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Abstract

Venn diagram is a widely used diagram style that shows the logical relation between sets,
popularized by John Venn in the 1880s. In this work, we will discuss about how to create a
Venn diagram for n sets using graph theory, and some of its applications.
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1 Introduction
Def 1.1. n-Venn diagram C is a collection of n simple closed curves {Ci} in the plane that
intersect in only finitely many points and create exactly 2n regions, one for every possible
combination of being inside or outside of each of the n curves
Exam 1.1. the most common Venn diagram is the 3-Venn diagram with three unit circles:

Figure 1: 3-Venn diagram

Naturally, we would wonder whether n-Venn diagram can be given by n circles. Unfortu-
nately, this is wrong for n ⩾ 4.
Prop 1.1. n circles in the plane cannot divide the plane into 2n regions when n ⩾ 4.
Proof. Notice that every two circles have at most 2 intersections.

Let mi be the number of intersections of i-th circle and all other circles.
We first consider the case that at most two of the n circles intersect in any point.
Then i-th circle is divided into mi edges and there are totally 1

2

n∑
i=1

mi points.

So by Euler formula, the number of regions is ⩽ 2 +
n∑

i=1
mi − 1

2

n∑
i=1

mi =
1
2

n∑
i=1

mi + 2.

And since mi ⩽ 2(n− 1).
Therefore there are at most n(n− 1) + 2 regions.
Now for the general case, consider a point that is intersections of k circles.
Then under a perturbation of one of these k circles, the number of points increase by 2 and

the number of edges increase by 3.
So the number of regions increase by 1 and every two curves still have at most 2 intersections.
After some perturbations, we can reduce to the first case and the number of regions increase.
Hence there are at most n(n− 1) + 2 regions, which is less than 2n when n ⩾ 4.

Def 1.2. A Venn diagram is simple if at most two of the n curves intersect in any point.
Exam 1.2.

Figure 2: Non-simple 3-Venn diagram

By the above proposition, we have:
Prop 1.2. a simple n-Venn diagram has exactly 2n − 2 intersections and 2n+1 − 4 edges.

While we cannot draw an n-Venn diagram by n circles, we can give the 4, 5-Venn diagram
by ellipses since two ellipses can have 4 intersections:
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Figure 3: Venn diagram with n = 4, 5 epllipses

2 Dual of Venn diagram
Def 2.1. For a Venn diagram C, the Venn dual D(C) is the planar dual of the Venn diagram:
its vertices are the region of C and two vertices are connected by an edge if they are adjoin.

Prop 2.1. C is simple D(C) has the following properties:

(1) It is a subgraph of n-dimensional hypercube Qn with 2n vertices.

(2) It is a planar graph and every face is a 4-cycle.

(3) The subgraph D(C) ∩H is connected, where H is any hypersurface of Qn.

Proof. (1) For every vertex in D(C), we can give it an length-n bitstring, where 0 and 1
represent that the corresponding region is outside and inside the curve resp.
And for every edge, the corresponding regions of the vertices are adjoin.
So they are differ in exactly one bit position.
Hence D(C) is a subgraph of Qn, and has 2n vertices.

(2) Since every intersection(vertex) in C is given by exactly two curves.
So its degree is 4, i.e. every face in D(C) is a 4-cycle.

(3) WLOG, assume H = {(x1, · · · , xn)|x1 = 0}.
Then C(C) ∩ H corresponds to all region that are not contained in C1, i.e. the outside
region of C1.
So it is connected since C1 is a simple closed curve.

Prop 2.2. Conversely, if a graph G satisfying the above three properties, then its dual is a
simple n-Venn diagram.

Proof. Let C be its dual.
Define Ci = ∂Hi where Hi is the union of regions corresponding to points in {(x1, · · · , xn)|

xi = 1} ⊂ V (G).
By property (3), Hi is connected, i.e. Ci is a closed simple curve.
And since for any edge e in G ⊂ Qn, its vertices are differ in some xi.
So one of their corresponding faces in C is contained in Hi and the other is not.
Therefore their common edge, which is the corresponding edge of e, is in Ci.
Hence C is a Venn diagram.
Moreover, degree of every vertex is 4 since every face in G is a 4-cycle, i.e. C is simple.
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Def 2.2. We called the graph that satisfying the above the above three properties n-Venn
quadrangulation.

