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Chapter 1

Quasiconformal maps

1.1 Differentiable quasiconformal maps
Def 1.1.1. Let (M1, d1), (M2, d2) be two Riemannian manifold and f : M1 → M2 is a homeo-
morphism, define the dilatation

Df :M1 → R, x 7→ lim
r→0

β(f(Br(x)))

α(f(Br(x)))

where α(f(Br(x))) is the diameter of the largest ball that can be inscreted in f(Br(x)) and
β(f(Br)) is the diameter of smallest ball circumscribe f(Br(x)).

Def 1.1.2. We say that f is k-quasiconformal if Df (x) ⩽ k for any x ∈M1.

Exam 1.1.1. (1) M1 =M2 = R, then Df (x) = 1 for every x ∈ R.

(2) M1 = M2 = Rn and f is bi-Lipschitz map, then β(f(Br)) ⩽ Lr, α(f(Br)) ⩾ r
L , i.e. f is

L2-quasiconformal.

(3) M1 =M2 = C and f(reiθ) = r2eiθ, then f is 2-quasiconformal but not bi-Lipschitz on every
neighborhood of 0.

Prop 1.1.1. Suppose U ⊂ Rk is a domain and f : U → f(U) is C1-diffeomorphism, then the
dilatation can given by

Df (p) =
sup∥v∥=1 ‖dfp(v)‖
inf∥v∥=1 ‖dfp(v)‖

Proof. Since around p,
f(q) = f(p) + dfp(q − p) + o(‖q − p‖).

So for sufficiently small r, f(Br(p)) is closed to the ellisoid

E = f(p) + dfp(Br(0)) ⊂ Tf(p)f(U).

And notice that α(E) = 2r sup
∥v∥=1

‖dfp(v)‖, β(E) = 2r sup
∥v∥=1

‖dfp(v)‖.

Hence
Df (p) = lim

r→0

β(f(Br(x)))

α(f(Br(x)))
=

sup∥v∥=1 ‖dfp(v)‖
inf∥v∥=1 ‖dfp(v)‖

Coro 1.1.1. Suppose U ⊂ Rk is a domain and f : U → f(U) is C1-diffeomorphism, then on
every compact subset of U , Df is continuous and f is quasiconformal.

1



CHAPTER 1. QUASICONFORMAL MAPS 2

Prop 1.1.2. Let f : C → C, then

Df (z0) =
|fz|+ |fz̄|
|fz| − |fz̄|

(z0).

Proof. Since df = fzdz + fz̄dz̄.
So we have

(|fz| − |fz̄|)|dz| ⩽ |dw| ⩽ (|fz|+ |fz̄|)|dz|.

Geometrically, df maps the unit circle to a ellipse:

df−−→

and two axes of the ellipse are |fz|+ |fz̄|, |fz| − |fz̄|.
Hence we have

Df (z) =
|fz|+ |fz̄|
|fz| − |fz̄|

1.2 Extremal length
Def 1.2.1. A function ρ : C → R is called allowable if

(1) ρ ⩾ 0 and measurable,

(2) A(ρ) =
´
C ρ

2(z)dxdy 6= 0,∞.

Let Γ be a family of curves, each γ ∈ Γ is a countable union of open arcs which are rectifiable,
define

Lγ(ρ) =

ˆ
γ
ρ(z)|dz|, L(ρ) = inf

γ∈Γ
Lγ(ρ).

The extermal length of Γ is defined as

λ(Γ) = sup
ρ

L2(ρ)

A(ρ)

Def 1.2.2. We say Γ1 < Γ2 if every γ2 contains γ1.

Exam 1.2.1. If Γ1 ⊂ Γ2, then Γ2 < Γ1.

Prop 1.2.1. (1) If Γ1 < Γ2, then λ(Γ1) ⩽ λ(Γ2).

(2) Let Γ1 + Γ2 = {γ1 + γ2|γi ∈ Γi}, then λ(Γ1 + Γ2) ⩾ λ(Γ1) + λ(Γ2).

(3) If Γ1 ∩ Γ2 = ∅, then λ(Γ1 ∪ Γ2)
−1 ⩾ λ(Γ1)

−1 + λ(Γ2)
−1.

