[b_1, \dots, b_r] \left[\frac{1}{g}\right]$. Consider $\frac{1}{1-g} \in K(b_1, \dots, b_r)$. So $\frac{1}{1-g} = \frac{f}{g^N}$ for certain $f \in K[b_1, \dots, b_r], N \in \mathbb{N}$. Therefore $f = g^N + fg$ But $g \nmid f$, contradiction!

Coro 1.3.1. A is a finitely generated k-algebra, then for every maximal ideal $\mathfrak{m} \subset A$, the map $k \hookrightarrow A \to A/\mathfrak{m}$ is an isomorphism of fields.

Proof. A/\mathfrak{m} is a field and a finitely generated as k-algebra. By Zariski lemma, $A/\mathfrak{m} \supset k$ is finite. So $A/\mathfrak{m} = k$ since k is algebraic closed.

Coro 1.3.2. A is finitely generated k-algebra, then there is bijection:

 $\{m|m \text{ is maximal ideal of } A\} \leftrightarrow \{surjective \text{ morphism } A \rightarrow k \text{ as } k\text{-algebra}\}$ $m \mapsto (A \twoheadrightarrow A/\mathfrak{m} \cong k)$

Thm 1.3.3 (Hilbert Nullstellensatz). $I(Z(J)) = \sqrt{J}$.

Proof. $I(Z(J)) \supset \sqrt{J}$ is clear. Suppose $I(Z(J)) \supseteq \sqrt{J}$, let $f \in I(Z(J)) \setminus \sqrt{J}$. Then the image \overline{f} of f in $k[x_1, \dots, x_n]/J$ is not nilpotent. Let $A = (k[x_1, \dots, x_n]/J) \begin{bmatrix} 1\\ J \end{bmatrix}$, which is not (0) and finitely generated as k-algebra. Take $\mathfrak{m} \subset A$ be a maximal ideal, then we have $A \to A/\mathfrak{m} \cong k$. Consider $\phi : k[x_1, \dots, x_n] \to A \to A/\mathfrak{m} \cong k$. Let $p_i = \phi(x_i) \in k, p = (p_1, \dots, p_n) \in \mathbb{A}^n$. For any polynomial $g \in k[x_1, \dots, x_n]$, the image $\phi(g) \in k$ equals to g(p). If $g \in J \subset k[x_1, \dots, x_n]$, then $\phi(g) = 0, i.e.g(p) = 0$. So $p \in Z(J)$. And since \overline{f} invertible in A. Therefore $\phi(f) \neq 0, i.e.f(p) \neq 0$. But $f \in I(Z(J))$, contradiction!

1.4 The affine category

Def 1.4.1. $X \subset \mathbb{A}^m, Y \subset \mathbb{A}^n$ are closed, a map $f : X \to Y$ is called regular if the components f_1, \dots, f_n of f are regular functions on X.

Lemma 1.4.1. For $X \xrightarrow{f} Y \xrightarrow{g} Z$, if f, g is regular, then $g \circ f : X \to Z$ is regular.

Proof. It suffices to show each components of $g \circ f$ is regular function.

Only need to consider case $Z = \mathbb{A}^1$.

Then g is the restriction of a polynomial function on \mathbb{A}^n to Y.

Let $f = (f_1, \dots, f_n)$ where f_i is the restriction of the polynomial function $F_i(x_1, \dots, x_n)$ defined on \mathbb{A}^m to X.

So $g \circ f : X \to k$ is the restriction of the polynomial $G(F_1(x_1, \cdots, x_m), \cdots, F_n(x_1, \cdots, x_m))$ to X.

Def 1.4.2. A affine category is consist of

(1) objects: closed subsets of affine spaces

(2) morphism: regular maps $X \to Y$.

Remark 1.4.1. For any $X \xrightarrow{f} Y$ and regular function $Y \to k$, we have a regular function $X \xrightarrow{f} Y \to k$, that is, f induces a k-algebra morphism $f^* : k[Y] \to k[X]$. So we have the contravariant functor $Y \mapsto k[Y], f \mapsto f^*$.

Def 1.4.3. A regular map $f: X \to Y$ is called an isomorphism if f is bijective and $f^{-1}: Y \to X$ is regular.

Prop 1.4.1. Isomorphism $f: X \to Y$ induce isomorphism $f^*: k[Y] \to k[X]$.

