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Chapter 1

Quasiconformal maps

1.1 Differentiable quasiconformal maps

Def 1.1.1. Let (Mi,dy),(Ma,ds2) be two Riemannian manifold and f : M; — My is a homeo-
morphism, define the dilatation

| BB
Dy My = Row e lim S m )

where a(f(B,(z))) is the diameter of the largest ball that can be inscreted in f(B,(z)) and
B(f(By)) is the diameter of smallest ball circumscribe f(B;(z)).

Def 1.1.2. We say that f is k-quasiconformal if Dy(x) < k for any « € M;.
Exam 1.1.1. (1) My = My =R, then Dy(x) =1 for every x € R.

(2) My = Ma = R"™ and f is bi-Lipschitz map, then B(f(B,)) < Lr,a(f(B;)) = 1, i.e. f is
L?-quasiconformal.

(8) My = My = C and f(re®) = r2e®, then f is 2-quasiconformal but not bi-Lipschitz on every
neighborhood of 0.

Prop 1.1.1. Suppose U C R¥ is a domain and f : U — f(U) is C*-diffeomorphism, then the
dilatation can given by
supyjy =1 [|dfp(v)]]

Dy(p) = ianvuzl dep(U)H

Proof. Since around p,
f(@) = f(p) +dfplqg —p) + o(llg — pl)-

So for sufficiently small r, f(B,(p)) is closed to the ellisoid
E = f(p) + dfP(Br(O)) C Tf(p)f(U)'

And notice that a(E) = 2r Hshlgl ldfp(v)|l, B(E) = 2r ”shli)l ldfp(v)]].
B Hﬁ(f(Br(x))) _supjy)=1 [|dfp(v)]]
S TR ) BT S AT

Hence

O]

Coro 1.1.1. Suppose U C R* is a domain and f : U — f(U) is C'-diffeomorphism, then on
every compact subset of U, Dy is continuous and f is quasiconformal.
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Prop 1.1.2. Let f : C — C, then

Dy(z0) = M(Zo)-

Proof. Since df = f.dz + fzdz.
So we have
(1] = [fzDIdz] < [dw| < (| f2] + | f2])|dz]-

Geometrically, df maps the unit circle to a ellipse:

and two axes of the ellipse are |f,| + | fz|, |f2] — |fz]-
Hence we have
|fz] + | f2]

Dr@ =157

1.2 Extremal length
Def 1.2.1. A function p : C — R is called allowable if

(1) p > 0 and measurable,
(2) Alp) = J¢ p*(2)dady # 0, c0.

Let I' be a family of curves, each v € I' is a countable union of open arcs which are rectifiable,
define

L(p) = [ pl2)ldel, Lip) = inf Lo (o)
o yel’
The extermal length of I' is defined as

. L*(p)
B pp A(p)

A(D)

Def 1.2.2. We say I'; < I'q if every 5 contains 7.

Exam 1.2.1. IfI'y C 'y, then I's < I'y.

Prop 1.2.1. (1) IfT'; < Ty, then A(I'1) < A(T'2).

(2) Let T +To = {y1 + 72| € I'i}, then A(T'1 +T'2) = A(T'1) + A(T2).
(3) IfT1NTy =@, then A(T1 UT)™t > A1)~ + A\(T2) L.

Proof. (1) If 41 C 72, then L., (p) < L, (p).
So )\(Fl) < )\(Fg).
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(2) WLOG, assume L;(p;) = A(pi).
Let p = max(p1, p2), then
L(p) = Li(p1) + L2(p2) = A(p1) + A(p2)
A(p) < A(p1) + Alp2)

So
L'(p)

ATy +T'9) =su
(I 2) pp A(p)

> Ap1) + A(p) = A1) + A(T2).

(3) Let E1, E3 be two complementary measurable sets with I'; C Ej.
For allowable p, take p; = p - xE;.
Then Li(p1) 2 L(p), L2(p2) = L(p) and A(p) = A(p1) + A(p2).
So

Alp)  Alpr) | Alp2)
(o) ~ Tp1)  Li(p2)

Hence A(I'; UTo) ™t > A1)~ + A(To) 7t
O]

Exam 1.2.2. Let I' be the set of all arcs in an annulus 1 < |z| < ro which join the boundary

circles, then
2 ro ) 27
/ / p (reZ(’) drdf > / L(p)dd = 2w L(p).
0 r1 0

And by Cauchy inequality,

2T 2 q 27
42 L3 (p / / —drd# - / / pPrdrdd < 27rlog A()

Hence A(I') = 5 log 22 =

Thm 1.2.1. Suppose T' C U C R% f : U — U’ is diffeomorphism and I" = f(TI'), if f is
k-quasiconformal, then )‘(F) < AIY) < kXT).

Proof. Given density p on Uy, we define

40 = () ©

|d¢] = (f=] = [fzDd=].

[ et [ pla.
04 ¥

Thus L/(p') = Ly(p), i.e. L(p') = L(p).
On the other hand,

with f(z) = ¢, then

So

N / _ 'o 2 _ ’fZ‘ + ’fZ‘
Alp') —/U/Pdﬁd@ —/U(p f) dezndy—/ = ‘fz‘d zdy < kA(p)
Therefore A\(I”) > %
And consider
7 _ P
7= () ©
we have A\(I") < kA(T). O

Coro 1.2.1. \(I') is a conformal invariant.
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1.3 Quadrilateral

Def 1.3.1. Q-quadrilateral is a Jordan domain with a pair of disjoint closed arcs on the bound-

ary(the b-sides).
RS
M

Lemma 1.3.1. There exists M > 0 and a conformal map f : Q — R, where R is a rectangle,
such that the b-sides are mapped to the vertical sides.

Proof. follows from Riemann mapping theorem and Schwarz-Christoffel formula. O
Remark 1.3.1. In this note, we assume the width of R is 1 and the length is M.

Prop 1.3.1. If f : R — R’ is conformal and mapping corner to corner, then the length M = M’
and f is identity.

Proof. By reflecting, we can extend f to whole C.

And since
lim F(2) < 400
EREINEL
So f must be a degree-1 polynomial.
Notice that f(0) =0, f(M) = M’, f(i) = 1.
Hence f must be identity and M = M’. O

Def 1.3.2. The modular of a rectangle R is M, denoted by m(R) = M.
More generally, given @, we define m(Q)) = m(R) when we have conformal map f: Q — R.

Prop 1.3.2. A\(I') = m(Q), where ' is the family of arcs connecting the b-sides of Q.

Proof. By corollary 1.2.1, we only need to prove this for ) = R is a rectangle, so

/01 /OMP(JU-I-Z'y)dxdy > /01 L(p)dy = L(p).

And by Cauchy inequality,

1 oM 1 oM
LQ(P)</0/0 dxdy-/o/o dexdngA(p).

Hence \(I') = M = m(Q). O
Def 1.3.3. Let I' be the family of arcs connecting the b-side, define

= inf L
sp = inf +(p)

where p is the Euclidean density, and similarly, we can define s,.

Thm 1.3.1 (Rengel inequality).

The equality holds iff Q) is a rectangle.
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Proof. Let I'y, be the family of arcs connecting the b-sides of @), then

2
ff;fg)) < A(Ty) = m(Q).
On the other hand, we consider quadrilateral )’ whose b-sides are the a-sides of @, then
s2(@) _sp(@) 1
AQ ~A@ ~ "™ T @y
Hence we have 2(0) A(0)
Sp
AQ <"V 2@

1.4 Quasiconformal maps

Def 1.4.1. Let Q C C be a domain, and suppose f : Q — f(€2) is a homeomorphism, we say
that f is k-quasiconformal if

for every quadrilateral Q C €.
Prop 1.4.1. (1) If f is k-quasiconformal, f~' is k-quasiconformal
(2) If f1 is ki-quasiconformal and fo is ko-quasiconformal, then fi o fy is kika-quasiconformal.
(8) Conformal map is 1-quasiconformal.

Proof. (1)

2)
n@Q) _ m(f(@)
kiky k1

<m(fro f2(Q)) < kim(f2(Q)) < kikam(Q).

(3) Let R be a rectangle and WLOG, assume f(R) = R’ is also an rectangle otherwise we can
composite a conformal map.

Then by proposition 1.3.1, f is identity, i.e. f is 1-quasiconformal.

Thm 1.4.1. Every 1-quasiconformal map is conformal.

Proof. Let R be a rectangle and WLOG, assume f(R) = R’ is also an rectangle otherwise we
can composite a conformal map.
Consider a vertical line [ that divides R into @1 and Q2 and let Q) = f(Q;).
Then m(Q)) = m(Q;) and f(l) is an arc connecting the a-sides.
By Rengel inequality, )
A(Q!
N < L
") @)
Suppose f(l) is not a vertical line, i.e. Q1,2 are not rectangle.
Then m(Q}) + m(Qh) < A(Q}) + A(Q%) = A(R') = A(R), contradiction!
So f is identity.
For general cases, f must be conformal. O
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Prop 1.4.2. If f : Q — f(Q) is C', then f is k-quasiconformal in the C' sense iff f is
k-quasiconformal in geometric sense.

Proof. =: Let @ be a quadrilateral in Q.
WLOG, we assume R = @ and R’ = f(Q) are rectangles, then

[fol? < (Fl +1£20)* < kJy

m(R') =M = /RJf(z)dxdy

> [ 1) dady

B 1 1 M M 5

-7 | (/O o [ 15 (z)dx)dy
1 2

> /0 ( /0 lex(l‘)dl‘> dy > < (M)

Hence M’ < kM, i.e. f is k-quasiconformal in geometric sense.
<: We first assume f(z) = |f.(0)|z + | fz(0)|Z + o(z).
Consider square Rs with length 0 and R§ = f(Rs).
Then
sp(R5) = 6(1f=(0) + [ £z(0)]) + 0(0)

A(Rg) = 8 (I£-(0)* = [ £:(0)*) + o(5%).
So by Rengel inequality,

m(R5) > N =
2 AR 2 (110 0P + o)

Hence Df(0) < k, i.e. f is k-quasiconformal in C''-sense.
For the general case, Let arg f,(0) = 0, arg f5(0) = ¢ and

g9(z) = efiHT(pf (eivTigz) .

Then

j8te

g:(0) = 57 £,(0) - €57 = |£.(0)]

g:(0) = e 757 £2(0) - 72" = | £2(0))]

And since the rotations are conformal, i.e. 1-quasiconformal.
Hence f is k-quasiconformal in C'-sense as ¢ is. O

1.5 Holder continuity

Def 1.5.1. Let 2 be a topological annulus(doubly connected region) and Cy, Cs be the bounded,
unbounded region of the component resp.

We say the closed curve 7 in G separates C1 and Cs if v has non-zero winding number about
the points of C7.

We denote I' = {v|y separates C; and Cy} and define the modular m(2) = A\(T") L.
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Prop 1.5.1. Let Q be a topological annulus and f maps Q conformally to annulus {r, < |z| <
ro}, then

and reach the mazximum at

Proof. For any allowable p, take p1(f(z)) = p(z) - po(z)~L.
For 7, C Q such that f(v,) = {|z| = r}, we have

1 27 0
Ly(p)= [ plazl= [ pioldzl= [ pu (re) a6.
r |Z‘:7‘ r 0

o 2T . 1
//p2da:dy:/ / ,0% rew fdﬁdr
Q
1< d9> dr
T1 r

1/ L*(p dr_L2(p)1og’2

r 2 1

Hence we obtain the conclusion. O

Coro 1.5.1. Consider Q, = {|z| < 1}\[0, 7], prove that

(Vi)

p(r) 1 /
m(,) = == A(r) = .
e (G I il N/ we ey
Proof.
—-K+iK' K+iK'
%
K 0 K —t ¢
Consider mobius transformation
fla) = Ve 2Ve
 —Vaz+1a+1

Then £(©) = {|2] < 1N\[~va, va].
Let Q" = f(Q,) N {Im z > 0} and consider

_/ia dt
o JO=2)(1 —a??)

We can verify that g(;7) = {—K < Rez < K,0 <Imz < K’} is a rectangle with
1
K=1I(a),K' = 5](\/ 1 —a?).

And g ((v/a,1)) = (K, K +iK'),g(-1,—va) = (-K,—K + iK").
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Consider ‘
h(z) = tezx (K=2),

Then h(g()) = {t < |2] < 1,Imz > 0} with

t= 6_%.
Notice that h o g maps (—1,—+/a) U (v/a,1) to (—1,—t) U (¢,1).
So we obtain a conformal map gy by reflect h o g along real axis, which maps f(Q,) to
annulus {t < |z| < 1}.
By proposition 1.5.1,

Hence

Remark 1.5.1. We call Q, the Grétzsch extremal region.
By the prove of the above corollary, we have

00 (25)

More details about the properties of elliptic functions can be found in Conformal Invariants,
Inequalities, and Quasiconformal Maps.

Prop 1.5.2. Let Q = {|z| < 1}\c where ¢ is an arc connecting 0 and r, then m(2) < m(;).

Q, Q

Proof. By corollary 1.5.1, we can consider the conformal maps f : Q; — {t < |z| < 1,Imz > 0}
and the allowable function pg.

Let v be an arbitrary curve in I' and divides it into two arcs v; and 2 which both have one
endpoint on each of the segments (—1,0) and (7, 1).

Let ’yz-+ be obtained by reflecting the part of +; below the real axis.

Since it is well-defined to extend f on upper half disc.

So f(v;") is an arc which has one endpoint on each of the segments (—1, —t) and (¢, 1).

Notice that p is symmetric w.r.t. real axis.

So Ly, (po) = L.+ (po) > .
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Hence £ 12 (p0)
inf Lz (po 9
gl
AD) = 258 (27)

—27mlogt —27mlogt (Tr)

1—[wl|

Prop 1.5.3. d(0,w) = log (H'w') for w € D.
Prop 1.5.4. Suppose f: D — D and f is 2-quasiconformal, then
1
§d(z,w) —log2 < d(f(2), f(w)) < 2d(z,w) + 2log 2.

Proof. WLOG, assume w = f(w) = 0.
Since m(€2) > 2m(Q2), we have

HED < ).

And so

1f(2)] < ! <M(Iz])> VI

2 ) 14z

Hence

d0,[f(z)]) < d (0, fﬁ) =2d (0,+/z) < 2d(0,z) + 2log 2.

And the other side of inequality follows from 2-quasiconformal map f~. O

Prop 1.5.5. Suppose f: D — D and f is 2"-quasiconformal, then

2ind(z,w) —(2—2""")1og2 < d(f(2), f(w)) < 2"d(z,w) + (2" —2) log 2.