Proof. (1) If γ1 ⊂ γ2, then Lγ1(ρ) ⩽ Lγ2(ρ).
So λ(Γ1) ⩽ λ(Γ2).
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(2) WLOG, assume Li(ρi) = A(ρi).
Let ρ = max(ρ1, ρ2), then

L(ρ) ⩾ L1(ρ1) + L2(ρ2) = A(ρ1) +A(ρ2)

A(ρ) ⩽ A(ρ1) +A(ρ2)

So
λ(Γ1 + Γ2) = sup

ρ

L1(ρ)

A(ρ)
⩾ A(ρ1) +A(ρ2) = λ(Γ1) + λ(Γ2).

(3) Let E1, E2 be two complementary measurable sets with Γi ⊂ Ei.
For allowable ρ, take ρi = ρ · χEi .
Then L1(ρ1) ⩾ L(ρ), L2(ρ2) ⩾ L(ρ) and A(ρ) = A(ρ1) +A(ρ2).
So

A(ρ)

L2(ρ)
⩾ A(ρ1)

L2
1(ρ1)

+
A(ρ2)

L2
2(ρ2)

Hence λ(Γ1 ∪ Γ2)
−1 ⩾ λ(Γ1)

−1 + λ(Γ2)
−1

Exam 1.2.2. Let Γ be the set of all arcs in an annulus r1 ⩽ |z| ⩽ r2 which join the boundary
circles, then

ˆ 2π

0

ˆ r2

r1

ρ
(
reiθ

)
drdθ ⩾

ˆ 2π

0
L(ρ)dθ = 2πL(ρ).

And by Cauchy inequality,

4π2L2(ρ) ⩽
ˆ 2π

0

ˆ r2

r1

1

r
drdθ ·

ˆ 2π

0

ˆ r2

r1

ρ2rdrdθ ⩽ 2π log
r2
r1
A(ρ)

Hence λ(Γ) = 1
2π log

r2
r1
.

Thm 1.2.1. Suppose Γ ⊂ U ⊂ R2, f : U → U ′ is diffeomorphism and Γ′ = f(Γ), if f is
k-quasiconformal, then λ(Γ)

k ⩽ λ(Γ′) ⩽ kλ(Γ).
Proof. Given density ρ on U1, we define

ρ′(ζ) =

(
ρ

|fz| − |fz̄|

)
(z)

with f(z) = ζ, then
|dζ| ⩾ (|fz| − |fz̄|)|dz|.

So ˆ
γ′
ρ′|dζ| ⩾

ˆ
γ
ρ|dz|.

Thus Lγ′(ρ′) ⩾ Lγ(ρ), i.e. L(ρ′) ⩾ L(ρ).
On the other hand,

A(ρ′) =

ˆ
U ′
ρ′dζ1dζ2 =

ˆ
U
(ρ′ ◦ f)2Jfdxdy =

ˆ
U
ρ2

|fz|+ |fz̄|
|fz| − |fz̄|

dxdy ⩽ kA(ρ)

Therefore λ(Γ′) ⩾ λ(Γ)
k .

And consider
ρ′′(ζ) =

(
ρ

|fz|+ |fz̄|

)
(z),

we have λ(Γ′) ⩽ kλ(Γ).

Coro 1.2.1. λ(Γ) is a conformal invariant.
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1.3 Quadrilateral
Def 1.3.1. Q-quadrilateral is a Jordan domain with a pair of disjoint closed arcs on the bound-
ary(the b-sides).

→Q R

M

1

Lemma 1.3.1. There exists M > 0 and a conformal map f : Q → R, where R is a rectangle,
such that the b-sides are mapped to the vertical sides.

Proof. follows from Riemann mapping theorem and Schwarz-Christoffel formula.

Remark 1.3.1. In this note, we assume the width of R is 1 and the length is M .

Prop 1.3.1. If f : R→ R′ is conformal and mapping corner to corner, then the length M =M ′

and f is identity.