 $\begin{array}{l} Proof. \ (f^{-1})^*(f^*(p)) = f^*(p) \circ f^{-1} = p \circ f \circ f^{-1} = p. \\ \text{And} \ f^*((f^{-1})^*(p)) = (f^{-1})^*(p) \circ f = p \circ f^{-1} \circ f = p. \\ \text{So} \ (f^{-1})^* \text{ and } f^* \text{ are isomorphism.} \end{array}$

Prop 1.4.2. $f: X \to Y$ is any map, if for any regular function $g: Y \to k$, the composition $g \circ f: X \to k$ is regular, then f is a regular map.

Proof. Take $g = y_i$, then $g \circ f = f_i$ is the *i*-th component of f.

Prop 1.4.3. Given $X \subset \mathbb{A}^m, Y \subset \mathbb{A}^n$ and k-algebra homomorphism $\phi : k[Y] \to k[X]$. Then there is a unique regular map $f : X \to Y$ with $\phi = f^*$. That is, $\operatorname{Hom}_{reg}(X, Y) \xrightarrow{\cong} \operatorname{Hom}_{k-alg}(k[Y], k[X])$.

Proof. The inclusion $j: Y \subset \mathbb{A}^n$ defines $j^*: k[y_1, \cdots, y_n] \to k[Y] = k[y_1, \cdots, y_n]/I(Y)$. Then $\ker(j^*) = I(Y)$. Consider $k[X] \xleftarrow{\phi} k[Y] \xleftarrow{j^*} k[y_1, \cdots, y_n], f_i \leftrightarrow y_i$. Let $f = (f_1, \cdots, f_n): X \to \mathbb{A}^n$ is a regular map. Then $k[y_1, \cdots, y_n] \to k[X], y_i \mapsto f^*(y_i) = y_i \circ f = f_i = (\phi j^*)(y_u)$. So $f^* = \phi j^*, i.e.$ $f^*(I(Y)) = (0)$. Therefore $\forall g \in I(Y), g \circ f \equiv 0, i.e.f(X) \subset Y = Z(I(Y))$ and $f^* = \phi$. Suppose $f, f': X \to Y$ are different regular map. Then there exists i such that $f_i \neq f'_i$. So $f^*([y_i]) \neq (f')^*([y_i]), i.e.f^* \neq (f')^*$. Hence f is unique.

Coro 1.4.1. (1) isomorphism $k[Y] \xrightarrow{\cong} k[X]$ comes from a unique isomorphism $X \xrightarrow{\cong} Y$.

(2) For $Z \subset Y \subset \mathbb{A}^n$, the induced surjective map $k[Y] \to k[Z]$ has kernel $I_Y(Z) = I(Z)/I(Y)$.

Proof. (1) Let $\phi: k[Y] \xrightarrow{\cong} k[X]$ and $f^* = \phi, g^* = \phi^{-1}$. So $(g \circ f)^* = f^* \circ g^* = \mathrm{Id}_{k[X]}, (f \circ g)^* = g^* \circ f^* = \mathrm{Id}_{k[Y]}$. And since $f \circ g, g \circ f$ are the unique regular map such that $(g \circ f)^* = \mathrm{Id}_X^*, (f \circ g)^* = \mathrm{Id}_Y^*$. Hence f is the unique isomorphism with $f^{-1} = g$.

(2) Let $\phi: k[Y] \to k[Z]$ such that $\phi = i^*$. Then $\phi(p) = p \circ i = p|_{Z}$.

So ker $\phi = \left\{ p \in k[Y] \middle| p \middle|_Z \equiv 0 \right\} = I_Y(Z).$

Def 1.4.4. A regular map $f : X \to Y$ is called a closed immersion if $f(X) \subset Y$ is closed and $f : X \to f(X)$ is an isomorphism.

Prop 1.4.4. $f: X \to Y$ is a closed immersion iff $f^*: k[Y] \to k[X]$ is surjective.

Proof. If f is closed immersion, then $f^* : k[X] \xleftarrow{\cong} k[f(X)] \leftarrow k[Y]$ with ker = $I_Y(f(X))$. So $k[Y] \to k[X]$ is surjective.

Conversely, if f^* is surjective, then ker (f^*) is a radical ideal of k[Y], let it corresponds to a closed subset $Z \subset Y$.

By definition of f^* , every element in ker (f^*) vanishes on f(X). So $f(X) \subset Z$.