Proof. Let

_ (u(ZD> _ 2V/Je

=) =p 2 ) 1+l

Similar to proposition 1.5.4, we have

s n (M) = o)

which is the n-th iterate of the function ¢.
Then
4o, 17(=)l) < d (0,6"(2))

<2d (0, gb(”_l)(z)) +2log?2

NN

< 27d(0,2) 4+ (2" —2) log 2
And the other side of inequality follows from 2"-quasiconformal map f~1. O

Lemma 1.5.1. Given k and a point p on a hyperbolic geodesic vy, there is an L-quasiconformal
diffeomorphism f : H? — H? which fizes p and sends ~ to itself, stretching hyperbolic distances
along v by a factor k and stretching all other distances by a factor between 1 and k.
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Proof. WLOG, assume p = ¢ and ~y is the image axis, then take

f (rew) = kel

Then 11
+ k-1 k-1
Ile—il | !le— | |
Ly k—\\
_ 32 p)
Dy(z) = Bl k-1 k-1
B — AL

Thm 1.5.1. Suppose f: D — D and f is k-quasiconformal, then

Fd(z,w) — A < d(f(2), (W) < kd(z,w) + A

where A = A(k) only depends on k.

Proof. WLOG, assume w = f(w) =0 and let 271 < k <

Then by lemma 1.5.1, there exists a 5~ quas1conf0rmal g that fix 0 and maps the geodesic
connecting 0 and f(z) to itself.

So by proposition 1.4.1, g o f is 2"-quasiconformal, i.e. by proposition 1.5.5,

271
T-d(£(2),0) = d(g© £(2),0) < 2"d(2,0) + (2" — 2) log 2.
Therefore
d(0, f(2)) < kd(0,2) + k (2 —2""") log 2.
And the other side of inequality follows from k-quasiconformal map f~!. O

Lemma 1.5.2. Consider topological annulus

= C\([~1,0] U [p, +0)),

let  be a topological annulus and C1,Co be the two components of its complement, if
{_170} C Cla {p,OO} C 027

then

m(Q) < m(Q,) = i,u <2p+ 1—24/p? —i—p) :

2

Proof. Let f:D? — C; U be a conformal map with f(0) =0 and f(a) = —1.
Then by Koebe quarter theorem, |f'(0)| = 4p.
And by Koebe distortion theorem,

allf'©)] _ dpla
(A —JaD? S (= [

So |a| = |ao| where ag belongs to the case Q = Q.
by proposition 1.5.2, m(Q) = m(f~1(Q)) < m(Qa) < m(Qay) = m(SY,).
Moreover, we have

1
a=2p+1—2/p% + ,m(Q;):§u<2p+l—2\/p2+p>.

1=[f(a)] <
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Remark 1.5.2. ), is called the Teichmiiller extremal region.
Let €, be the reflection of €, along {|z| =1} and Q2 = Q, UQ- U {|z| =1}.

Then f(2) = _, | with f(z) = 2 —1 and so

2u(r) =pu (27"_2 —1-2vr4— r—2> )

2u<2*/5> — (o).

a+1

We can actually use this conclusion in corollary 1.5.1 without creating circular argument.

Lemma 1.5.3. Consider topological annulus

A
=C\ ({]2\ =1, |argz — 7| < arcsin 2} u [0, —i—oo)) )
let 2 be a topological annulus and C1,Co be the two components of its complement, if
diam(C1 N{|z| < 1}) > A\, {0,00} C Oy,

then

() < m(Q) 1 <\/4+2)\\/42)\>'

2l 1
Proof. Consider the map f(z) = /2.

On the image plane, we get a figure which is symmetric w.r.t. the origin with two component
images of C7 and two of (o, denote them by Cf, cr, C;, Cy .

Take Q' = C\(C;- UCY).

Then m(Q) < 3m ().

And since there exists 21, z2 such that |z1], |22 < 1, |21 — 22| = A

Let wy,wy € Cf are the image and

Z + w1 w1 + wo
Z—wyw; —wy

9(z) =
Then

w1 —|—w2)2

g(—w1) = 0,9(~w2) = 1, g(w1) = 00, g(w2) = —u’ = — <w1 — w2

Notice that
pr+@F:2(pm+4@F)—pl—@9<4—x?
So we can obtain

1 2(z1 + 29) 2+\/4 )\
= = R < VRl <

Hence by lemma 1.5.2,

IO Ny 1 1 1 (VI+2A—I—2)
m(@) < gm (&) < gm (%) = 277“< |u]2—|—1><27T'u< 1 ‘

And the equality holds when Q = QF, i.e.m(Q2) < m () O

Lemma 1.5.4.

1+vVI—1r2 4
210g% S u(r) <log—.
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Proof. By mobius transformation

zZ—a 2a
a—a?z a?2+1

f(z) =

’,"’
we map €, to Q = {|z| <a}\[-1,1].

And take conformal map
() 1 1
g(z) = 5 z+ )

Then it maps annulus {1 < |z| < p} to ellipse E, with axes p + p~! and slit along [—1, 1].
When p+ p~! < 2a, E, C Q and so

log p p(r)
o = M(Ep) > m(Q) = =~
Notice that p = 2a — r,4r~! satisfies the condition of first and second case resp.
So
1+v1—r2 4
2log TEVITT ¢ pu(r) < log —.
r r

Thm 1.5.2 (Mori). Suppose f:D — D, f(0) =0 and f is k-quasiconformal, then

1
|f(21) — f(22)] < 16|21 — 22]*
for|z1], |z2] < 1.

Proof. We first consider the case that f can be continuously extended to the closed disk.
And then we can extend f to a k-quasiconformal map on C by
If 21 — 29 > 1, then it is trivial.

1 1
01

z)  f(z)
So we assume z1 — 29 < 1.

Construct an annulus A whose inner circle has the segment z1, z5 for diameter and whose
outer circle is a concentric circle of radius %
Let w1 = f(z1), w2 = f(22) and C,Cy be the two components of complement of A.

If A C D?, then consider
Z — W1

g(z) - 1-— 11_112’.

So g o f(A) is a topological annulus and 0, g(f(z2)) € (g o f(A)) and we can obtain

1 1

2 98 T = m(4) <kmig o £(4))

)

8

<
< g ——
[wa — w1

k w9 — W1
27Tlu 1 — wiwe
k

— 10,

27



CHAPTER 1. QUASICONFORMAL MAPS 13

If A\D? # &, then 0 ¢ A.
So f(A) is a topological annulus and {wi,wa} C f(C1) N{|z] < 1}, {0,00} C f(Ca).
Therefore by lemma 1.5.3,

1 1

—1
2 OgZQ—Z]_

= m(A) < km(f(A4))

<r, (\/4+2!w1 —wa| — /4 — 2| —W2|>

S oor 4
k484216 — dfwi — w]
< ;- log
27 lwy — wa|
k 16
< —log —.
27 \wl —wg‘

Hence we obtain the desire formula.

For the general case, we consider I, = {|z| < 7} and g,(2) = r~'2.
Then g, o f(rz) is K-quasiconformal and continuous on |z| = 1.
By the above case, we have

1
lgr o f(r22) — gr o f(rz1)] < 16|22 — 21|*.

Asr —1, g- — Id, i.e. we obtain

1
|f(22) — f(z1)| < 16|22 — z1|*
So f is Holder continuous, i.e. it can be extended to boundary continuously. O

Coro 1.5.2. Suppose f : D — D and f is k-quasiconformal, then f can be extended to a
homeomorphism of the closed disk.

Proof. By Mori theorem, f is Holder continuous.
So it can be continuously extended to the closed disk.
And since continuous bijection from compact set to Hausdorff space is homeomorphism.
Hence f : D — D is homeomorphism. O

Coro 1.5.3. Suppose f, : D — D, f,(0) = 0, if fn, are k-quasiconformal, then {f,} has a
subsequence such that f;, = f and f is k-quasiconformal.

Proof. By Mori theorem, {f,} are equicontinuous.
So by Ascoli-Arzela theorem, {f,} has a subsequence f; = f.
Similarly, there exists a subsequence szl =g.
WLOG, assume i,, = j, otherwise, we can take a subsequence in {i,} N {j,}.
So f~! =g, i.e. f is homeomorphic.
For an arbitrary quadrilateral @@ C D, take a sequence of @,, C @ such that f; (Qn) C f(Q).

Then m (fi, (@n)) < km(Qn).
And since f;, =2 f, so we have

m(f(Q)) = lim m (i, (Qu) < lim km(Qn) = kim(Q)

n—o0

Hence f is k-quasiconformal. O

Prop 1.5.6. Suppose f : D — D is k-quasiconformal and fives p,q,r € St, then d(0, f(0)) < C,
where C' = C(k) only depends on k.
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Proof. Suppose f, : D — D is k-quasiconformal, f, fixes p, ¢, and d(0, f,(0)) — oc.
WLOG, we assume {f,(0)} converge to a point on 9D and it is not p, q.
Let A, € Isom(D) such that A, (f,(0)) =0 and g, = A, o fy.
Then we obtain

(O p—d (1= 18OF) b=
) ll_mle—fT@q) ~p = fa(0)llg — 2 (0)]

— 0

‘gn(p) - gn(q)‘

1
By Mori theorem, |p — q| < 16|g,(p) — 9n(q)|*, contradiction! O

Thm 1.5.3. Given a compact set E C C and two point p # q € E, there exists C = C(E), such
that if f : C— C, f(p) =p, f(q) = q and f is k-quasiconformal, then for z1,z2 € E,

1£(21) = f(22)| < Clz1 — 2| F

Proof. Take a simply connected region 2 O FE.

Let g : D — Q,h : f(2) — D be conformal maps such that g(0) = p,g(e) = ¢, h(p) =
0,h(q) = B with «, 8 € R and denote ¢ = ho fog.

Then by Mori theorem,

1
|p(21) — P(22)] < 16|21 — 22 *.
And since E is compact.

Let |[g7'(2)| <ro<1for z € E.
Then by Koebe distortion theorem,

lg'(z)[| 21 — 22
— >
o(er) - o) > W C 2

1—1z (0

RSP
(1—r0)(1 —|a])?

> 64|Oé| ‘p_qH'Zl_ZZ
(1 —ro)?

= 64|Oé| ‘p_Q||Zl_Z2|

On the other hand, for |z| < rg, by Mori theorem, we obtain
Lo =12 S16(1— [o(=)))*. |o] < 16/8]¥.

So |p(2)| < po < 1, where pg only depends on ryg.
So similarly, we have

4
|21 — 22| < mlp —q|[h(z1) — h(22)]-
Hence 4
|f(21) — f(22)] < mm—ﬂ\hoﬂzl)—hoﬂ@)’
<ﬂ‘ _ ‘( 64|Oé| ‘Z —Z|>1
Sl TN g

< Oz — 2|

where C only depends on F. O
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1.6 quasiconformal maps on Riemann surface

Def 1.6.1. 51,52 are Riemann surface, then f : S; — Sy is k-quasiconformal if f :D — D is
k-quasiconformal.

Lemma 1.6.1. Suppose f : S1 — S2 is a k-quasiconformal map and v; C S1 a closed geodesic
on Si, let o C Sy be the closed geodesic which is homotopic to f(y1), then l(y2) < kl(71).

Proof. Consider f, : w1(S1,*1) — m1(S2, *2). .
After identifying m with T'; < Aut(D), we obtain a lift f : D — I such that

fodAi=As0f, fi(Ar) = A

Let ~; be the axis of A;.
We first assume f(p) € 2 where p € 1, then

nl(12) < d (f0), 43 (F0))) = d (7). F(A1 )
< kd(p, AY(p)) + C = knl(m1) + C.

So I(y2) < kl(m1) + €, de. 1(y2) < kl(y1) as n — oo.

n?

For the general case, take a fixed point g € 79, then

4 (7). 43 (F®)) = d (e A5(@))| < 24(f(p),0) = C1.

O
Prop 1.6.1. There exists no quasiconformal map f : 1D — C.
Proof. Let Q = {|z| <19 < 1} and f(Q2) C {|z| < R}.
Then by definition,
1 1
m(C\f(Q)) < km({ro < |z] < 1}) = 2—log—.
™ To
On the other hand, for arbitrary M,
m(C\Br) > m({R < |2| < M}) = —log 1L
R) = X X - o g R
Take M > £ contradiction! O

o’

1.7 Topological definition of quasiconformal maps
Def 1.7.1. f:S? — S? is a homeomorphism, define
Ny ={Ao foB|A Bec Aut(S?*), Ao f o B fixes p,q,r € S},
Homeo(S?,p, q,7) = {g : S* — $?|¢ is homeomorphism, g fixes p, q,7}.
Lemma 1.7.1. If f is quasiconformal, then Ny is sequentially precompact in Homeo(S?, p, q,).

Proof. Consider the stereographic projection ¢ : S> — C with g(p) = oo.
Then for a sequence {4, 0 foB,} C Ny, goAofoB 0g~ ! is a k-quasiconformal map on C.
So {g oA ,ofoB,o g_l} converges to a k-quasiconformal map fy: C — C.
Take h = g~ o fy 0 g,h(p) = p.
Hence h is a homeomorphism in Homeo(S?, p, ¢, 7). O
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Exam 1.7.1. Take

f(z) = (e'zl — 1) eiarg(z),Bn(z) =nz, Ap(2) =

z
en—1°

Then A, o f o B, fixres 0,1,00 but maps 2 to

en — 1

e —1

— 00

Lemma 1.7.2. If f is not quasiconformal, then for any n > 0, there exists quadrilateral Q,
with m(Qyn) = 1 such that nm(f(Qr)) <1

Proof. Since f is not quasiconformal.

Take quadrilateral @ such that 2nm(f(Q)) < m(Q).

WLOG, we assume @ is a rectangle and m(Q) > 1, otherwise we swap the a-sides with
b-sides.

If m(Q) = 1, then there is nothing need to be proved, so we only consider m(Q) > 1.

Let k < m(Q) < k+1 where k € ZT and divide Q into k squares Ry, ..., Ry and a rectangle
Ry41, which may also be a square, then

k+1

k
m(Q) > 2nm(f(Q)) > Qan(f(Ri)) > 2an<f<Ri>>.

So there exists some 7 < k such that

m(Q) . E+1
nk  2nk

Hence take Q,, = R;, we have nm(f(Q,)) < 1 and m(Q) = m(R;) = 1. O

S

m(f(R;)) <

<

Thm 1.7.1 (Topological definition). A homeomorphism f : S?> — S? is quasiconformal iff Ny
is sequentially precompact subset of Homeo(S?, p, q,7).

Proof. The "only if* part is proved in lemma 1.7.1, we now prove the ”if* part.
WLOG, we assume p, q,r are 0,1, 00 Tesp.
For z € C, take z,y € 0B,(z) and f = Ao fo B € Ny such that

B(0) =2,B(1) =x,A(f(2)) =0, A(f(z)) =1, B(c0) = A(o0) = o0.

Since A, B are affine map, we have

d(f(y), f(2))
d(f(x), f(2))

Suppose f is not quasiconformal, then there exists z,, €., y» such that

d(O, B_l(y)) =1, = d(07A(f(y)))

‘Brjl(yn)‘ =1,

fo (B ()| > .

WLOG, assume f,, converges to g € Homeo(S?,0,1,00) and B, *(y,) converges to .
Then |g(y)| > lim n = co.
n—oo

But g(c0) = oo and g is injective, contradiction! O
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1.8 Analytical properties of quasiconformal maps

Def 1.8.1. Given a quasiconformal map f : U — f(U), we say f is absolutely continuous on
lines if in every rectangle R C U, f is absolutely continuous on almost every horizontal and
almost every vertical line.