Proof. By reflecting, we can extend f to whole C.
And since

lim
|z|→∞

|f(z)|
|z|

< +∞

So f must be a degree-1 polynomial.
Notice that f(0) = 0, f(M) =M ′, f(i) = i.
Hence f must be identity and M =M ′.

Def 1.3.2. The modular of a rectangle R is M , denoted by m(R) =M .
More generally, given Q, we define m(Q) = m(R) when we have conformal map f : Q→ R.

Prop 1.3.2. λ(Γ) = m(Q), where Γ is the family of arcs connecting the b-sides of Q.

Proof. By corollary 1.2.11.2.1, we only need to prove this for Q = R is a rectangle, so
ˆ 1

0

ˆ M

0
ρ(x+ iy)dxdy ⩾

ˆ 1

0
L(ρ)dy = L(ρ).

And by Cauchy inequality,

L2(ρ) ⩽
ˆ 1

0

ˆ M

0
dxdy ·

ˆ 1

0

ˆ M

0
ρ2dxdy ⩽MA(ρ).

Hence λ(Γ) =M = m(Q).

Def 1.3.3. Let Γ be the family of arcs connecting the b-side, define

sb = inf
γ∈Γ

Lγ(ρ)

where ρ is the Euclidean density, and similarly, we can define sa.

Thm 1.3.1 (Rengel inequality).

s2b(Q)

A(Q)
⩽ m(Q) ⩽ A(Q)

s2a(Q)
.

The equality holds iff Q is a rectangle.
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Proof. Let Γb be the family of arcs connecting the b-sides of Q, then

s2b(Q)

A(Q)
⩽ λ(Γb) = m(Q).

On the other hand, we consider quadrilateral Q′ whose b-sides are the a-sides of Q, then

s2a(Q)

A(Q)
=
s2b(Q

′)

A(Q′)
= m(R′) =

1

m(R)
.

Hence we have
s2b(Q)

A(Q)
⩽ m(Q) ⩽ A(Q)

s2a(Q)
.

1.4 Quasiconformal maps
Def 1.4.1. Let Ω ⊂ C be a domain, and suppose f : Ω → f(Ω) is a homeomorphism, we say
that f is k-quasiconformal if

m(Q)

k
⩽ m(f(Q)) ⩽ km(Q)

for every quadrilateral Q ⊂ Ω.

Prop 1.4.1. (1) If f is k-quasiconformal, f−1 is k-quasiconformal

(2) If f1 is k1-quasiconformal and f2 is k2-quasiconformal, then f1 ◦ f2 is k1k2-quasiconformal.

(3) Conformal map is 1-quasiconformal.

Proof. (1)
m
(
f−1(Q)

)
k

⩽ m(Q) ⩽ km
(
f−1(Q)

)
.

(2)
m(Q)

k1k2
⩽ m(f2(Q))

k1
⩽ m(f1 ◦ f2(Q)) ⩽ k1m(f2(Q)) ⩽ k1k2m(Q).

(3) Let R be a rectangle and WLOG, assume f(R) = R′ is also an rectangle otherwise we can
composite a conformal map.
Then by proposition 1.3.11.3.1, f is identity, i.e. f is 1-quasiconformal.

Thm 1.4.1. Every 1-quasiconformal map is conformal.

Proof. Let R be a rectangle and WLOG, assume f(R) = R′ is also an rectangle otherwise we
can composite a conformal map.

Consider a vertical line l that divides R into Q1 and Q2 and let Q′
i = f(Qi).

Then m(Q′
i) = m(Qi) and f(l) is an arc connecting the a-sides.

By Rengel inequality,
m(Q′

i) ⩽
A(Q′

i)

s2a(Q
′
i)

= A(Q′
i).

Suppose f(l) is not a vertical line, i.e. Q1, Q2 are not rectangle.
Then m(Q′

1) +m(Q′
2) < A(Q′

1) +A(Q′
2) = A(R′) = A(R), contradiction!

So f is identity.
For general cases, f must be conformal.
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Prop 1.4.2. If f : Ω → f(Ω) is C1, then f is k-quasiconformal in the C1 sense iff f is
k-quasiconformal in geometric sense.