And since morphism $k[Y] \rightarrow k[Z]$ also has kernel $I_Y(Z) = \ker(f^*)$.

Hence $k[Z] \to k[X]$ is isomorphism, *i.e.* $f: X \xrightarrow{\cong} Z \to Y$ is a closed immersion.

Exam 1.4.1. Consider the map $f : \mathbb{A}^1 \to \mathbb{A}^2, t \mapsto (t^2, t^3)$.

The image is an irreducible curve C defined by $x^3 - y^2 = 0$ and the inverse map $C \to \mathbb{A}^1$ is given by $(0,0) \mapsto 0, (x,y) \mapsto \frac{y}{x}$ if $x \neq 0$.

The Zariski topology on both C and \mathbb{A}^1 are the cofinite topology. So $f : \mathbb{A}^1 \to C$ is a homeomorphism, but not an isomorphism: Since $k[C] = k[x, y]/(x^3 - y^2), k[\mathbb{A}^1] = k[t]$. And $f^* : k[C] \to k[\mathbb{A}^1]$ is given by $[x] \mapsto t^2, [y] \mapsto t^3$. Therefore image of f^* does not contain t, i.e. f^* is not surjective.

Prop 1.4.5. For regular map $f: X \to Y$ with $f^*: k[Y] \to k[X]$, for any point $x \in X$, we have $\mathfrak{m}_{f(x)} = (f^*)^{-1}(\mathfrak{m}_x)$.

Proof. First $k[Y] \xrightarrow{f^*} k[X] \xrightarrow{\rho_x} k[X]/\mathfrak{m}_x \cong k$ So $\ker(\rho_x \circ f^*) = (f^*)^{-1}(\mathfrak{m}_x)$ is a maximal ideal. It suffices to check $f^*(\mathfrak{m}_{f(x)}) \subset \mathfrak{m}_x$. Actually, for any $g \in \mathfrak{m}_{f(x)}, g(f(x)) = 0$. So $f^*(g)$ vanishes at $x, i.e. f^*(g) \in \mathfrak{m}_x$.

Def 1.4.5. For any ring R, let $\operatorname{Spm}(R)$ be the set of maximal ideals of R. For $x \in \operatorname{Spm}(R)$, we also denote \mathfrak{m}_x the corresponding maximal ideal . For any ideal $I \subset R$, let Z(I) be the set of $x \in \operatorname{Spm}(R)$ with $\mathfrak{m}_x \supset I$. For $s \in R$, write $Z(s) = Z(Rs) = \{x | s \in \mathfrak{m}_x\}$, apparently: $Z(0) = \operatorname{Spm}(R), Z(R) = \emptyset$.

Prop 1.4.6. For arbitrary ideals $I, J, \{I_{\alpha}\}_{\alpha \in A}$ of R, we have

$$Z(I) \cup Z(J) = Z(I \cap J), \bigcap_{\alpha \in A} Z(I_{\alpha}) = Z\left(\sum_{\alpha \in A} I_{\alpha}\right).$$

So $\{Z(I)\}$ forms all closed subsets for a topology: Zariski topology on Spm(R).

Proof. If $I \cap J \subset \mathfrak{m}_x$, then $IJ \subset \mathfrak{m}_x$. So $I \subset \mathfrak{m}_x$ or $J \subset \mathfrak{m}_x$. Therefore $Z(I \cap J) = Z(I) \cup Z(J)$. Moreover, $I_\alpha \subset \mathfrak{m}_x$ for every $\alpha \in A \Leftrightarrow$ the ideal generates by $\{I_\alpha\}_{\alpha \in A}$ contains in \mathfrak{m}_x . Hence $\bigcap_{\alpha \in A} Z(I_\alpha) = Z\left(\sum_{\alpha \in A} I_\alpha\right)$.

Def 1.4.6. Denote $\text{Spm}(R)_s := \text{Spm}(R) \setminus Z(s)$ are the principal open subsets.

Remark 1.4.2. Principal open subsets form a basis of Zariski topology on Spm(R).

Lemma 1.4.2. Spm(R) is quasi-compact: every open covering admits a finite subcovering.