Lemma 1.8.1. Let f : U — f(U) be quasiconformal, then f is absolutely continuous on lines.

Proof. Take disjoint intervals (a1,b1),..., (an,by) in [a, B].

Let A(y) be the image area under f of the rectangle [a, 3] x [0, y].

Then A is increasing, i.e. derivative A’(y) exists a.e.

WLOG, assume A’(yo) exists.

Consider @ = [o, 8] % [yo, yo + 0], Qi = [ai, bi] X [yo,yo + 0] and Q" = f(Q), Q; = f(Qs).

Let 9 be the line connecting a; and b;, l; = I(y) = |b; — a;,1; = 1(f(10))-

We first show that for sufficiently small , the length of any arc « connecting the b-side of
Q) is near by I

Take a partition a; = tg < t1 < -+ < t,, = b; and {; = f(tx,yo) such that

i e
> 1k = Gl 21— 3
k=1

Take sufficiently small § such that the variation of f on vertical segments {tx} X [yo, yo + I]
is less than -, then we have

m

€
() >Z!Ck-§k—1|—§ L
k=1
So take £ <  min{l/}, we obtain
(l;)z / li
<m0 < k2
4A(Qz) X mz(Qz) X k(;y
n 2 n 2 n n
’ () A(yo +6) — A(vo)
(Zz) <D l; <AK ; Zz
=1 =1 =1 =1
And since " 5 A
lim (?JO + ) - (yO) _ A/(y[)) < —I—OO,
5—0 1)

Hence as ) 1; — 0, > 1/ — 0, i.e. f is absolutely continuous on horizontal line.
Similarly, f is absolutely continuous on vertical line. O

Thm 1.8.1. Let f: U — f(U) be quasiconformal, then f is differentiable a.e. on U and it is
differentiable in then sense of distribution.

Proof. By lemma 1.8.1, f is absolutely continuous on lines.
So f has partial derivatives f;, fy a.e.
By Egoroff theorem, the limits

£02) — tim L2 =)

6—0 1)

) = tim LA IC)

6—0 1)

are taken uniformly except on U\E of arbitrary small measure.
Then it is sufficient to prove that f is differentiable a.e. on E.
Notice that almost every point zg+yoi € E is point of density for EN({x = zo}U{y = yo}).
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So it is sufficient to prove that f is differentiable at such a point zg = zg + yoi.
And WLOG, we assume zy = 0.
Then there exists ¢ > 0 such that for |z|, |yl, [d1], |02] < 9,

[f2(2) = f2(0)] <&, 1fy(2) = fy(0)] <e,

fz+01) — f(2) f(z+d20) — f(2)
(51 52

- f:c(z)‘ <e, — f,(2)] <e.

So
f(z) = f(0) = 2 f2(0) — yfy(0) = (f(2) — f(2) — yfy(@)) + (f(z) — f(0) — zf2(0))
+y (fy(z) = f,(0))

Ifx € Eorye E, we have

f(2) = F(0) = 2fo(0) = yfy (0)] < 3el2]-

Now we want to prove the case when z,y ¢ E.
Since%%lasx—)&

Take ¢ sufficiently small such that for z < ¢

2+¢
1+¢

m(EN(—z,x)) > |z|.

Tre
Similarly, we apply this process to y.
So if |z] < ﬁie, there exists x1,x2,y1,y2 € F such that

ThenEﬂ( L x)#@

T Yy
< <z<z<(l4e)z— <y <y<ys < (l+e)y.
T <1<z <z (1+e)z T <n<y<w (1+e)y

Consider rectangle (z1,z2) X (y1,y2).
By the maximal principle, there exists a point z* on the perimeter such that

£ (2) = £(0) = 2f2(0) = yfy(0)] < |f (2" +1y") — f(0) — 2£2(0) — yfy(0)|
3elz*| + |z — ™| £z ()] + |y — y7|[£,(0)]
3

<
< 31+ ¢)lz] + el f2(0)]|2] + [ £, (0)]|2]

Hence f is differentiable a.e.
Moreover, for compact K C U, we have

| grasdy < A1),
K

And since f is k-quasiconformal.
Similar to proposition 1.4.2, we can prove that

with K = E.

J
2l < 2«
‘fz‘\K‘fZ|7|fZ’ S 1 K2 kE+1

So fz, fy are locally square integrable.
Take a test function ¢, which is C!' with compact support.
By the integration over horizontal lines and Fubini theorem,

[ ooy = [[ sosdoay. [ 0050y =~ [ o, doa



Chapter 2

Boundary Correspondence

2.1 Quasi-isometry maps

Def 2.1.1. E is a convex subset of H", then one can define the nearest point retraction map
m:H" — E: for p € H", there exists a unique point ¢ € E such that d(p, E) = d(p,q) and we

set m(p) = q.
Lemma 2.1.1. ||dn(2)|| < cosh(r) ™", where r = d(z, E).

Proof. Let r = d(z, E) and consider a smooth curve 7 in the level set
Y, ={we H"d(w, E) =r}.

with v(0) = z,7/(0) = v € T,%,.
Then 7o~ is a curve in E with (7 0v)'(0) = dm,(v).
Let a(t, —) be the unit-speed geodesic from 7(y(t)) to v(¢) and Consider the Jacobi field

J(s) = a <§t> -

Then «a(t, —) is perpendicular to OF and J(0) = dn,(v), J(r) = v.
And since H" has constant curvature —1, so we obtain

J(s) = dn(z)(v) cosh(s) + J'(0) sinh(s).

On the other hand,

- 0 A 0 A
J, 0 - * ~, - * a = N = N

( ) v%a <8t) s=t=0 v%a (88) s=t=0 v% t=0 VJ(O)
where N is the unit normal vector to F pointing outward.
Notice that F is convex.
So the second fundamental form
Therefore we have

[0 = |J(r)?

= cosh?(r)|dm, (v)[* + sinh?(r)|J'(0)|* + 2 cosh(r) sinh(r) (dr (v), J'(0))

> cosh?(r)|dm, (v)|?
And since drr, vanishes in the direction perpendicular to 3.
Hence ||dn(2)|| < cosh(r) ™. O

19
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Def 2.1.2. A map v : R — H" is called (L, A)-quasigeodesic if

e —yl

7 <d(y(z),7(y)) < Llz —y[ + A.

Lemma 2.1.2. For L, A > 0, there exists Ay, L1, D1 depending on (L, A) such that for every
(L, A)-quasigeodesic vy, there exists a (L, Ay)-quasigeodesic 1 such that

(1) tun (71 ([a,0])) < Lila — bl.
(2) dyn(y(x),v1(x)) < Dy for every x.

Proof. Let ’yl’[n ] be the geodesic from y(n) to v(n + 1) with |7/ (¢)| = C.
Thenforn<a<n+1lm<b<m+1,

L (11([a 0]))

m—1
= lan (vi([a,n + 1) + >l (3 ([i 8+ 1])) + L (11 [m, b))

i=n+1
m—1
= (n+1—-a)d(v(n),y(n+ 1))+ Y d(y(i),7(i + 1)) + (b — m)d(y(m),y(m + 1))
1=n-+1

< (L+ A)|b—al
Andforn <z <n+1,
d(v(z),n1(z)) < d(v(z),y(n)) + d(11(n),11(z)) < 2(L + A).

O

Thm 2.1.1 (Morse lemma). Suppose v : I — H" is an (L, A)-quasigeodesic where I is an
interval either finite or infinite, then ~(I) is within a bounded distance R from a geodesic in
H", where R only depends on L and A.

Proof.

1(T1) w(v(a)) m(v(0))  (T2)

by lemma 2.1.2 we can assume 7 is (L, A)-quasigeodesic and I(y([a,b])) < L|a — b.

We first consider the case that I = [T7, T3] is finite.

Let ¢ be the geodesic arc between (71) and v(73) and (a,b) C [T1,T2] be a maximal interval
such that v((a,b)) lies outside the cylinder B(d,rp) where

2roL? + LA _
cosh(rg) — L2 ~

—

Then we have

cosh(rg)d(m(y(a)), 7 (v(b)))
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So
” 2
(o). mO b)) < o <

Therefore d(y(a),v(b)) < cosh(rg), i.e. |a —b| < Lcosh(rg) + A.

Replace 19 by rg + L(Lcosh(rg) + A) + A, then ([T, Ts]) C B(4,10).

For general case, take a sequence of finite interval Iy C Is C --- C I and let §; be the
corresponding geodesic arc.

Notice that §; are all L-Lipschitz.

By Ascoli-Arzela theorem and diagonal argument, §; converges to a geodesic § as i — oo

Hence as i — oo, v(I) C B(d,r9)- O

Def 2.1.3. A map f: H" — H" is called (L, A)-quasi-isometry if

d(z,y)
L

—A<d(f(x), f(y)) < Ld(z,y) + A,

Thm 2.1.2. f: H" — H" is a quasi-isometry then f extend continuous to a quasiconformal
map Of : OH" — OH".

We can define 0 f directly by Morse lemma, and to prove this theorem, we need some deeper
properties of quasi-isometry maps. For brevity, we have placed the proof in chapter A.

2.2 M-condition

Def 2.2.1. Let h: R — R be a homeomorphism, we say that h satisfies the M-condition if

1 b +t) — hiz)
M S @) —hw—1p M

Such A is also called quasisymmetric.

Lemma 2.2.1. Let f : H?> — H? be k-quasiconformal such that f(co) = oo, then h(x) = f(z,0)
is an increasing homeomorphism which satisfies the M -condition for same M = M (k).

Proof. For t € R, By choosing affine map A, B, let g = B o f o A such that

h(z +t) — h(x)
h(z) — h(z —1t)

g(—l) - _179(0) - Oag(l) =

Suppose there exists f,, : H> — H? such that

hon (T + tm) — b (2)
hm(xm) - hm(xm - tm)

— 0 or o0

Then we can rescaled f, to get g, such that
gn(_l) = _1).971(0) = 07971(1) — 0 or oo.

And since g, fixed 0, —1, co.

So g, converge to a k-quasiconformal g, — g¢.

But ¢g(1) = li_>m gn(1) = 0 or oo, contradiction! O
n—oo

Lemma 2.2.2. Let h : R — R be a homeomorphism satisfying M -condition with h(0) = 0,
h(1) =1, then

1 ! M
< | h)dz < .
M+1 /0 @)z < 37
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Proof. Let F(x) = sup ho(x) for all quasi-isometry ho with ho(0) = 0, ho(1) = 1.

Then for 0 <t < 1,
h(t
h(t) 2

So

And similarly, we have

1— h(t)
() erE) (o ()0
F (;) +F <12+t) <F (;) + F(t).

Therefore

Thus we obtain

Hence

O

Lemma 2.2.3 (Gauge rule). Let f : H? — H? be k-quasiconformal with f(co) = oo, then for
any affine map A, B, take h(x) = f(x,0),hi(x) = (Bo fo A)(z,0), prove that

hi = BohoA.
Proof. Let A=az4+b,B =cz+d with a,c > 0 and b,d € R, then
(Bo foA)(x,0)=cf(ax +b,0) +d = ch(ax +b)+d= BohoA.
O

Thm 2.2.1. Let h : R — R be a homeomorphism satisfying M -condition, then there exists a
map ¢ = u + iv which is k-quasiconformal for k = 2M (M + 1) and ¢ : H? — H? extending h.

Proof. Take

u(z,y) = ;y/_y Wz + 1)dt, v, y) = ;y/oy(h(m +1) = hiz — £))dt.

Then v(z,y) > 0 and v(z,y) — 0 as y — 0, i.e. ¢ is well-defined and ¢(z,0) = u(z,0) =
h(z).

And since we have .
Uy = @(h(fb‘ +y) — h(z —y)),
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1/m+y 1

Uy = —— hdt + —(h(z + y) + h(x — y)),

v= gy |t )+ b )
1

ve = 5 (W@ +y) = 2h(@) + hiz = y),

1 vty ! 1
q@:_%ﬂ<é mu—éyh&>+zﬁmx+w—h@—y»

By gauge rule, we can assume h(0) = 0,h(1) = 1 and we only need to compute dilatation
at z =1, then

1 1 [t 1+ h(-1)
o==(1=h(=1),uy=—= =
u 2( h(—1)), uy 2/_1hdt—|— 5

R B T T e

5:1—1AIMR4%:—h@4Lnﬁ:—Jd—U%i/oh&.

-1

Let

So we obtain

dz_wﬂ—®+ﬁu—n»+dﬂ+@—ﬁa+n»
(T4+8+ B0 +n)+i((1-¢&) —B(1—n))
1+ 8+ 821+ 0%) —26(E+0)
1+ &+ 821+ n?) +28(E+0)

Since we have estimates

1 M
M < B <M, <& n <
p S A v
Therefore )
1+d 1+d
D = <2 2M (M +1).
—a S g < MM

Moreover, we must show that ¢(z) — oo as z — oo, this is because

u2+02::t/(<lf+yMﬂ>2+-<£inﬂ>2>.

Hence by monodromy theorem, ¢ is homeomorphic, i.e. ¢ is k-quasiconformal. O

Prop 2.2.1. X and Y are Riemann surface diffeomorphic to ¥4, then they are biholomorphic
iff they are isometric w.r.t. hyperbolic metrics.

Prop 2.2.2. X and Y are Riemann surface diffeomorphic to X, but not biholomorphic, let
f: X =Y be a diffeomorphism and g : H?> — H? is the lift of f, then g is not differentiable
anywhere with non-zero derivative on the boundary.

Proof. Let I'x,I'y be the Fuchian groups.
Then for A € T'x, there exists B € I'y such that go A= Bog.
WLOG, assume ¢(0) = 0 and suppose g is differentiable at 0 with non-zero derivative.
Let Ay(2) = 2,90 = AlogoA,.
Since ¢'(0) # 0.
Take arbitrary zp € H? and a fundamental domain F of X.
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Then there exists v, € I'x such that v, o A,(z0) € F.

So by Ascoli-Arzela theorem, there exists {n;} such that ~,,0 A, converges to oy : H? — H2.
Therefore A;Lil ° Yy, Loy oy, o Ay, converges to some o Lvoy for every v € I'x.

And consider §,, € I'y such that go~, = d,0g.

Then 6,4, (ng (2)) € g(F).

WLOG, we assume 6, o A,, converges to oy : H?2 — H2.

Let g, converges to h : H? — H? and a = ¢/(0), then

hoal_lo'yoal: lim gniOA;ilo’ygiIO'yo'ymoAm
1— 00
= lim A;logo%:_lo'yo’ymoAni
1—00 v
= lim AgloérjiloéocsniogoAni
1—00

=0, 080030h

where goy=dogforyel'x, § € I'y.
Notice that for x € R,
g (5) —9(0)
h(z) = lim ——

n—oQ
n

= axr

Hence we can get h : X — Y, x — ax which is linear and biholomorphic, contradiction! [
Coro 2.2.1. There are quasisymmetric map h : R — R which are not absolutely continuous.

Proof. Consider the biholomorphic map g; H? — H? in proposition 2.2.2.
Then dg is not absolutely continuous. O

Using similar method, we can prove the Mostow rigidity theorem. Since the proof is so long
and is not quite related to the course, it can be found in chapter A.