Exam 2.1. Here is an example of a Venn diagram and its dual graph:

Figure 4: A 4-Venn diagram and its dual graph

3 Construction of Venn diagram
Obviously, we consider this question inductively. Suppose we now have an n-Venn diagram

C, how can we add a curve Cn+1 on it so that it becomes an (n+1)-Venn diagram? Notice that
Cn+1 must enter and leave every region of C exactly once and divided every region into two
parts. So finding such curve is the same as finding a Hamilton cycle in the dual graph D(C).

Exam 3.1. For 4-Venn quadrangulation in fig. 44, we can find a Hamilton cycle and extend the
corresponding 4-Venn diagram to 5-Venn diagram.

Figure 5: a Hamilton cycle and the 5-Venn diagram obtained from fig. 44

To find a Hamilton cycle in D(C), we first consider a Hamilton cycle in Qn.
For n = 2, let C2 be a Hamilton cycle given by:

Now assume we have constructed a Hamilton cycle Cn of Qn, let Cn = [v1 v2 · · · v2n ] with
v1 = (0, · · · , 0).

Define Cn+1 = [(v1, 0) · · · (v2n , 0) (v2n , 1) (v2n−1, 1) · · · (v1, 1)].
Then Cn+1 is obviously a Hamilton cycle in Qn+1 and the front half vertices in Cn+1 is 0

on the last component, the back half vertices in Cn+1 is 1 on the last component.
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Exam 3.2. Here is the figure of C3, C4:

Prop 3.1. For every n, there exists an n-Venn quadrangulation containing Cn such that every
edges (x1, · · · , xn−1, 0) to (x1, · · · , xn−1, 1) is contained in Gn.

Proof. When n = 2, G2 = Q2 = C2.
Assume Gn is an n-Venn quadrangulation containing Cn such that every edges (x1, · · · , xn−1, 0)

to (x1, · · · , xn−1, 1) is contained in Gn.
Let e1, · · · , ep, f1, · · · , fq be the edges in Gn\Cn, where the n-th component of vertices of ei

are the same and those of fi are different.
Then q = 2n−1 − 2 and p+ q = 2n+1 − 4− 2n = 2n − 4 by proposition 1.21.2.
So p = q = 2n−1 − 2.
Construct Gn+1 = (Gn\{ei})× {0} ∪ (Gn\{fi})× {1} ∪ {(x1, · · · , xn, 0) ↔ (x1, · · · , xn, 1)}.
Then Cn×{0}, Cn×{1} ⊂ Gn+1 and |V (Gn+1)| = 2n+1, |E(Gn+1)| = 2|E(Gn)|−p−q+2n =

2n+2 − 4.
It remains to prove the properties (2), (3) in proposition 2.12.1.
We first assume that we have proven Gn+1 is planar.
Since Qn+1 is a bipartite graph(divided by the parity of x1 + · · ·+ xn+1).
So Gn+1 has no 3-cycle, i.e. every faces has at least 4 edges.
And by Euler formula, the faces of Gn+1 is 2− 2n+1 + 2n+2 − 4 = 2n+1 − 2 = |E(Gn+1)|

2 .
Therefore every face must be 4-cycle since every edge is contained in at most 2 faces.
Now consider a hypersurface H = {(x1, · · · , xn+1)|xi = ε} with a constant ε ∈ {0, 1}.
If i = n+ 1, then Gn × {ε} ⊂ Gn+1 ∩H is connected.
If i ⩽ n, let H ′ = {(x1, · · · , xn)|xi = ε}.
Since there are edges between (x1, · · · , xn, 0) and (x1, · · · , xn, 1).
So we can pairwisely identify them together, and then the graph we get is ((Gn\{ei})∩H ′)∪

((Gn\{fi}) ∩H ′) = Gn ∩H ′, which is connected by the induction assumption.
Therefore Gn+1 ∩H is always connected.
Finally, it remains to prove that Gn+1 is planar.
Moreover, we inductively prove that Gn looks like:

Cn−1

Cn−1

Such that the half above part corresponds to Gn ∩ {(x1, · · · , xn)|xn = 0}, the half below
part corresponds to Gn ∩ {(x1, · · · , xn)|xn = 1} and the large loops above and below are both
Cn−1.

Then Cn is the red loop in the diagram.
Edges {ei} are all extra edges above or below the ”ladder“.
And edges {fi} are all vertical lines in the middle except two red lines.
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So Gn+1 looks like:
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