Proof. It suffices to show an open covering by principal open subsets admits a finite subcovering. Suppose $\text{Spm}(R) = \bigcup_{s \in S} \text{Spm}(R)_s$, then

$$\operatorname{Spm}(R) = \bigcup_{s \in S} \operatorname{Spm}(R)_s = \operatorname{Spm}(R) \setminus \left(\bigcap_{s \in S} Z(s)\right) = \operatorname{Spm}(R) \setminus Z\left(\sum_{s \in S} sR\right).$$

So $\sum_{s \in S} sR = R.$
Let $1 = \sum_{i=1}^n r_i s_i$ for $r_i \in R, s_i \in S.$
Hence $\sum_{i=1}^n s_i R = R, i.e.$ $\operatorname{Spm}(R) = \bigcup_{i=1}^n \operatorname{Spm}(R)_{s_i}.$

Remark 1.4.3. Bourbaki use this notion "quasi-compact" for non-Hausdorff space. One reason of doing this is that when we consider the complex varieties, they also have a topology induced by the euclidean topology of \mathbb{C}^n . So we use "quasi-compact" to distinguish the compactness of these two topology structures.

Now consider a finitely generated k-algebra A(may be not reduced), a choice of generators gives $A \cong k[x_1, \dots, x_n]/I$.

For any $x \in \text{Spm}(A)$, we have a unique isomorphism $A/\mathfrak{m}_x \cong k$ as k-algebra by Artin-Tate theorem. So we have the correspondence $x \leftrightarrow \mathfrak{m}_x \leftrightarrow (A \xrightarrow{\rho_x} k)$.

Any $f \in A$ defines a "regular function" $\overline{f} : \operatorname{Spm}(A) \to k$ which takes $x \in \operatorname{Spm}(A)$ to $\rho_x(f) \in k$. The zero set of $\overline{f} : \operatorname{Spm}(A) \to k$ is Z(f) and $f \mapsto \overline{f}$ is a k-algebraic homomorphism from A to the algebraic of k-valued functions on $\operatorname{Spm}(A)$. The kernel of this homomorphism is exactly $\sqrt{(0)} \subset A$ since we have the proposition:

Prop 1.4.7.

$$\sqrt{(0)} = \bigcap_{x \in \operatorname{Spm}(A)} \mathfrak{m}_x.$$

Proof. If $f \notin \sqrt{(0)}$, then consider the map $\varphi : A \to A\left[\frac{1}{f}\right] \to A\left[\frac{1}{f}\right]/\mathfrak{m} \cong \mathfrak{m}$ where \mathfrak{m} is a maximal ideal of $A\left[\frac{1}{f}\right]$.

So $f \notin \ker \varphi$ since $\varphi(f)$ is invertible. Therefore $f \notin \mathfrak{m}_x$ for x such that $\rho_x = \varphi$. And since $\sqrt{(0)} = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p} \subset \bigcap_{x \in \operatorname{Spm}(A)} \mathfrak{m}_x$. Hence $\sqrt{(0)} = \bigcap_{x \in \operatorname{Spm}(A)} \mathfrak{m}_x$.

Remark 1.4.4. We have used this trick while proving the Hilbert nullstellensatz.

Let $\overline{A} = A/\sqrt{(0)}$ reduced, then \overline{A} is the set of regular functions on Spm(A), also denote $\overline{A} = k[\text{Spm}(A)]$. So $\overline{A} \cong k[x_1, \dots, x_n]/\sqrt{I} = k[Z]$, *i.e.* $\text{Spm}(A) \cong \text{Spm}(\overline{A}) \cong Z(I) \cong Z(\sqrt{I}) \subset \mathbb{A}^n$ as set. This gives (X, k[X]) in an intrinsic way: $(\text{Spm}(A), \overline{A})$.

Now consider a morphism $\phi : A \to B$ of finitely generated k-algebra, we have $\operatorname{Spm}(\phi) :$ $\operatorname{Spm}(B) \to \operatorname{Spm}(A), \mathfrak{m}_y \mapsto \phi^{-1}(\mathfrak{m}_y)$. So for regular function $f \in A$ and its induced map $\overline{f} \in \overline{A}$, the composite of $\operatorname{Spm}(B) \xrightarrow{\operatorname{Spm}(\phi)} \operatorname{Spm}(A) \xrightarrow{\overline{f}} k$ is $\overline{\phi(f)}$ and so it is regular.

In particular, the preimage of Z(f) in Spm(B) under $\text{Spm}(\phi)$ is $Z(\phi(f))$. So the preimage of $\text{Spm}(A)_f$ is $\text{Spm}(B)_{\phi(f)}$ and preimage of Z(I) is $Z(\phi(I))$. Thus $\text{Spm}(\phi)$ is continuous.