Thm 2.2.2 (Mostow rigidity). M, N are closed hyperbolic n-manifold with n > 3, then every
homotopy equivalent f : M — N must be homeomorphism to an isometry.

Lemma 2.2.4. Let X be a closed Riemann surface with genus g > 2, then there is a unique
closed geodesic in a free homotopy type w.r.t. parametrization.

Proof. Consider the covering map 7 : H> — X, a free homotopy type in X corresponds to a
deck transformation F : H? — H?2.

For a closed geodesic v in the given free homotopy type with (1) = ~(0).

Consider the lifting 7 : R — H?2.

Then 4(t + 1) = F(3(t)), i.e. 7 is the axis of F'.

Hence ~ is unique w.r.t. parametrization. O

Lemma 2.2.5. Let X be a closed Riemann surface with genus g = 2 and f be an automorphism
that homotopies to 1d, then f = 1d.

Proof. Consider a figure-eight closed geodesic v that self-intersects at p.
Since f ~ Id.
So f(v) and ~ are in the same free homotopy type and are both closed geodesic.
By lemma 2.2.4, f(v) = 7, in particular, f(p) = p.
Denote the two parts of v divided by p by 1,2, which are geodesics.
We only need to prove that f(v;) = ~; since f is an isometry.
Suppose f(71) =72, f(72) = m-

Then [yo] - [n1] = [f(M] = [7] = [n] - Dl
By Preissmann theorem, [y1] = [a]P and [y2] = [a]? for some [a] € 71 (X) and p,q € Z.

So [y] = [a]P*9, in this case, v must be (p + ¢)-times iteration of [a], contradiction! O
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Prop 2.2.3. Fiz an closed Riemann surface X and let G be the group of all conformal auto-
morphism of X, then |G| < 400.

Proof. Suppose |G| = oo, let {f,} be a sequence of automorphism.
Then f, — f € G.

Let gn:fn_lof,
Then g, — 1d.
So for sufficiently large n, g, is homotopic to Id, contradiction with lemma 2.2.5! 0

Def 2.2.2. The restriction f : St — f(S!) is called quasisymmetric map and f(S!) is called
quasicircle.



Chapter 3

Beltrami differential

3.1 Beltrami differential

Def 3.1.1. f:Q — f(Q) is a diffeomorphism, its Beltrami differential is defined as

us(2) = Bete(:) = () 20

7.
Prop 3.1.1.

1t uy(e)]

br@ =100

Proof. Directly follows from proposition 1.1.2.

Prop 3.1.2. ;
Phof-1 0 f = f: {Li qulth
Proof.
(hof™): (F(2)) = ha(2) [ (f(2) + he(2) 71 (f(2))
(hof=h)- ha(2) [ (f(2) + ha(2) [ (f(2))
—hz(2)py(2) + ha(2 f: = fahiy

Coro 3.1.1. If puy = pp, a.e., then ho f~1is conformal.

Proof. pper-10f =0 a.e.
So ho f~! is conformal.

Def 3.1.2. A Riemannian metric ds? on a differentiable surface is given by
ds? = Edz? 4+ 2Fdzdy + Gdy?
in (x,y) local coordinate. In other words,

ds = \|dz + pdz|

with
1 E -G+ 2iF
N=-(E+G+2VEG-F?) u=
4( )” E+G+2VEG - 2

26
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Remark 3.1.1.

up = EXG-2EG-F
N T ErGrEG-FE
Prop 3.1.3. Let f : Q — Q such that p = py, then there exists o(w)|dw| on Q, where

w = f(z), such that
f(o(w)|dw]) = ds.

Proof.
ffo=oa(f(2))|df]
= (00 f)(2)|f2dz + fzdZ]
= (00 f)(2)|f:](2) - [dz + pdz| = ds
So we take \
-1
TARE

3.2 Quasiconformal groups

Def 3.2.1. Suppose G is a group of quasiconformal maps of S?, we say that G is a quasicon-
formal group if there exists k£ such that all f € G is k-quasiconformal.

Exam 3.2.1. Group of Mobius transformations M is a quasiconformal group with k = 0.
Similarly, we can consider the conjugate group fM f=' by some quasiconformal f, it is also a
quasiconformal group.

Prop 3.2.1.
() = PaC)HgGCDIE) g
S T o R %) (e R =
We denote Ty(1r(g)) = ffog(2)-
Proof. Let h= fog.
By proposition 3.1.2,
fifog= 9z Hh — Hg
9z 1 — figpn

So we obtain

>
—~
N
~—
+
=
Ly
—~~
<
—~
I
~—
~—
=
@
—~
N
~—
—
+
=
<
—~
N
~—
=
Ly
—~~
)
—~
N
~—
—~
N
~

O

We now want to prove that actually every group of quasiconformal maps must be conjugated
to a group of Mobius transformations. And so we first show the following lemma.

Lemma 3.2.1. Given a compact set X € D, there ezists a barycenter b(X) € D such that
A(b(X)) = b(A(X)) for any A € Aut(D). More explicitly, b(X) can be given by the unique point

such that ,
/ z—b(X) sdzAdz
x1=b(X)z (1 —|z*)2

To proof this lemma, we need some properties from analytic.
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Prop 3.2.2. The function

A=) JoP)  idwAde
Gx(z)=— ] lo
x () /X |z = wl? + (1= [2*)(1 = [w]*) (1 = |w]*)?

has a unique minimum in D.

Proof.

1— 12121 — lwl? 2
( 5 1217 5 [wl") o =1- 7& wl 5 =1-— tanh? d(z,w) = sech? d(z, w).
|z —wl” + (1= |2[")(A = [w]") 11— Zwl

Ldw A dw

(1— w[*)?

Notice that d(z,w) is convex function of z for fixed w since D is hyperbolic.

And % log cosh? t = sech?t > 0.

So G x is convex.

Since Gx(z) tends to 400 as |z| — 1.

Hence G has a unique minimum in D. ]

Gx(z) :/ log cosh? d(z, w)
X

Proof of lemma 3.2.1. By proposition 3.2.2, we take the minimum b € D of Gx and let

Ty(z) = ——,G(2) = Gx(Ty(2)).
Then we have )
%dw A dw
(1— |w]?)2
Ldw A dw
(1— |w[*)?

2z 22| Ty (w)|* — 2T (w) > Ldw A dw
VG(z) =
) /A (1 — |2f* ' |z —wl* + (1= [2) (1 = [wf*) ) (1~ |w[*)?

In particular, VG(0) = 0, i.e.

G(z):/Alogcosh2(d(Tb(z),w))

= / log cosh?(d(z, Ty(w)))
A

So

ldw A dw
2 [ Tyw)Z—F—=0
X (1 = Jw[7)?

since z = 0 is the minimum of G.
Take b(X) = b, we now prove that it is conformally invariant.

td¢ A dC Ldw A dw
Tawx)(Q) =2y = / Tagp(xy (A(w) 2——5—
/Am PR S R Py
: Ldw A dw
0 2
— T 2
RS
=0
where ¢ = A(w) and 0 € [0, 27).
Hence A(b(X)) is the unique minimum of G 4(x)(2), i.e. A(b(X)) = b(A(X)). O

Thm 3.2.1. Every quasiconformal group G is conjugated (by a quasiconformal map) to a
subgroup of Aut(S?).
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Proof. Consider the sets M, = {u(2)|f € G} for z € S

Then for g € G, Ty(My()) = {Ty(us(9()))If € G} = {nfog(2)|f € G} = M.
Let p(z) = P(M,) and solve Beltrami equation

I\

ks

Then we have
Ihog(2) = Tg(pn(9(2))) = To(P(My(2)))

= P(Ty(My(z))) = P(M=) = pn(2)

So hogoh~!is conformal for every g € G. O

In the proof we actually use the fact that the Beltrami equation can be solved, this will be
proved later.

3.3 Holomorphic motions

Def 3.3.1. Let X be a connected complex manifold and E be a subset of C, we say a map
f:E x X — S?is a holomorphic motion of E over X if

(1) For fixed A € X, f(—, ) : E — S? homeomorphic to its image.
(2) For fixed z € E, f(z,—): X — S? is holomorphic.
(3) For any z € E, f(z, ) = 2z for some \g.

Thm 3.3.1 (Schottky). If h is analytic on D and not equal to 0 or 1, then

< e (ol 1)

for |z| < 1 where ®(x,y) is a universal strictly increasing continuous function for x > 0
with ®(0,y) = 0.

Lemma 3.3.1 (A-lemma). A holomorphic motion f(z,\) of E =D over D can be extended
to a quasiconformal map _fmm D into a closed quasidisk in C in the z variable, and f(z,—) is
holomorphic for any z € D.

Proof. Let z1, 29, 23 be three points in D and

f(z1,A) = f(22,A)
f(z3,\) = f(22,A)

h()\) =

WLOG, we assume Ay = 0.
Then by Schottky theorem,

f(z1,A) = f(z2, )
Tz, ) = f(zQ,A)‘ s @ (

14 A

11— I)\|> ‘
Fixing z9, z3, f(t,2) is bounded as z € D for a fixed A.
And as z1 — 22, f(z1,A) tends to f(z2, ) since ®(0,\) = 0.
So f(—, ) is uniformly continuous, i.e. it can be continuously extended to D.
And by definition, f(—,\) is quasisymetric on 9D, i.e. f(—,\) is quasiconformal on D.
On the other hand, f(z,—) is the uniform limit of some holomorphic maps for z € dD.
Hence f(z,—) is holomorphic for any z € D. O

21 — 22

23 — 22
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V)

Thm 3.3.2. Suppose f(z,\) : S2 x D — S? is a holomorphic motion, then f(—,\) i
quasiconformal.

Proof. We restrict f on B, x D and denote it as f,, where B, = {z||z| < R}.
By A-lemma, f.(—,A) is k-quasiconformal where k& does not depend on r by lemma 2.2.1.
So as r — 00, we obtain that f(—,\) is k-quasiconformal.
Let u(z, A) be the Beltrami differential of f(—, ).
Then (2, —) is holomorphic for any z € S%.
So by Schwarz lemma, |u(z, A)| < |Al.

Hence f(—, ) is }ji}-quasiconformal. O

Def 3.3.2. Cross ratio of z1, 29, 23, 24 € S? is

Z4 — 21 k2 — Z3

Cr(Z].aZ2aZ3aZ4) = .
R4 — 23 22—~

Prop 3.3.1. Let f be a k-quasiconformal map, giving a compact set S C S?\{0,1, 00}, then

{Cr(f(21), f(22), f(23), f(24))| Cr(21, 22, 23, 24) € S}

is compact.

Proof. Suppose the conclusion is wrong.
Then there exists (27, 25, 2%, z1') such that Cr (2], 25, 2%, 2}) € E but

Cr(f(21), f(22), f(23), f(2])) = = € {0,1, 00}.

Let A,, be the Mobius transformation that maps 27, 25, 25 to 0,1, oo resp.

Then Cr (27, 25, 28, 21) = An(2}).

WLOG, we assume A, (z}) — z € E by passing to a subsequence.

Similarly, consider B,, that maps f(27), f(25), f(25) to 0,1, co resp.

Then Cr (F(2}), £(5), F(0), (1)) = Ba(f(z1)).

Let g, = Bpo fo A L

Then g, fixes 0,1 and oo.

By lemma 1.7.1, we assume g, — ¢ uniformly by passing to subsequence.

So nh_)rgo gn(An(2])) = g(2) = = € {0, 1, 00}, contradiction! O

We now proof the converse statement.

Thm 3.3.3. Let f: C — C be a homeomorphism and take a fived point zg € C\R, if Nt(2o) is
compact in C\{0, 1,00}, then f is quasiconformal.

Proof. Suppose f is not quasiconformal, i.e. there exists zy,, Tp, yn With z,, y, € 0By, (z,) such

that
[/ (yn) — f(zn)]

— 00.

Take Mobius transformations

z— f(zn)
Then A;,(0) = 2n, An(1) = @, Bn(f(2n)) = 0, Bp(f(zn)) = 1, Ap(00) = Bp(o0) = oo.

S0 gn = Bpo foA, € Ny, i.e. {gn(20)} is compact in C\{0,1,c0}.
Around z,, we consider f o A, locally as an R-linear map D,,.

Ap(2) = 2n + (@n — 2n)7, Bp(2) =
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WLOG, we choose z,, y, to be the short and long axis of ellipse D,,(zp) resp. , then

19 (20)] = |/ (An(20)) = f(zn)| _ [20Dn(1) + 5o D (i)
! [f(@n) = f(z0)] 1D, (1)]

— 00,

since yg # 0 and “g:((i))h — 00.

Contradiction!
Hence f is quasiconformal. O

Remark 3.3.1. Actually, I don’t know how to write the proof restrictly. This is just a sketch
and I think it can work after some deeper discussions.

Exam 3.3.1. When zp € R\{0,1}, f may not be quasiconformal.

Take a quasisymmetric h : R — C with zero derivative almost everywhere and set f =
x + ih(y).

Then we can easily check that f is quasisymmetric on every line and circle, while four points
with real cross ratio must contained in the same line or circle.

So Ny(z0) C S2{0,1, 00} is compact, but f is not quasiconformal, since it is obviously not
absolutely continuous on lines.

Thm 3.3.4 (Slodkowski). Every holomorphic motion f : E x D — S? can be extended to
holomorphic motion f:S? x D — S2.
3.4 Two integral operators

We now start to solve the Beltrami equation.

Def 3.4.1. Let h € LP(C) with p > 2, the Cauchy operator is

Ph(C) = 1/Ch(z)< LI 1) dzdy.

T z—( z

Lemma 3.4.1. Ph is a continuous function with is Holder with exponent 1 — %.

Proof. By Holder inequality,

PH@I = ¢ ) o)

-0
< |
< iR, -0,
And since
[ 1ete = O tdady = 622 [ 2z DI "dady
C
So . .
1—2
Pl < 2| g | e

Set hi(z) = h(z + (1), then

|Ph(C2) — Ph(C1)| = [Ph1(C2 — G1)
< Kylhl, ¢ — Gl
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Def 3.4.2. For h € C3(C), we define

) 1 h(z)
h = lim —— dzd
Th{¢) = limy w/.z<>5 G- oY

Lemma 3.4.2. If h € CZ, then Th is C! and
(Ph), =Th,(Ph); = h,/|Th|2d:cdy = / |h2dzdy.

Proof. Notice that

hz
= lim / dzdz
|lz—C|>e # — ¢

1 hdz
= lim — =
50 2ri /|z<|=e 2=¢ ©

1 -
/ ITh[*dzdy = —5 / (Ph).(Ph).dzdz
= / Ph (PR)._ d=dz
1

= 1,/Phhzdzdz
21

S / (Ph):|h

Y] ®

= / \h[2dady

Remark 3.4.1. This implies that Ph actually gives an solution of the @ problem.

Thm 3.4.1 (Calderon-Zygmund). Let h € LP(C) with p > 1, then ||Th|, < Cp|hll, where
cp—~1lasp— 2.

Conj 3.4.1. ||T||, = p* — 1 where p* = max {p, p%l}.

Remark 3.4.2. The inequality [T, > p* —1 is known.