Proof. ⇒: Let Q be a quadrilateral in Ω.
WLOG, we assume R = Q and R′ = f(Q) are rectangles, then

|fx|2 ⩽ (|fz|+ |fz̄|)2 ⩽ kJf

So
m(R′) =M ′ =

ˆ
R
Jf (z)dxdy

⩾ 1

k

ˆ
R
|fx|2(z)dxdy

=
1

Mk

ˆ 1

0

(ˆ M

0
dx ·
ˆ M

0
|fx|2(z)dx

)
dy

⩾ 1

Mk

ˆ 1

0

(ˆ M

0
|fx|(x)dx

)2

dy ⩾ 1

Mk
(M ′)2

Hence M ′ ⩽ kM , i.e. f is k-quasiconformal in geometric sense.
⇐: We first assume f(z) = |fz(0)|z + |fz̄(0)|z̄ + o(z).
Consider square Rδ with length δ and R′

δ = f(Rδ).
Then

sb(R
′
δ) = δ(|fz(0)|+ |fz̄(0)|) + o(δ)

A(R′
δ) = δ2(|fz(0)|2 − |fz̄(0)|2) + o(δ2).

So by Rengel inequality,

m(R′
δ) ⩾

s2b(R
′
δ)

A(R′
δ)

=
δ2 (|fz(0)|+ |fz̄(0)|)2 + o(δ2)

δ2
(
|fz(0)| − |fz̄(0)|2

)
+ o(δ2)

= Df (0) +O(1).

Hence Df (0) ⩽ k, i.e. f is k-quasiconformal in C1-sense.
For the general case, Let arg fz(0) = θ, arg fz̄(0) = φ and

g(z) = e−i
θ+φ
2 f

(
ei

φ−θ
2 z
)
.

Then
gz(0) = e−i

θ+φ
2 fz(0) · ei

φ−θ
2 = |fz(0)|

gz̄(0) = e−i
θ+φ
2 fz̄(0) · ei

φ−θ
2 = |fz̄(0)|

And since the rotations are conformal, i.e. 1-quasiconformal.
Hence f is k-quasiconformal in C1-sense as g is.

1.5 Holder continuity
Def 1.5.1. Let Ω be a topological annulus(doubly connected region) and C1, C2 be the bounded,
unbounded region of the component resp.

We say the closed curve γ in G separates C1 and C2 if γ has non-zero winding number about
the points of C1.

We denote Γ = {γ|γ separates C1 and C2} and define the modular m(Ω) = λ(Γ)−1.
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Prop 1.5.1. Let Ω be a topological annulus and f maps Ω conformally to annulus {r1 < |z| <
r2}, then

m(Ω) = inf
ρ

A(ρ)

L2(ρ)
=

1

2π
log

r2
r1

and reach the maximum at
ρ0 =

∣∣∣∣f ′f
∣∣∣∣.

Proof. For any allowable ρ, take ρ1(f(z)) = ρ(z) · ρ0(z)−1.
For γr ⊂ Ω such that f(γr) = {|z| = r}, we have

Lγr(ρ) =

ˆ
γr

ρ|dz| =
ˆ
|z|=r

ρ1
1

r
|dz| =

ˆ 2π

0
ρ1

(
reiθ

)
dθ.

¨
Ω
ρ2dxdy =

ˆ r2

r1

ˆ 2π

0
ρ21

(
reiθ

) 1

r
dθdr

⩾ 1

2π

ˆ r2

r1

1

r

(ˆ 2π

0
ρ1

(
reiθ

)
dθ

)2

dr

⩾ 1

2π

ˆ r2

r1

L2(ρ)

r
dr =

L2(ρ)

2π
log

r2
r1

Hence we obtain the conclusion.

Coro 1.5.1. Consider Ωr = {|z| ⩽ 1}\[0, r], prove that

m(Ωr) =
µ(r)

2π
=

1

4

I
(√

1− r2
)

I(r)
, I(r) =

ˆ 1

0

dx√
(1− x2)(1− r2x2)

.

Proof.

0 r

→

−
√
a

√
a

→

0−K K

−K + iK ′ K + iK ′

→

−t t

Consider mobius transformation

f(z) =
z −

√
a

−
√
az + 1

,
2
√
a

a+ 1
= r

Then f(Ωr) = {|z| ⩽ 1}\[−
√
a,
√
a].