We refer to the pair $(\text{Spm}(\phi), \phi)$ as a morphism from (Spm(B), B) to (Spm(A), A). In particular, $\text{Spm}(\phi)$ is a geometric map and ϕ is an algebraic morphism.

Prop 1.4.8. Let A be a finitely generated k-algebra, then for any $g \in A$, $A \lfloor \frac{1}{g} \rfloor$ is a finitely generated k-algebra.

If A reduced, then $A\left[\frac{1}{g}\right]$ is also reduced, then natural k-algebra homomorphism $A \to A\left[\frac{1}{g}\right]$ induces a morphism $\operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right) \to \operatorname{Spm}(A)$, which is a homeomorphism onto $\operatorname{Spm}(A)_g$. Moreover, for $g, g' \in A$, TFAE:

- (1) $\operatorname{Spm}(A)_g \subset \operatorname{Spm}(A)_{g'}$.
- (2) g' divides some positive power of g, i.e. $g \in \sqrt{(g')}$.
- (3) $\exists an \ A \text{-homomorphism} \ A\left[\frac{1}{g'}\right] \to A\left[\frac{1}{g}\right].$ (which must then be unique)

Proof. If g nilpotent, then $A\left[\frac{1}{g}\right] = (0)$, $\operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right) = \emptyset$, $\operatorname{Spm}(A)_g = \emptyset$. So $A\left[\frac{1}{g}\right]$ is clearly finitely generated over k. If A reduced, take $\frac{f}{g^r} \in A\left[\frac{1}{g}\right]$, $\operatorname{suppose}\left(\frac{f}{g^r}\right)^m = 0$ in $A\left[\frac{1}{g}\right]$. Then f^m is annihilated by a power of g in A. We assume $f^m g^n = 0$. Then $(fg^n)^m = 0$ in A, *i.e.* $fg^n = 0$. Hence $\frac{f}{g^r} = 0$ in $A\left[\frac{1}{g}\right]$, *i.e.* $A\left[\frac{1}{g}\right]$ is reduced. Since an element of $\operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right)$ can maps to a map $A \to A\left[\frac{1}{g}\right] \to k$. And it corresponds to the kernel of this map, which is an element in $n\operatorname{Spm}(A)_g$. So we have $\operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right) \to \operatorname{Spm}(A)_g \subset \operatorname{Spm}(A)$, which is clearly continuous. A principal subset of $\operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right)$ is of form $\operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right)_{\phi}$ with $\phi = \frac{f}{g^n}$ in $A\left[\frac{1}{g}\right]$. Suppose ϕ is not nilpotent in $A\left[\frac{1}{g}\right]$, *i.e.* f is not nilpotent in A. Let $A\left[\frac{1}{g}\right]\left[\frac{1}{\phi}\right] \cong A\left[\frac{1}{fg}\right]$.

Then $\operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right)_{\phi}$ is naturally identified with $\operatorname{Spm}(A)_{fg}$. Hence the morphism $\operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right) \to \operatorname{Spm}(A)_g$ is open, *i.e.* homeomorphism. Next we check $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$. $(1) \Rightarrow (2)$: Since $\operatorname{Spm}(A)_g \subset \operatorname{Spm}(A)_{g'}$. So $Z(g) \supset Z(g')$, *i.e.* $g \in I(Z(g')) = \sqrt{(g')}$. $(2) \Rightarrow (3)$: Suppose $g^n = fg', f \in A$. Then there exists an A-homomorphism $A\left[\frac{1}{g'}\right] \to A\left[\frac{1}{fg'}\right] = A\left[\frac{1}{g^n}\right] = A\left[\frac{1}{g}\right]$ which is inde-

pendent of choices of n and f.