3.5 Beltrami equations

Thm 3.5.1. Suppose p has compact support and ||p||, < k <1, fix p > 2 such that kC, < 1,
then there exists a unique solution of fz = uf, such that f(0) =0 and f, —1 € LP(C).

Proof. We first proof the uniqueness.
Since fz = f.u.
So fz € LP and P(fz) is well-defined.
Take F' = f — P(fz).
Then Fs; =0 a.e., i.e. F' is holomorphic.
Since F' = F, = f, — T(f3).
Therefore F/ — 1 € LP(C), i.e. F' —1=0.
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Thus f(z) = z + P(fz).
Suppose f, g is the solution of f; = uf,, then

fo=9:=T(f: —92z) =T(p(f2 — g2))

So by Calderon-Zygmund,

| f2 — ngp < ollu(fz = g2)ll < kel f2 — 921,

contradiction!

Define h =Tpu+TpTp+---.

Since linear operator h + T'(1h) has norm kCy < 1.

So h is well-defined.

Take f = P(u(h+ 1)) + =.

Then f, =T(u(h+1)) +1=h+1, fz = p(h+1). O

Coro 3.5.1. Suppose i — p pointwisely a.e., ||pkll, [|p|| < k and supp pg,supp p C B(R),
then fn, = f.

Proof.

1(fn)z = Fell, <UTul(fn)z = FIl, + 1T = pn) (Fn)-=1l,
|

< fn
< kCpl|(fn)z — fall + Cpll(n — M)fznp

As n — oo, ||un — p|| tends to 0.
So H(fn)z_fz||p_>07 i.e. fnjf O

Lemma 3.5.1. If u is smooth with compact support, then f is a topological mapping.

Proof. Let f, = X\ and so u\ = fz, then
Az = (BA): = Azp+ Az

(log A)z = p(log A): + ps.
Take 0 = log A, then
Oz = U0 + [z
Let g € LP(C) such that
q="T(pq) + Tp.

If such ¢ exists, then we can let
o=P(ug+p,)+C.

To find ¢, we consider operator T : LP — LP q — T'(uq) + Tp.
By Schauder fixed point theorem, ¢ exists.
So |f.] = |e?| > 0, i.e. f is a topological mapping. O

Thm 3.5.2. If p with compact support and ||p||, < k < 1, then the solution of Beltrami
equation is quasiconformal homeomorphism.

Thm 3.5.3. For any measurable function p on C with ||p||, < k < 1, there exists a unique
quasiconformal map f* such that f£' = puft a.e., and f*(0) =0, f*(1) =1, f#(c0) = 0.
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Proof. We first consider the special case that = 0 near 0.
Then take
i(2) 1\ 22
z) = - =.
. B\Z) =

1
fH(z) = m

For general case, take 1 = p1 + po where p; has compact support and pe = 0 near 0.

Take
_ pi2
P a0 ) PSS
L —pupg B2

So ji has compact support and

Then A has compact support and
fr= o fre.
O

Thm 3.5.4. Suppose X is a Riemann surface, and let ji be a (—1,1) form on X with ||| <1,
then there exists a new Riemann surface X* and a quasiconformal map f* : X — X* such that

Oft = pofr.
Proof. Let X = H/T" and lift p to & on H satisfying that

_ AT
(:u © A) E = M
for any A €T
Extend fi to C by taking fi(Z) under the real-axis and take f = f#, then
AT

Belt(f o A) = (Belt(f) o A) A

A/
3 A
= (fio A) A
= ji = Belt(f)
So fo A= Bo f for some Mobius transformation B.
Hence I')y = fol'o f~1is a Fuchsian group and we can take X* = H/T,,. ]

Remark 3.5.1. We can extend p arbitrarily and use Riemann mapping theorem to let f maps
D to D.

Exam 3.5.1. Take f(x,y) = 2z,y) in 0 < x <1 and f(z,y) = (%ZL‘—I— %,y)
Then we extend f to C by f(x + 3n,y) = f(z,y) + 3n and so

| wi
Ll

Bﬁﬁﬂ%w={

In<r<3n+1
n+1<z<3In+3
Let fo(2) = L f(nz).

Then fn(z) = z as n — oo, but pu, # 0 in distribution sense.

Moreover, i, — —% in weak™* topology.
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3.6 Decomposition of quasiconformal maps

Thm 3.6.1. Let f be a k-quasiconformal map and 0 < t < 1, then f = fo o fi where fi is
K'-quasiconformal and fo is K'~'-quasiconformal.

Proof. Let ’Ll(—(zz)) € C with d(0, p1(2)) = td(0, p(2)), then

1= ()]

So f1 = f* is K'-quasiconformal.
Take fo = fo ffl and pg = Belt(f3), then

1+ [pm(z)| (1+\M(2)|)t
1—p(2)l)

()] = | L1

Therefore we obtain

Lt oy (=) 14 Ju(2)
o <1 T 2(h(2) = |u<z>r) |

Hence fo is K=t quasiconformal. O

> = 2d(p(2), p(z)) = (1= ) log (

Coro 3.6.1. Lete >0 and f be a k-quasiconformal map, then f = fyo---o f, where (1 + ¢)-
quasiconformal maps f1,..., fn for sufficiently large n.

Proof. Take n such that (1+¢)" > k and g1 = f.

By the above theorem, we construct g; = f;0g;4+1 where f; is K %—quasiconformal inductively.
O

Conj 3.6.1. Let € > 0 and f : R® — R" be a k-quasiconformal map, are there (1 + ¢)-
quasiconformal maps f1,..., fr, such that f = fio--- 0 fi.

Conj 3.6.2. Let e >0 and f : R®™ — R"™ be a L-biLipschitz map, are there f1,..., f,. which are
(1 + ¢)-biLipschitz such that f = fio---o fi.
3.7 Dependence on parameter

Def 3.7.1. Let v be an essentially bounded measurable function in C, for small ¢ > 0 with
|ltv|| ., <1, we denote

f¥(z) = 2+ tf[V](2) + o(t), i.e. fV](2) = lim f(z) —z

t—0 t

Prop 3.7.1. Suppose v is compact support and Let f% be the unique solution such that f(0) =0

and f, —1 € LP, then
) =1 [t (1 - ) duao

Proof.

So we obtain

1 1
— ) dudv

w—z w

) = Pw) =1 [ vt (
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Thm 3.7.1. Let f% be the unique solution fizing 0,1 and oo, which we call the normalized
quasiconformal map, then

Fle) = = [t 2o due

Coro 3.7.1. Let {u(t)} be an family of Beltrami coefficients depending on a real or complex
parameter t such that p(t) is differentiable at t = 0, that is,

p(t)(z) = p(z) + tv(2) + te(t)(2)

for z € C and v,e(t) € L®(C) such that ||e(t)|l, — 0 as t — 0. Then for normalized
quasiconformal maps f“(t),

o= L [ oy SRR = D)
FE) = = A ooy £ e P
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Teichmuller space

4.1 Integrable holomorphic quadratic differential

Def 4.1.1. X is a Riemann surface, a holomorphic quadratic differential ¢ on X is a holomor-
phic (2, 0)-form.

Prop 4.1.1. Let ¢ = ¢(2)dz? be a holomorphic quadratic differential, then |¢| is a volume form
on X.

Proof. Under holomorphic change of coordiantes, ¢(A(w))A’(w)? = ¢(w). O

Def 4.1.2. Denote the integrable quadratic differentials by MQD!(X) and integrable holomor-
phic quadratic differentials by QD! (X).
We define B*(X) = {u|p is (—1,1) measurable form with ||u||, < +oo}.

Prop 4.1.2. Take ¢ € QDY(X), u € B¥(X), then ¢u is a volume form.

Proof. Under holomorphic change of coordiantes,

Blw) = (om) (Aw)) 3

O

Prop 4.1.3. Suppose A : QDY(X) — C is a bounded linear function, then it can extend
to A : MQDY(X) — C with the same norm and there exits u € B¥(X) such that for any
¢ € QDY (X), we have

70 = [ 6. llloo = I
X
Moreover, p is unique if dim QD(X) < oo.

Proof. By Hahn-Banach theorem, we can extend A to A : MQD!(X) — C with the same norm.
And by Riesz representation theorem, such p exists.
For the uniqueness, suppose ||| = 1 and dim QD*(X) < oo.
Then there exists ¢g € QD'(X) such that |A(¢o)| = ||#o]l;, s0

lbolly = / o < Ilull o 9ol

Hence the only possibility is that p = %l. O

37
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Exam 4.1.1. Suppose X = {2|0 < Imz < 1} is the strip, A(¢) = [y ¢ with ¢dz* € QD' (X).

Take ¢, = n+22, then
e 1

Joon= [ S 1ol = | Q—I/dy/ .

x ntw Xn‘1+z ’1+ x+f>
So

Aga)l
n=oe || gnlly

Hence ||A\|| = 1.

Exam 4.1.2. Suppose X =H, \(¢) = [y ¢ with ¢dz* € QD (X).
Then by Cauchy theorem, \(¢) = 0 since ¢ is integrable.

Lemma 4.1.1. Meromorphic (2,0)-forms with first order poles on E = 0D are dense in QD! (D)

Proof. Let L ¢ QDY(ID) be the closure of such meromorphic functions.
Then we want to show L = QD'(ID), suppose not.
So there exists a nonzero bounded linear functional A : QD!(D) — C such that A\(L) =
By proposition 4.1.3, we take such unique u € B> (D).

Let .
Qz) = —/D p(w) dudv.

™ w—z

Then Qz(2) = u(z), Q(z) =0 for |2| =1 and Q is continuous on C.
Suppose ¢dz? € QDY(D) is holomorphic in some neighborhood of I, then

/ p(z)p(z)dzdz = / Qz(2)p(z)dzdz = Q(2)o(z)dz = 0.
oD
Now for any ¢dz? € QDY(D), we let ¢,.(2) = ¢(rz) for r < 1, then

/u(z)gﬁr(z)dzdz =0

1
So [ u¢ =0 since ¢, L, ¢ as r — 1, contradiction! O

Def 4.1.3. Suppose X = D/I" is a Riemann surface, we define the Poincaré series operator as

6: QDY(D) — QDY(X)
¢dz? — > (po A)(A)2dz?
Aell
Prop 4.1.4. 0 : QD' (D) — QDY (X) is well-defined and ||0]| < 1

Proof. For A €T and w = A(z),

0 (¢d=?) (w) = ¢(B B'(w))*dw?
Bell
=Y 6(BoA(2)) (B'(A(2)) - A'(2)) d2?
BeTl

=> ¢(B '(2))dz?

Bel’
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Moreover, let F' be a fundamental domain of X, then

2 _ ° N2 T
Jo o)l = [ |3 00 a4 asay
<y / B(A())]|A'(2) [Pdady
Aell
_;/AF z)|dzdy

- / 16(2)ldady = 16,
D

39

O]

Thm 4.1.1. Given ¢ € QD' (X), there exists ¢ € QD' (D) such that 6(¢) = 1 and ||¢|| < 3|[v]|.

Remark 4.1.1. We will prove this in next section.

Thm 4.1.2. Let v € B>®(H/T"), then

(1) flv](z) =0 for any z € OH iﬁle/qb:fH/Fugb:Ofor any ¢ € QDY(X) =

(2) Moreover, in this case there exists 0(t) € Belt(H/T') such that

a) |8(t)]] < 1262,
b) f¥(z) = OO (2) for z € OH.

Proof. (1) By theorem 3.7.1

So <f[u]>_ =v.

z

For meromorphic map ¢ with simple pole in OH,

/ védady = — / gbdzdz

=5/, fWedz =0

By lemma 4.1.1, [;; v¢ = 0 for any ¢ € QD' (H).

And since
/1/0 ¢dz?) / D (poA)(A)?
F

AeTl
= v(po A)(A)?
-
_Z/ (voAt (bdA()
Ael

_Z/ Vg = /ngS

Ael

QD' (H/T).
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Hence [y v¢ =0 for any ¢ € QD'(X).

The converse is trivial by taking
1 1
o(w) = ( S ) dz2.

(2) It is too technical to prove, so we will not give the proof.

4.2 Bergman projection

We denote the hyperbolic metric by p(z) =

1|z

Def 4.2.1. Let A3(D) be the space of holomorphic functions ¢ on D such that

Il = /D o(2)21(2) Py < oo,

We define the Petersson scalar product on As(ID) by

(6. 0)p = /D pl(2)~26(2)(2)dady.

Then A2(D) becomes a separable Hilbert space with this scalar product.
We take

2
Pn(2) = \/(n +1)(n+2)(n+3)2"
Then {¢n}5°, is a complete orthonormal basis for As(D).

Def 4.2.2. The Bergman kernel is the reproducing kernel for Ay(A), that is,

= > (eI = e
N — T (1= 2w) Y
Prop 4.2.1 (reproducing formula). For ¢ € As(DD),

¢(2) = (¢, K (-, 2))p-
Proof.

o

<¢aK('7 )> Z<¢ ¢n ¢n D—Z¢n ¢¢nD—¢()

n=0

Thm 4.2.1. (1) K(z,w) = K(w, 2)
(2) For A € Aut(D), K(Az, Aw)A'(2)?A(w) = K(z,w)
(3) Jp|K(z,w)|dzdy = 3p*(w)

(4) If |p_2(z)¢>(2)} < C for z € D and holomorphic ¢, then

6(z) = /D p2(w)(w) K (2, w)dudv

40
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Proof. (1) Trivial.

(2) Since
(60 A) (A2, (1 o A)(A)2),
- /1D> p(2) A (A(2))P(A() A (2)2A1(2) d A (2)
- /D (p(2) 1| A'])* B(A(2))(A())dAp(A(2))
- / p(2)46(2) (A (2) = (6 ¥
A(D)
Here

4dxdy

dAp(z) = <1|Z|2>2

is the hyperbolic area.
So {(¢n o A)(A’)?} is also a complete orthonormal basis for Az(DD).

Hence the reproducing kernel is the same, i.e.

K(Az, Aw)A'(2)? A (w)” = K(z,w)

/W()Md—m//% ! dod
D HWNCTE = o Jo (1—2srcosf+ s2r2)2 "

12 f1om(14 s%r?)
oy (1—s2r2)3
2

1-—s
92 _ _
:m/’ t —dt
1 t3 282
12 1 2—¢
i
S 1—g2 t3

12/ 1 1
2 \(1—-s2)2 1-—s2

= (1—1232)2 = 3p?(w)

dr

0 2

Here z = re'?,w = se’,t =1 — r%s
(4) Since |p~2(2)p(2)| < C.
So the integral is well-defined for all z.
For z =0,
1
6(0) =60(0) [ (11 Prar
0

=2 [ P o(wduds

™ JD

:/Dp(w)2¢(w)K(0,w)dudv

Now for any z € D, take A € Aut(D) such that A(0) = z and ¥ = (¢ o A)(A")2.
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Then we obtain that
(0) = /D p(0)20(C)K (0, O)dedy
- /D (P(A(O)AQ) 2 BA)) A2 (A(0), AC)A'(0)* A0’ |A(C)|dud

A0 /D p(w)~26(w) K (2, w)dudo

Hence this conclude the desired formula.