 $\begin{array}{l} (3) \Rightarrow (1): \text{ Since we have } A \to A\left[\frac{1}{g'}\right] \to A\left[\frac{1}{g}\right] \text{ and } A \to A\left[\frac{1}{g}\right]. \\ \text{They induce } \operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right) \to \operatorname{Spm}\left(A\left[\frac{1}{g'}\right]\right) \xrightarrow{1:1} \operatorname{Spm}(A)_{g'} \text{ and } \operatorname{Spm}\left(A\left[\frac{1}{g}\right]\right) \xrightarrow{1:1} \operatorname{Spm}(A)_{g}. \\ \text{So } \operatorname{Spm}(A)_g \subset \operatorname{Spm}(A)_{g'}. \\ \text{Lastly, the image of } \frac{1}{g'} \text{ in } A\left[\frac{1}{g}\right] \text{ is the inverse of } \frac{g'}{1} \in A\left[\frac{1}{g}\right]. \end{array}$

Now we consider the non-reduced cases: let X = Spm(A), Y = Spm(B) and $f: X \to Y$ be regular. Then a fiber $f^{-1}(\{y\})$ or the preimage $f^{-1}(Z)$ of closed subset $Z \subset Y$ is closed and $I_Y(Z) \subset k[Y] \cong \overline{B}$. We claim that $f^{-1}(Z)$ is actually the zero locus of $f^*I_Y(Z) \subset I_X(f^{-1}(Z))$, which may be not radical. So we should think of $f^{-1}(Z)$ as $\text{Spm}(k[X]/f^*I_Y(Z))$, which has a bijection to $\text{Spm}(k[X]/\sqrt{f^*I_Y(Z)})$.

Exam 1.4.2. Consider $f : \mathbb{A}^1 \to \mathbb{A}^1, a \mapsto a^2$ with $char(k) \neq 2$. Then $f^* : k[y] \to k[x], y \mapsto x^2$ and for $a \in Y$, the fiber is

$$f^{-1}(a) = \begin{cases} 2 \text{ different points} & a \neq 0\\ 0 & a = 0 \end{cases}$$

So $f^{-1}(a)$ should be thought as zero locus defined by $f^*\langle y-a\rangle = \langle x^2-a\rangle$. For $a \neq 0$, $\langle x^2-a \rangle$ is radical ideal. And for $a \neq 0$, $f^{-1}(a)$ should be thought as a point $0 \in X = \mathbb{A}^1$ with multiplicity 2.

Exam 1.4.3 (Frobenius morphism). Assume char(k) = p, consider $\Phi_p : \mathbb{A}_k^1 \to \mathbb{A}_k^1, a \mapsto a^p$. Then $\Phi_p(a-b) = (a-b)^p = a^p + (-b)^p = a^p - b^p = \Phi_a(a) - \Phi_b(b), \Phi_p(ab) = \Phi_p(a)\Phi_p(b)$ So Φ_p is injective, and Φ_p is also surjective since k is algebraic closed. And since $\Phi_p^* : k[x] \to k[x], x \mapsto x^p$ with image $k[x^p]$. Therefore Φ_p^* is not surjective, i.e. Φ_p is homeomorphism but not isomorphism. Consider $\Phi_p \curvearrowright \mathbb{A}^1$, $\operatorname{Fix}(\Phi_p) = \{a \in \mathbb{A}^1 | a^p = a\} \xrightarrow{1:1} \mathbb{F}_p \subset k$. Denote $\operatorname{Fix}(\Phi_p) = \mathbb{A}^1(\mathbb{F}_p)$ and $\mathbb{A}^1(\mathbb{F}_{p^r}) := \operatorname{Fix}(\Phi_p^r) = \{a \in \mathbb{A}^1 | a^{p^r} = a\}$. If $k = \overline{\mathbb{F}}_p$, then $k = \bigcup_{r=1}^{r=1} \mathbb{F}_{p^r}$ and $\mathbb{A}'_k = \bigcup_{r=1}^{\infty} \mathbb{A}^1(\mathbb{F}_{p^r})$. Every Φ_p -orbit in \mathbb{A}'_k is finite. For higher dimension, $\Phi_p : \mathbb{A}^n_k \to \mathbb{A}^n_k, \mathbb{A}^n(\mathbb{F}_{p^r}) = \operatorname{Fix}(\Phi_p^r)$. If $k = \overline{\mathbb{F}}_p$, then $\mathbb{A}^n_k = \bigcup_{r=1}^{\infty} \mathbb{A}^n(\mathbb{F}_{p^r})$ and every Φ_p -orbit in \mathbb{A}^n_k is finite. **Prop 1.4.9.** For char(k) = p and $q = p^r$, we write Φ_q for Φ_p^r , prove that:

(a) $f \in k[x_1, \cdots, x_n]$ is in $\mathbb{F}_q[x_1, \cdots, x_n]$ iff $\Phi_q f = f^q$.