Def 4.2.3 (Bergman projection).
P 5 MQD'(D) - QD' (D), P(@)(2) = [ p7*w)é(w)K (2, w)dudv.
D

Proof of theorem /.1.1. Let F be a fundamental domain of X and take

Y(z) = P(xro)(z) = /HP_z(w)(XF(w)qb(w))K(z,w)dudv.

Then 6¢ = ¢ and

[ Wdsdy < [ [oeolw ( / IK(z,w)|dxdy> dudy
< [l ol ) -3 w)dude

= 3/F |p(w)|dudv = 39|,

4.3 Teichmuller spaces

Def 4.3.1. Let Sp be a Riemann Surface, we let T'(Sp) = {(S, f)|f : So — S quasiconformal}/~
and (S1, f1) ~ (Sa, fa) if foo f; ' : Sy — So is homotopic to a conformal map.
Belt(.Sp) is the unit ball of (-1, 1)-form on Sy w.r.t. [|-|| -

Remark 4.3.1. T(Sp) = Belt(Sp)/~ where u ~ v iff f o (f*)~! is homotopic to conformal map.
Def 4.3.2. f, : C — Cis the unique normalized quasiconformal map with Beltrami differential

w(z) zeH
0 z€ RUH™

Prop 4.3.1. f# = f" on R iff f, = f, on R.

Proof. If f, = f, on R, then f, o (f*)~1, f, o (f7)~! are conformal maps which map H to €,
whose boundary is f,(R), and fix 0,1 and oo.

Then f, o (f)yt= fyo(f)~t on H.

And since f, = f, on R.

So f* = f" on R.
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Conversely, we take

=1 4 P >
g(z):{((f) /) (2) z€H

z ze RUH™

Andlet A= fyogo(f,) L

Then A is conformal on Q = f,(H) since A = f, o (') 1o fo(f,)~! on Q.

And similarly, A is conformal on * and A is quasiconformal on C.

So A is conformal on C and fix 0,1 and oo, i.e. A =1d.

Hence f, = f, on R. O

Def 4.3.3. We define the Teichmuller metric on Teichmuller space as

.
d((S1, 1), (82, f2)) = 3 }nffﬁllog[(g
g~Jj20Jy

Lemma 4.3.1. Let f : Sy — S be quasiconformal, then the set of all quasiconformal maps

g : So — S which are homotopic to f contains an extremal map with the smallest maximal
dilatation.

Proof. The lemma is trivial if the universal covering is C or C and M is not compact.
The torus case is similar as below.
Now suppose H is the universal covering of M.
Then lift g to a map g : H — H such that all maps g agrees on boundary.
So the set of g contains its limits, i.e. there exists a map go with smallest maximal dilatation.
Hence gg is the required extremal map. O

Prop 4.3.2. Teichmuller metric is a metric.

PT’OOf. Take (Shfl)) (527f2)7 (S3Jf3)7 then

A8, fi), (S o)) = = inflog K,

-1
g~f2of1

2
.
< 3 inf  log Ky, Ky,
g1~f20f3
92~f30ff1

= d([S1, 1], [S5, f3]) + d([S2, f2], [S3, f3])

Suppose d([S1, fi], [S2, f2]) = 0.
Then there exists extremal map g ~ fao f| ! such that K, g =1, i.e. g is conformal.

So [S1, f1] = [S2, fa. O
Remark 4.3.2. In terms of Beltrami differentials,
1+ |t
1 . 1—-pv o
dr([uol, [wo]) =5 inf  log .
2 pe(polvelvo] 1— H 1“_—;”

Def 4.3.4. A Beltrami differential p € [po] is called extremal if ||pu|| < ||v]|, for any v € [uo].

Prop 4.3.3. Let [u1] € T(So), if u is an extremal Beltrami differential in the Teichmuller class
[11], then
by — (L)' = A= [u)"
(L4 [+ (= [uD)® [ul
< 1 is extremal for [u] € T(So). The arc t — ] is a geodesic from 0 to [ui1], and
=t

dr([u],0).

for 0 <t
dr([pe],0)
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Proof. Since p represents a point in 7'(Sp).
Sou=(uo A)% for every deck transformation A.
Therefore p; also satisfies this condition, i.e. [u] € T'(So) is well-defined.
For g € [u4], let go be the conformal map which is homotopic to f*t o g=*

h=flo(ff)y " ogyog.

Then h is homotopic to f#, i.e. h € [u1].

By theorem 3.6.1, K1 < Kj, < K{ 'Ky, i.e. K, > K?.
Therefore p; is extremal for [p].

And since dr([p], [1]) < 3 log Kpug(puey—1 = (1 —t)dr([u],0).
So dr (0, [1]) + dr([pe], [1a]) = dr(0, [pa]) for every 0 < < 1.
Hence t — [u] is a geodesic.

Coro 4.3.1. (T(Sy),dr) is path connected.
Proof. For [u] € T(Sy), the arc t — [py] is a path from 0 to [u1].
Thm 4.3.1. (T(So),dr) is complete.

44

Proof. Take a Cauchy sequence in (T'(Sp), dr) whose points are represented by Beltrami differ-

ential p, and f,, € [un].
Fix a map f; € [u;] such that for j > 1,

1
inf  logK,_  _.1<—.
Girt 5 Elthity] giti0f; 2

Suppose f; = f1 by passing to a subsequence and take f,, € [u,] such that

1
logKfnofl_1 < 3
Choose fi such that for j > 1,
1
inf  log K -1 < -
G+ €k +5] 8B gkssofi ' S g

Suppose fr = f2 by passing to a subsequence and take f,, € [u,] such that

1
log Kfnofgl < 1

Repeating this procedure gives a sequence {f,} such that {[f,]} is a subsequence of the

Cauchy sequence and
log K

Fosrofi! <27,

So

J
—(n+i-1) —n+1
log K ;1<) 2 <27
i=1
And the dilatation u, of f, satisfy that

Hn+tj — Hn
1- Honntj

Vit — inll. < 2H

o

1 —n
= 2tanh(2 log Kfn+jofn1> < 2tanh 27",

Therefore {u,} is a Cauchy sequence in B*(Sp), i.e. pp, — i as n — oo for some p €

B>(S).

O]
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Prop 4.3.4. Suppose g : Sog — Xo is quasiconformal, then T'(Sy) = T(Xo).

Proof. Consider ¢ : T(So) — T(Xo),[S, f] = [S, fog™!].
Then d([S1, f1], [S2, fo]) = d([S1, f1 0 97'], [S2, f2097']). o

Def 4.3.5. Mod, = {g: ¥4, = ¥,|g is diffeomorphism}/ ~ and g; ~ g if g homotopic to gs.
Prop 4.3.5. Isom(7,) = Mod,.

Proof. By proposition 4.3.4, every isometry T, — T}, corresponds to quasiconformal map >, —
Y4 and two maps fi, fo correspond to the same isometry iff [f1] = [fo] € Ty, i.e. fi =~ fo. O

4.4 Douady-Earle extension

Thm 4.4.1 (Schoen conjecture). If f : St — S! is quasi-symmetric, then there exists extension
h : D — D which is harmonic w.r.t. hyperbolic metric on D.

Thm 4.4.2. If f : S' — S! is homeomorphism, then there exists a homeomorphic extension
¢r: D — D such that

(1) (Conformally natural) Ao ¢fo B = ¢pacpop for A, B € Aut(D)
(2) If ¢ is quasi-symmetric, then ¢ is quasiconformal in D.

Moreover, it is uniquely determined with the condition that

[, 70161 = 0 4 ¢50) =0

Remark 4.4.1. We take w = ¢f(2) as the unique w € D such that

_ 1 fFQO-wY 1=z _
Fzw) =5 /Sl <1—u7f(C)) (|z—§]2> dc=o.

It needs many technique of analysis to prove that the solution of F'(z,w) = 0 is unique for
any z € D and such ¢ satisfies the required statements, so we skip the detail.

Lemma 4.4.1. Let Sy = D/I", consider the map

o: Belt(D) — Belt(D)
L — Ko

where eV = f”‘Sl’ then

(1) o maps Belt(Sy) to itself
(2) there exists a continuous map s : T'(Sy) — Belt(Sp) such that som =0
(3) Too =m.
Proof. (1) Let Bo fFo A= f# for some B € Aut(D), A €T
Then B o ¢t o A.

And since ¢ is conformmally natural.
S0 Bo ¢uu 0 A= dyn, i.e. o(p) € Belt(Sp).
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(2) Take s([u]) = o(s).
Suppose [u1] = [u2], i.e. fHL ~ fH2,
Then pHt = pH?
S0 Puu1 = Puz, i.e. o(p1) = o(p2).
Hence s is well-defined.

(3) Since gbw‘gl = M.
S0 ppn >~ fH.
Hence moo(u) = [u].

0
Thm 4.4.3. Let So =D/T, then T'(Sp) is contractible.
Proof. By the above lemma, since Tosom =mwoo = .
Somos=1d.
Take H : T(Sp) x [0, 1] = T(So), ([u],£) = [(1 = H)s((1))].
Then H(—,0) = Id and H(—,1) = 0.
Hence T'(Sp) is contractible. O

4.5 Teichmuller space of torus
Def 4.5.1. Take T-(z) = z + 7 and G, = (11,T;), then a torus is given by S; = C/G-.
Prop 4.5.1. S; = Sy iff 7 = A(r) for some A € PSL(2,Z).

Lemma 4.5.1. Let 0 : G, — G be an isomorphism, then there exists a homeomorphism
f 8 — S inducing 0.

Proof. Let T,,, = 0(Th), T, = 6(T;).
Then consider the affine map f fixing 0 and mapping 1,7 to wy,wsy resp.
Since 22 = A(7’) for some A € PSL(2,7Z).

wr

So f projects to the map we desired. O

Lemma 4.5.2. Let 7,7 € H, S, and S, are conformally equivalent iff 7/ = A(7) for some
A e SL(2,Z).

Proof. Suppose S; and S,/ are conformally equivalent and the conformal map lifts to f : C — C.
Then f(0) =0, i.e. f(z)=az.
So (v, ar) is a base of Sy, i.e. 7/ = A(7) for some A € SL(2,7Z).
Conversely, by proposition 4.5.1, S; = S. 0

Thm 4.5.1. In each homotopy class of sense-preserving homeomorphisms between tori, the
extremal map can be lifted to an affine map.

Proof. Suppose f : S, — S, and the lift f: C — C satisfies that f(0) =0 and
fz+m+n7) = f(2) + mw, + nws,

we denote the set of such f by F.
Then there exists a unique affine map

w9 — w1 T W1T — W
g(z) = 2 LU 2z

T—T T—T
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in F.

Suppose f is K-quasiconformal, let fi(z) = @

Then fi converges to an affine map in F, i.e. fr — g.

So Ky < K.

Now suppose that K = K, assume g(z + ty) = Kz + iy WLOG.
Since f,g € F, there exists M such that

Fz) - g(a)| < M.

So we obtain
> Kr—2L

r

Consider R = [0,r] x [0, 7], then

J
*(1+0(1))

As r — oo, the number of period parallelograms P meeting R is about TAT’ and so

J

On the other hand, |f,|* < K.J, therefore

Fola +iy)|de >

/T fm(:c + iy)dx
0

fx dedy > Kr? — 2Lr.

dzdy > lim (K +o(1))

Feldady > Jim "o o)

A(P) = KA(P).

mmmﬁ<mmﬁﬁfmw<Kmmmﬂm)

And since f(P) is the fundamental domain of S/, i.e. A(f(P)) = A(g(P)) = KA(P).
fo

2 -
Hence = K J almost everywhere, i.e. f = g is affine. O

Lemma 4.5.3. Let 0 : G, — G, be an isomorphism generated by K-quasiconformal map f,

then 3
di <T, ‘;E?) < %logK

~—

the equality holds iff f is affine.

Proof. WLOG, we assume % =

/
Let g homotopic to f and g = A (z + uZz) is affine, then

T—1

W= -2
T —T

So we obtain

Lol 7
log K, = log - = tanh P = 2dy (7, 7').

And by the above theorem, K, > K.
Hence we complete the proof. O

Thm 4.5.2. Teichmuller space of torus is isometric to H with hyperbolic metric.



CHAPTER 4. TEICHMULLER SPACE 48

Proof. Consider ¢ : T'(S;) — H given by

By three lemmas above, we can easily check that ¢ is bijective.
Consider [f1], [f2] € T(S,), let f: f1(S;) — f2(S;) be the extremal homotopic to fo o f; .
Then by lemma 4.5.3,

Jil(T) fiz(T)
(1) fa(1)

dr([f1]; [f2]) = %IOgKf =dg ( > = du(Y([f1], [f2]))-

4.6 Teichmuller theorem

Def 4.6.1. Let S be a Riemann surface and v € Belt(S), we say v annihilates QD*(S) if

/SWS:O

Def 4.6.2. Consider the linear functional

Au(d) = /M 1(2)p(2)dady.

for all ¢ € QD*(S).

We say p and v are infinitesimally equivalent, or p ~, v if A,(¢) = A, (¢) for ¢ € QDY(S).
The infinitesimally equivalent class of y is denoted by [p4]s.
An element p is said to be infinitesimally extremal if for all v € [u]s, ||p]lo < V]| oo-

Thm 4.6.1 (Hamilton-Krushkal). Suppose p € Belt(S) is extremal in [u] € T(S), then u is
infinitesimally extremal.

Proof. Let |||, =k, o € [u]x and ||of] , = k1.
Suppose k1 < k,let v =p — «
Then v annihilates QD'(S).
By theorem 4.1.2, take [0(t)] = [tv] € T(S) such that ||§(¢), < 12¢3, let v = tv — §(2).
So [v¢] = [0] in T'(S).
Moreover, take f» = f* o (f**)~!, then
Vt

|Aof”tr=““
1 —

[P 2R ) £ P
1 - 2Re (u#) + |vipf’

= 1?2 (1~ 14?) Re(ur) + 0

1 2
— - 2 Re ) £ 4+ O(#)

Consider Ey = {z € S‘\,u(z)] < k*—;“} ,Ey = S\Ej.
On Ei, |\ (f"(2))] < B + O(t) < k — Cit for small ¢ > 0.
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On Es, since
Re(up) = tRe(|p|* — pa) > t|u| Re(|u| —|al).

So we deduce

1—|uf? 1
7 Re(ur) > (1= [u*)(lul = lof) > 5 (1= K)(k — k1)
Therefore |A\(z)| < k — Cat for small ¢ > 0 and z € Es.
Hence |A(z)| < k — Ct for some constant C' and z € S, contradiction! O

Thm 4.6.2 (Reich-Strebel inequality). Suppose f*: S — S and [u] = 0, then for ¢ € QD(S),

lll, \/!<z>| 'd’" dady

Remark 4.6.1. The proof uses the theory of trajectories of quadratic differentials, so we omit
the proof.

Exam 4.6.1. Consider A = k% and ¢y = —¢, then

|¢|‘ B 1—k
/\¢| dady = [ |0l pdady.

So the Reich-Strebel inequality cannot hold, i.e. [A] # 0.
We now proof the special case of Reich-Strebel inequality for square torus.