(b) an affine-linear transformation of \mathbb{A}^n with coefficients in \mathbb{F}_q commutes with Φ_q .

- (c) let $Y \subset \mathbb{A}^n_k$ be common zero locus of a subset of $\mathbb{F}_q[x_1, \cdots, x_n] \subset k[x_1, \cdots, x_n]$, then $\Phi_q = \Phi^r_p : \mathbb{A}^n \to \mathbb{A}^n$ restricts to a bijection $\Phi_{Y,q} : Y \to Y$ and the set of \mathbb{F}_q -points of Y is $Y(\mathbb{F}_q) := \operatorname{Fix}(\Phi_{Y,q}) = Y \cap \operatorname{Fix}(\Phi_q) = Y \cap \mathbb{A}^n(\mathbb{F}_q).$
- (d) If $k = \overline{\mathbb{F}}_p$, then any closed subset $Y \subset \mathbb{A}^n$ is defined over certain \mathbb{F}_q and so Y is invariant under Φ_q .

Proof. (a) Let
$$f = \sum_{i_1, \dots, i_n} c_{i_1 \dots i_n} x_1^{i_1} \dots x_n^{i_n}$$
, then

$$\Phi_q f = \sum_{i_1, \dots, i_n} c_{i_1 \dots i_n} x_1^{qi_1} \dots x_n^{qi_n}, f^q = \sum_{i_1, \dots, i_n} c_{i_1 \dots i_n}^q x_1^{qi_1} \dots x_n^{qi_n}.$$
So $\Phi_q f = f \Leftrightarrow c_{i_1 \dots i_n}^q = c_{i_1 \dots, i_n} \Leftrightarrow c_{i_1 \dots i_n} \in \mathbb{F}^q$, *i.e.* $f \in \mathbb{F}_q[x_1, \dots, x_n]$.

- (b) Let $f = (f_1, \dots, f_n), f \in \mathbb{F}_q[x_1, \dots, x_n].$ Then $\Phi_q f = (\Phi_q f_1, \dots, \Phi_q f_n) = (f_1^q, \dots, f_n^q) = (f_1, \dots, f_n)\Phi_q = f\Phi_q.$
- (c) Let Y = Z(X) with $x \in \mathbb{F}_q[x_1, \cdots, x_n]$. For any $f \in X, y \in Y$, $f(\Phi_q(y)) = (\Phi_q f)(y) = f^q(y) = 0$. So $\Phi_q(y) \in Y$. And $f^q(\Phi_q^{-1}(y)) = (\Phi_q f)(\Phi_q^{-1}(y)) = f(y) = 0$. Therefore $f(\Phi_q^{-1}(y)) = 0$, *i.e.* $\Phi_p^{-1}(y) \in Y$. Hence $\Phi_{Y,q}: Y \to Y$ is bijective and fixed point set is the intersection of Y and fixed point

Hence $\Phi_{Y,q}: Y \to Y$ is bijective and fixed point set is the intersection of Y and fixed point set of Φ_q , *i.e.* $Y \cap \mathbb{A}^n(\mathbb{F}_{q^m})$.

(d) By Hilbert theorem, I(Y) is finite generated by certain $\{f_1, \dots, f_n\}$. So there are only finitely many coefficients. Let $q = p^r$ such that all coefficients of f_1, \dots, f_n are contain in \mathbb{F}^q . Then Y is the common zero set of $I(Y) \subset \mathbb{F}_q[x_1, \dots, x_n]$. Hence by (c), Y is invariant under some positive power of Φ_p .

Def 1.4.7 (Weil Zeta function).

$$Z_Y(t) := \exp\left(\sum_{m=1}^{\infty} |Y(\mathbb{F}_{q^m})| \frac{t^m}{m}\right).$$

In particular,

$$\zeta(Y,s) := Z_Y(q^{-s}) = \exp\left(\sum_{m=1}^{\infty} |Y(\mathbb{F}_{q^m})| \frac{1}{m} q^{-ms}\right).$$

Thm 1.4.1 (Weil conjecture). Y is smooth, then

- (1) $Z_Y(t)$ is rational function(Dwork 1960)
- (2) functional equation(Grothendieck 1965)
- (3) "Riemann hypothesis": roots of numberator and denominator of $Z_Y(t)$ has absolute value $q^{-\frac{k}{2}}$ with $k \in \mathbb{Z}^{\leq 0}$. (proved by Deligne 1974)