Prop 4.6.1 (Grotzsch). Let S be a square torus, f*: S — S and [u] = 0, then for ¢ € QD(S),

loll, < \/r¢|‘1+ "ﬁ" dzdy

Proof. Take v,(t) =
Then I(f(vy)) 2

1 1 1
/Oldy</0 /0 |fz (2, )1 4 p(z, y)|dzdy

Z/Ifz|1+M|dwdy

] 2 2
= \/|le — | fz|"dzd
/ VI = 1f2 o

1+
</' “‘dedy-/(|fz|2—|fz|2) dady
s 1—|ul s

|1+ pf?
s 1 |uf?

—5dzdy

And since QD*(S) = Cdz2.
So we conclude the proof. O
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Coro 4.6.1 (main inequality). Suppose f : S — f(S5) and f: f(S) — S have Beltrami
differentials u and py resp. and f o f is homotopic to the identity, then for any ¢ € QD" (S)

’1+/~‘|¢|‘ ‘1”/‘1 |¢|‘
o], < |p|dady.
L—|u?  1— ()

o (1059 (14 20Y "
<1+|¢>| M) P

Proof. The Beltrami differential A of f o f is

_ mtm(fp
1+ (f)p

Here

So by Reich-Strebel inequality,

1+22 ‘
o]

10} g/gbd dy
9l S‘ | 1_‘)\’

L+ g (f)p + (u + m(f)p)%’2
~ [ 1o drdy

11+ fipr (f)p® — i+ pa (f)p)
2

il o
dzd
/||0—M30—mm>w o
’H“w’ ‘”9“1 \¢|’
-/, WP 1=jmP Y

O]

Thm 4.6.3. Suppose f : Sy — S with Beltrami differential of Teichmuller type, i.e. pu = k\cb\

for some ¢ € QDY(S), and g : Sy — S is quasiconformal such that g~ o f homotopic to
the identity, then either there exists a set of positive measure on Sy for which |pug(z)| > k or
tg(f) = 1 almost everywhere.

Proof. Let v(z) = Belt(¢7!)(f(2)) and WLOG, we assume [|¢]|, = 1.
If gy = I¥lloe < F, then

‘1 e
”w‘ ”W’
|¢|dzdy
/s 1—|ul? — v?
1—1@’1 |¢>\‘
_ dzd
/1+,~€ | 2 |p|dxdy
/1+|1/| (pldzdy
1 1+HV||

T el <

— Il
So each inequality must be equality, i.e.
o _ '1 _f 9
9] f= 19|

2
=14 =k

‘1+Mg(f)
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hold almost everywhere.
Hence pgy(f) = p almost everywhere. O

Thm 4.6.4 (Teichmuller existence theorem). Let X Riemann surface with dim QD' (X) < +oo,
then every point in T(X) has a uniquely extremal representative, which is of Teichmuller type.

Proof. Take [u] € T(X) such that u is extremal in [u], consider the linear functional

A(0)(6) = /X .

Then there exists ¢o € QD'(X) such that [|A|| = M(¢o) and [|¢o]| = 1.
By Hamilton-Krushkal condition, p is infinitesimal extremal, i.e.

il = I = [ 1o
X
So u= k%.
By theorem 4.6.3, u is the unique extremal. O

Prop 4.6.2. Let 11,79 € T(X), then there exists a geodesic between 11,7y and moreover, if
dim QDI(X) < 400, then this geodesic is unique.

Proof. By proposition 4.3.3, the geodesic exists.
And if dim QD* (X) < +00, by the Teichmuller existence theorem, the geodesic is unique. [

Remark 4.6.2. For p = k%, the unique geodesic from 0 to u is given by

t— [tanh(t)@] :

So the tangent bundle of T'(X) is given by Belt(X)/ ~., which is the dual space of QD*(X).
Moreover, T'(X) is has a Finsler norm

wllpm = Inf 7] -
1]l it [

Def 4.6.3. Consider p € Belt(H/T"), we can extend p on C with u(z) = u(z), then fH(z) =
fH(Z), i.e. we can induce f*: X — Xlmu = H/I'*.

On the other hand, if we extend p on C such that p(z) = 0 for Imz < 0, we can define
fu:C—=C.

4.7 Schwartzian derivative

Def 4.7.1. If f is a conformal map, or more generally, for holomorphic map with f/(z) # 0,

we define 52
(Sf)(z) =6 lim log 1(z) = f(w)‘

w—z 0zO0wW Z—w

Remark 4.7.1. Notice that
[ 5o L0 g g S ). e f )

0z0w z—w Cr(z1, w2, z2,w1)

So In some sence, S(f) measures the amounts by which f distorts the cross ratios.
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Prop 4.7.1.
f///

sp =2 -3 (1) )

Proof.

o FOFGED 1
(S =6 o e

F'(2) (f'(2) + ()t + 5 /" () + () 1

= 6lim
t—=0 42 (f’(z) + %f”(z)t + éf”/(z)t2 + 0(752))2 2
o 1) F1)+ £/G)t+ AR + of?) 1
=0 2 R+ f)f ()t + (2 + L)) B o) P
L ! 1
_ﬁgnﬁ(l f’( )t+§7( )t2+o(t2))

(-Zors ((5) -2 (5) 0-15@) ) - &
:6%1_{1(1)%2 (1+ (6?,( )_411@/’/) (Z)> t2+0(t)> _tlz
o35 e

Prop 4.7.2.
S(fog)=((Sf)og)-(d)+ 5y

and Sf =0 iff f is a Mobius transformation. In particular, for Mobius transformation A,
Stoa = (Sp o A) - (A))?.

Proof.

= (S1)(9(2)) - g'(2)* + (S9)(2)
Moreover, Sf = 0 iff f preserved cross-ratio, i.e. f is a Mobius transformation. 0
Def 4.7.2. Define ~
B: Belt(H/T') — QD(H™/TI")
K — S (fulw-)
Then the Bers embedding is given by

B: Belt(H/T)/ ~

— QD(H/T)
(1] —  B(

1)
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Proof. Take p € Belt(H/T).
Then f,ovyo f; 1'is a Mobius transformation for any v € I, so

S (fulg-) =S (fuovo fit o fulg-) =S (fuogly-) = (S (fulg-) o) - ()?
Hence S ( fu|y_) € QD(H™/T) is well-defined.
Moreover, by proposition 4.3.1, if g homotopic to v, then fM‘H, = f,,’H,. O

Prop 4.7.3 (Nehari). Let p be the hyperbolic metric on X = H/T', for every u € Belt(H/T"),

3

o250 < 2.

Proof. p=2S(f,) is invariant under Mobius transformations.
WLOG, we can only estimate p(0)~25(f,)(0) and assume f'(0) = 1.
Consider the function

1 o0
STy =z + Z bnzfn.
FEh T
By the Gronwall area theorem, we obtain that
‘b1| = {a% — a3‘ <1

So |S£(0)| = 6lag — a3| <6
Hence we complete the proof. O

Exam 4.7.1. Tuke f(z) = 2%, then Sf = —5° 535, s0 the bound can be attained.



Chapter 5

Additional topics

This chapter are some additional topics about teichmuller theory, most of the proposition
has no proof. You can try to find them if you are interested.

5.1 Bicanonical embedding

Def 5.1.1. Suppose S is a Riemann surface and aq,...,a, € S, a divisor is

n
D= E TR
)

and its degree is given by
n

deg(D) = Z m;.

=1

Def 5.1.2. A holomorphic map f : S — CP! is called meromorphism and we define

k f has a zero of order k at a

ord,(f) = {

—k f has a pole of order k at a
The principal divisor of f is given by

(f) = Zorda(f)a

Prop 5.1.1. deg((f)) = 0.

Def 5.1.3. Let L(D) be the set of meromorphic functions on S such that (f) + D > 0 and we
denote (D) = dim L(D).

Def 5.1.4. If w is abelian differential, i.e. meromorphic 1-form, we say (w) is canonical.
If ¢ € QD(s), we say (¢) is bicanonical.

Prop 5.1.2. deg(w) = —x(95).
Def 5.1.5. I(D) is the space of Abelian differentials with (w) > D and (D) = dim I (D).

Thm 5.1.1 (Riemann-Roch).
(D) —i(D) =deg(D)+1—g.
Thm 5.1.2. S is a closed Riemann surface with genus g > 2, then dim QD(S) = 3¢ — 3.

o4
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Proof. Let w be an Abelian differential and D = 2(w), then
QD(S) = {meromorphic f : S — CP'|(f) + D > 0} = L(D)
So by Riemann-Roch,
dim QD(S) =I(D) =i(D) +deg(D)+1—g=1i(D) + 39 — 3.
And since for any Abelian differential «, deg(a) = deg(w), i.e. we cannot have (a) > 2(w).
Hence i(D) =0, i.e. dimQD(S) =3¢ — 3. O
Prop 5.1.3 (canonical embedding). Let wi,--- ,wy be the basis of Q(S), i.e. the set of all
abelian differentials, if S is non-hyperelliptic, then
FiS TP f =ity
s an embedding.

Prop 5.1.4 (bicanonical embedding). Let ¢1,...,¢39—3 be the basis of quadratic differential
forms on S, if g > 2, then

f S5 = CP39_4,f = [¢1 T (]539_3]

is an embedding.

5.2 Automorphism of T
In this section, we assume g > 2.
For a biholomorphism (isometry) I : T, — T, with 7 € T}, there is an induced isometric
L:QD(Y)— QD(X)
where X € 7,Y € I(7).

Thm 5.2.1. Suppose (X, pu),(Y,v) are two finite measure spaces, fi,...,fr € LP(u) and
9is---, 9k € LP(v) such that

P p
/ ’1+Z)\jfj’ d,u:/ ‘1+Z)\jgj‘ dl/
X Y
for any X\ = (A,...,\) € CF, then
<17f17"'7fk>H<1)gla---7gk:>

is isometric w.r.t. LP-norm.

Moreover, if 0 < p < co and p is not even integer, then u(F~Y(E)) = v(G~Y(E)) for every
Borel set E C CF with F = (f1,...,f+),G = (91, -, 9%)-
Prop 5.2.1. If L : QD(X) — QD(Y) is a complex linear isomorphism w.r.t. L'-norm, then
there exists biholomorphic f:Y — X such that L(¢) = f*¢.
Proof. Let ¢y, ..., ¢y be the basis of QD(X) and 4y, ..., be the basis of QD(Y).

Then L(¢i) = ;.
CODSideI‘ f’L = %791 — %’ SO

/X‘1+Z>\if,-

where dp = |¢o|dzdy, dv = |1hg|dxdy.
By the above theorem, this is possible only when there exists biholomorphic f : Y — X
such that f*u =v. O

dv

d,u:/y‘l—l-Z)\igi
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5.3 Quasi-Fuchsian group

Consider Fuchsian group I' and H* /T = X, H~ /T = X in S%.
Take ut € Belt(X), u~ € Belt(X) and

:{/fr(z) z e H*
s p(z) zeH~

Then we obtain a homeomorphism f# : §? — S2.

Prop 5.3.1. p is equivariant under I', i.e. (po A)% =1 on S2.

So there exists a group of Mobius transformation I'* such that f# conjugates I' to I'*.

Def 5.3.1. H3/T is called hyperbolic Fuchsian 3-manifold.
I'# is called quasi-Fuchsian group and H?/T* is called hyperbolic quasi-Fuchsian 3-manifold.

Remark 5.3.1. We say I'* is “quasi-Fuchsian” because f#(R) is a quasicircle and I'* preserve
this curve since T* = fHT(f*)~L.

Notice that if u™ ~ v, u= ~ v, then y ~ v and IT'* 2 T, So we have a map

B: T(X) x T (X) — {Quasi-Fuchsian 3-manifolds}
([uF 7)) — H? /7™

Prop 5.3.2. Fuchsian and quasi-Fuchsian 3-manifolds are homeomorphic to ¥4 x (0,1) for
some g.

Proof. Consider Fuchsian group I' and denote H = D N R2.
Then on every equi-distance surface of H, the quotient is homeomorphic to H?/T.
Hence H3/T' = (H2/T) x R =%, x (0,1). O

Def 5.3.2. Suppose M is a hyperbolic 3—manifold, the convex core C'(M) is the smallest closed
convex subset of M containing every closed geodesic on M.

Prop 5.3.3. Suppose M = H3/T, then C(M) is the quotient of the convex hull of the limit set
AT) CcS% by T.

Proof. Since every closed geodesic on M can be lifted to an axis v of I'.
So the endpoints of 7 lie in A(T"), i.e. v C Ch(A(T)).
Conversely, for £ € A(T"), there exists a sequence of g, € I' whose fixed point approach &.
So the axis 7, of g, converges to a geodesic «y start at &.
Therefore the quotient of v, converges to the quotient =, i.e. it is contained in C'(M).
Hence C (M) = Ch(A(T"))/T. O

Thm 5.3.1. If M is a hyperbolic 3-manifold which is homeomorphic to ¥4 x (0,1) and C(M)
is compact in M, then M is quasi-Fuchsian.

Prop 5.3.4. p € S\A(T") iff there exists a neighborhood U of p such that
{A‘U A€ F}

is a normal family.
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5.4 Complex dynamics

Def 5.4.1. Rational maps are of the form f : CP! — CP!, z — ggz; where P, Q) are relatively
prime polynomial, its degree is given by deg f = max{deg P, deg Q}.
Let Raty be the space of degree d rational maps.

Now take f € Ratg, the iterations of f is a sequence {f"},cz.
Def 5.4.2. The orbit of iteration is defined as
O™ (z) = {f"(2)In € N},
O (2) ={f"(z)ln € Z"},
Ogrand(2) = (J O7(f"(2)).

n=>0
Def 5.4.3. Two maps are called Mobius equivalent if g = Ao fo A=, A € PSL(2,C).

Def 5.4.4. A point is called periodic if fP(z) = z for some p > 1 and its multiplier A = (f?)’(2),
then there are three cases:

(1) when 0 < |A| < 1, we say z is attracting
(2) when |A| =1, we say z is parabolic
(3) when |A| > 1, we say z is repelling.

A point is called critical point if f’(2) = 0 and a point is called exceptional if O~ (z) is finite.
Def 5.4.5. Fatou set is Fy = {z e C|{f"} is a normal family in some neighborhood of z} and
Julia set is J; = (@\Ff

Thm 5.4.1. J(f) is non-empty closed subset of C, both J(f) and F(f) are completely invariant
under f.

Proof. Suppose J(f) =@, i.e. F(f) = C.
Then a subsequence {f"*} uniformly converges to some g : C — C.
But deg f™ — oo, contradition! O

Def 5.4.6. For an attracting point zg, we associate it with the basin of attraction
B(z) = {z € C|f"(2) = 2z as n — o0}
Lemma 5.4.1. B(z9) C F(f).
Lemma 5.4.2. Repelling periodic points must be contained in J(f).
Proof. Since fP(z9) = zp and (fP)'(z0) > 1.
So (fP™)(z0) — o0. O
Lemma 5.4.3. J(f) is accumelation set of periodic points.

Proof. Let w € J(f), we may assume there exists v such that f(v) =w and f’(v) # 0.
In a neighborhood U of w, consider

_ ) -
I CEN
Then hy, is not a normal family in U since w € J(f).

So by Montel theorem, for some k, hy(z) = 0 or hy(z) =1 for z € U.
Hence f*(2) = z or f*(2) = f~(2), i.e. fF1(2) =2 O

hy(z)
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Exam 5.4.1. Consider f. = 2% + c.
(1) If c =0, then J(f.) = S!
(2) If 0 < || < %, then J(f.) is a quasicircle.

Def 5.4.7. A connected component U of F(f) is called a Fatou component. It is periodic if
fP(U) = U and it is pre-periodic if f™(U) is periodic, otherwise it is called wandering,.

Thm 5.4.2. A rational map of degree greater than one has no wandering domain.

Def 5.4.8. Suppose u is a Beltrami differential on C and f: C — C is a rational map, we say

i is equivariant if (p o f) ;, = u almost everywhere on C.

Prop 5.4.1. Suppose ¢ : C — C such that Belt(¢) = u is equivariant, g = ¢o fod™ ! is rational.

e

Proof. Belt(go ¢) = Belt(po f) = (no f)m = p.
So Belt(g) =0, i.e. g is conformal. O

Sketch of proof of theorem 5./.2. Suppose f : C > Chasa wandering domain U, take pu on U.
Then can be defined on Og,qnq(U) to be invariant under f and set = 0 outside Ogpand(U).
So we get p on C which is invariant under f. ‘

Let fy=¢ro fo ¢>t where Belt(¢r) = tp, V(2 ) = at¢t( z) and f = %ft-
By dimension count, there exists p such that f =0 and V % 0 on 90U C J(f).
o [u] # 0 in the tangent space of Teich(U).
And since f(z) = (Vo f)(2) — f'(2)V(2).
Therefore Vo f = f - V.
Notice that J(f) is the closure of repelling periodic points.
So there exists z € U C J(f) such that f™(z) = z,V(z) # 0 and (f™)'(z) = A with [A\| > 1.
Thus we obtain

n

n n—1
H (FP2) =) FFNFE TV ) = @ [V (R)
§=0

But for every j,

contradiction! O



Appendix A

Quasi-isometry and Mostow rigidity

A.1 Boundary extension of quasi-isometry

Lemma A.1.1. f: H* — H" is an (L, A)-quasi-isometry, v is a geodesic ray and ~' is the
geodesic ray within distance R from the quasigeodesic f(v). Let w: H" — v, 7' : H* — ' be
nearest-point restriction maps, then we have

d(fom(z), 7" o f(z)) < C,
for every x € H" and some constant C'.

This lemma is called the quasi-commute property, once we have done this proof, we can
complete the proof of theorem 2.1.2.

Thm A.1.1. f:H" — H" is a quasi-isometry then f extend continuous to a homeomorphism
of : OH™ — OH".

Proof. By Morse lemma, let v be the geodesic ray from 0 to a € OH", f oy be within a bounded
distance R from § and define 0f(y(+00)) = §(+00).

Consider a sequence {z;} converging to a.

Then the boundary sphere ¥; of H; = 7~ !(x;) bound balls B; C S"~! containing a.

So {B;} forms a neighborhood basis of a.

And by the definition of quasi-isometry map, y; = f(z;) converges to df(a).

Let H! = (7')71(2;) where d (z;, 7'(y;)) = C and 2;,y;, 0f (a) are in order.

Then by lemma A.1.1, f(B;) C B;.

So Of(B;) forms a neighborhood basis of df(a), i.e. f is continuous.

Similarly, we can take balls B C S"~! such that BY C df(B;).

So f is open.

Moreover, suppose df(a) = df(b) and let v1,v2 be the geodesic ray from 0 to a,b resp.

Then by Morse lemma f o 4; are both within a bounded distance R from [f(0),df(a)].

So for any x € 1, there exists y € y2 such that d(f(z), f(y)) < 2R.

Therefore d(z,y) < Ld(f(x), f(y))+ LA < 2LR+ LA is bounded, i.e. 1,72 are asymptotic.

Thus a = b, i.e. f is injective.

Hence f is homeomorphic. O

Proof of theorem 2.1.2. WLOG, assume 0,00 € JH" are the fixed points of Jf.
Take z,y such that |x| = |y| = r and p € v where 7 is the geodesic line connecting 0 and oo.
Then by lemma A.1.1,

d(m(9f (), 7(0f(y))) < d(f(w(x)), f(m(y))) +2C < 2C

99
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Notice that as the figure below, d(w(9f(x)), m(0f(y))) = |In|f(x)| — In|f(y)||-

m(f(y))
Q
f) 0 fl=)
So ;;gz;:g; < e ie. Of is e*“-quasiconformal. O

Now we only need to prove lemma A.1.1, we provide two different proofs. The second proof
is more straightforward than the first one but I spent a week to complete the first proof before
I suddenly conceived the second proof, whose most crucial step was inspired by the first proof.
(Maybe this is because I am not so familiar with the hyperbolic geometry) So I decide to retain
both.

For the first prove, we need some technique from Gromov. To simplify, we denote [z,y| as
the geodesic segment from x to y below.

Def A.1.1. For three points u,v,w € H", the Gromov product of u,v at w is defined by
1
(U, 0)y = i(d(u,w) + d(v,w) — d(u,v)).

Lemma A.1.2. Let vy be a geodesic in H" and y € vy, for a point x € H", take z € v such that
d(x,z) = d(x,7), then prove that [z,z] + [z,y] is (\@, 0)—qua5i—7jsomet7"y.

Proof. Let 6 = [z, z] + [z,y] and 7 be the nearest point restriction map to [z, y].
Reparametrize § by the length of image under .
Since we have

coshd(z, z) cosh d(y, z)
coshd(z,m(z)) cosh d(y, 7(2))
coshd(z,y)
coshd(z,m(z)) cosh d(y, n(2))
= 1+ tanhd(z,w(2)) tanhd(y, 7(z)) < 2

cosh?d(z,m(z)) =

So for any p € d, d(p, 7(p)) < cosh™ /2.
Hence

|s —t] < d(8(s),d(t)) < V2d(m((s)),7(8(t))) = V2|s — ¢t
O

Lemma A.1.3. Let v :R — H" be an (L, A)-quasigeodesic and p,q,r are 3 points in order on
7, prove that there exists a constant K such that (p,r), < K.

Proof. Let m be the nearest point restriction map to [p,r].
By Morse lemma, d(q, 7(q)) < R for some R dependent only on L, A, so we have

(p,7)q = %(d(p, q) +d(r,q) — d(p,r))
= S W(p,) + d(r,q) — dp, (@) — d(r,7())
<d(g,;5) <R
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proof of lemma A.1.1.

x f(z)
f
—
; o
oo " Tk
Let y = 7(x),p =7'(f(x)),q = 7'(f(y)) and r € f o~ such that d(r,p) < R.
By lemma A.1.2, [f(z),p] + [p, ¢] and [z,y] + [y f L(r)] are quasi-isometry.
So by lemma A.1.3, (f(x),q)p < K1, (f(x),7) ) < Ka.

Hence by Morse lemma,

d(f(y),p) < d(f(y),q) +d(p,q) = d(f(y): @) + (¢, f(2))p + (p, f(2))q
< R Ko+ 5(d(p.a) + d(f(2),0) = dp, [(2))

< Rt K1+ 5 (dlr, () + d(p, 1) + (S 0), )

+d(f(x), f(y)) +d(f(y), q) — d(r, f(x)) + d(p,7))
=R+ K1 +d(f(y),q) +dp,r) + (f(2),7)5(y)
< K;+ Ko+ 3R

Notice that in lemma A.1.2, we use a counter-intuitive property of H":

Prop A.1.1. Consider a geodesic right triangle /\ in D", let x be the right angle vertex and 1
be the hypotenuse, then d(z,1) < arccoshy/2.

Proof. We have given a proof by some hyperbolic trigonometry in the proof of lemma A.1.2, we
now give a proof with some kind of geometric intuition.

WLOG, we assume x is at the origin.

Then legs of A are on some radius of D", denote them by [y, 5.

Let y, z be the boundary points of Iy, s resp.

So d(z,1) < d(z, [y, z]) = arccosh/2.

O]

Alternative proof of lemma A.1.1. Let a,b be the endpoints of v and l; = [a, x],lo = [b, z].
Then by Morse lemma, I{ = [f(a), f(x)],l, = [f(b), f(y)] are within distance R from the
quasigeodesic f(l1), f(l2) resp.
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Let y = m(z),p = 7'(f(2)), "(f(y)) and r; € [j such that d(f(y), ;) = d(f(y),r:), so

(f(v):q) +d(p,q)
d(g,m(r1)) + d(gq, 7 (r2))
d(f(y).r1) +d(f(y),r2)
d(f(y), f(l)) + R+d(f(y), f(l2)) + R
R+ Ld(y, ll) + A+ Ld(y, lg) + A

R + 2Larccoshv/2 + 24

INCINCININ NN A
o Riev ey IS |
+++ 3

3
3
a b _f_> f(a) A.L F(b)

O

Prop A.1.2. Suppose f : H* — H" is a (L, A)-quasi-isometry, then f is quasi-dense: there
exists a constant C' such that for y € H", there is some x € H" satisfying that

d(f(x),y) <C.

Proof. Take a geodesic line v containing y which ends at a, b.
By theorem 2.1.2, p = df~!(a) and ¢ = 9f~1(b) are well-defined.
Take the geodesic line 7/ ending at p, q.
Then f o+’ is within a bounded distance R from « where R only depends on L, A.
Let 7 be the nearest point restriction map = for ~.
So 77 1(y) N f o+ is nonempty, take p in it.
Hence p = f(z) for some = and

d(f(z),y) = d(p,y) = d(p,7(p)) < R.
O

Remark A.1.1. For general definition of quasi-isometry, we require the quasi-dense property.
But since we can prove this property for f : H* — H”, we did not required it when defining
quasi-isometry f : H™ — H".

Prop A.1.3. (L, A)-quasi-isometry map f : H* — H" has a quasi-inverse: a (L, A1)-quasi-
isometry map g : H* — H"™ such that

d(fog(y),y) < B,d(go f(x),z) < B.

Proof. Take g(y) € H" such that d(f o g(y),y) < A, then

d(g(y1), 9(y2)) < Ld(f o g(y1), f o g(y2)) + LA
L(d(f o g(y1),y1) + d(f o g(y2),y2) + d(y1,92)) + LA
< Ld(y1,y2) + 3LA
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Similarly, d(y1,y2) < Ld(g9(y1),9(y2)) + 3A.
And since

d(g(f(x)),z) < Ld(f(g(f(x))), f(x)) + LA < 2LA.

So g is (L, Aq)-quasi-isometry for some A; and it is quasi-inverse of f. O

Prop A.1.4. Suppose f,g: H* — H" are two (L, A)-quasi-isometry such that Of = Jg, then
there exists C > 0 such that d(f(x),g(z)) < C for every x € H".

Proof. Consider x € H" and a geodesic line v ending at a,b € 9H".

Since 0f(a) = dg(a),df(b) = dg(b).

So both f o~,g o~ are within a bounded distance R from the geodesic line 7/ ending at
df(a),df(b), where R only depends on L, A.

Therefore d(f(z),~),d(g(x),7") < R.

Notice that 0f is surjective.

In the other words, for every point p € OH", there exists a geodesic line v, ending at p such
that -, intersects with both Br(f(z)) and Br(g(x))).

Suppose U = Bgr(f(z)) and V = Bgr(g(x)) are disjoint.

let § be the geodesic segment from f(z) to g(z) and take a point g € 6\(U U V).

Consider the nearest point restriction map 7 for § and the hypersurface H = 7= 1(q).

Then H is totally geodesic and divides H” into two components C1, Cy where y; € C;.

Moreover, U C C7 and V C (Y since 0 is perpendicular to H, d(q,y;) > R.

Take p € H N OH".

Since both C7, Cs are convex.

So any geodesic line v, ending at p disjoints with one of U and V, contradiction!

Hence d(f(x),g(z)) < C. O

A.2 Mostow rigidity theorem

Thm A.2.1 (Mostow rigidity). M, N are closed hyperbolic n-manifold with n > 3, then every
homotopy equivalent f : M — N must be homeomorphism to an isometry

Proof. Let g: N — M be the homotopy inverse of f.

By differential topology, f, g can be homotopy to some smooth maps, i.e. WLOG, we assume
f, g are smooth.

And we can lift f, g to f,g: H* — H".

Then f,§ are Lipschitz.

H
Moreover, there exists a smooth homotopy H : M x I — M such that go f ~ Idy,.

~ ~ H
With some suitably g, we can lift H to H such that go f ~ Idgn.
So ‘dI:I ‘ is bounded, i.e. there exists constant C' such that

d (Qof(x),x> < Cl

Thus f is quasi-isometry with inverse g.

By theorem 2.1.2, f can be extended to quasiconformal df : OH" — JH™.

We claim that df is actually conformal.

Once we have proved this, we can extend 0 f to a conformal map h : H" — H", i.e. it is an
isometry under the hyperbolic metric.

Since for A € T'x, there exists B € T'y such that df o A = B o df.

So ho A= Boh on H", take

Ho:H" x I —H", (2,t) — (1 —t)f(2) + th(z),
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then fléohand Hyo A= Bo H,.
Hence Hy : M x I — N is well-defined and f Iéo h. O

We now prove the claim in the proof of Mostow rigidity, it is a direct consequence of the
theorem below.

Thm A.2.2. Suppose X,Y are closed hyperbolic n-manifolds with n > 3 and f : OH" — OH"
is a homeomorphism which is differentiable at xo with nonzero derivative. If fovyo f~1 € I'y
for any v € Uy, then f is a Mobius transformation.

Proof. WLOG, assume xy = 0 and f(0) = 0.
Similar to proposition 2.2.2, we let A,(z) = %, take y € H" and a fundamental domain F
of X, then we have v, 0 A,(y) € F,yn, 0 Ap, = 01,0p0 f = f oy, and 6,, 0 Ay, — 02.
Let f, = Ao f o A, converges to h : OH" — OH" and J = f(0).
Then 0, 0§ooy0h=hoo;  oyooy and h(x) = Jx for € GH".
Notice that
Ugohoafl = lim o,, 0 Ay, OA;} ofoAy, oA;ilo%;l
1—00
= hm On; Ofofyrjil =f
1—00
So we only need to prove that h is a Mobius transformation.
By Liouville theorem, this is equivalent to prove that h is an Euclidean similarity, which
follows from the lemma below since I'x is cocompact. ]

Lemma A.2.1. Suppose v € SOT(n,1) such that y(00) # {0,00} and A € GL(n — 1) which
conjugates v to AyA~t € SOT(n, 1), then A is an Euclidean similarity.

Proof. Suppose A is not an Euclidean similarity.
Since Ay(co) # 0, let P be a hyperplane in R?~! with 0 € P, Ay(cco) ¢ P.
So yA~1(P) must be a sphere S C R""! as « is conformal.
But A(S) is an ellipsoid which is not a sphere.
Hence AvyA~"! is not conformal, contradiction! O
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