Let Ω+ = f(Ωr) ∩ {Im z ⩾ 0} and consider

g(z) =

ˆ z√
a

0

dt√
(1− t2)(1− a2t2)

.

We can verify that g(Ω+
r ) = {−K ⩽ Re z ⩽ K, 0 < Im z < K ′} is a rectangle with

K = I(a),K ′ =
1

2
I(
√
1− a2).

And g ((
√
a, 1)) = (K,K + iK ′), g (−1,−

√
a) = (−K,−K + iK ′).
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Consider
h(z) = te

iπ
2K

(K−z).

Then h(g(Ω+
r )) = {t < |z| < 1, Im z ⩾ 0} with

t = e−
K′π
2K .

Notice that h ◦ g maps (−1,−
√
a) ∪ (

√
a, 1) to (−1,−t) ∪ (t, 1).

So we obtain a conformal map g0 by reflect h ◦ g along real axis, which maps f(Ωr) to
annulus {t < |z| < 1}.

By proposition 1.5.11.5.1,

m(Ωr) = − 1

2π
log t =

1

8

I
(√

1− a2
)

I(a)
.

And since I(r) = (1 + a)I(a), I
(√

1− r2
)
= I

(
1−a
1+a

)
= 1

2(1 + a)I
(√

1− a2
)

.
Hence

m(Ωr) =
1

8

I
(√

1− a2
)

I(a)
=

1

4

I
(√

1− r2
)

I(r)
.

Remark 1.5.1. We call Ωr the Grötzsch extremal region.
By the prove of the above corollary, we have

µ(r)

2
= µ

(
2
√
r

1 + r

)
.

More details about the properties of elliptic functions can be found in Conformal Invariants,
Inequalities, and Quasiconformal Maps.

Prop 1.5.2. Let Ω = {|z| ⩽ 1}\c where c is an arc connecting 0 and r, then m(Ω) ⩽ m(Ωr).

0 r

Ωr

l

γ+1

γ+2
r

0

Ω

γ

Proof. By corollary 1.5.11.5.1, we can consider the conformal maps f : Ω+
r → {t ⩽ |z| ⩽ 1, Im z ⩾ 0}

and the allowable function ρ0.
Let γ be an arbitrary curve in Γ and divides it into two arcs γ1 and γ2 which both have one

endpoint on each of the segments (−1, 0) and (r, 1).
Let γ+i be obtained by reflecting the part of γi below the real axis.
Since it is well-defined to extend f on upper half disc.
So f(γ+i ) is an arc which has one endpoint on each of the segments (−1,−t) and (t, 1).
Notice that ρ is symmetric w.r.t. real axis.
So Lγi(ρ0) = Lγ+i

(ρ0) ⩾ π.
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Hence

λ(Γ) ⩾
inf
γ∈Γ

L2
γ(ρ0)

−2π log t
⩾ (2π)2

−2π log t
= λ(Γr)

Prop 1.5.3. d(0, w) = log
(
1+|w|
1−|w|

)
for w ∈ D.

Prop 1.5.4. Suppose f : D → D and f is 2-quasiconformal, then

1

2
d(z, w)− log 2 ⩽ d(f(z), f(w)) ⩽ 2d(z, w) + 2 log 2.

Proof. WLOG, assume w = f(w) = 0.
Since m(Ω) ⩾ 1

2m(Ω2), we have

µ(|z|)
2

⩽ µ(|f(z)|).

And so
|f(z)| ⩽ µ−1

(
µ(|z|)
2

)
=

2
√
|z|

1 + |z|
.

Hence

d(0, |f(z)|) ⩽ d

(
0,

2
√

|z|
1 + |z|

)
= 2d

(
0,
√
z
)
⩽ 2d(0, z) + 2 log 2.

And the other side of inequality follows from 2-quasiconformal map f−1.

Prop 1.5.5. Suppose f : D → D and f is 2n-quasiconformal, then

1

2n
d(z, w)−

(
2− 21−n

)
log 2 ⩽ d(f(z), f(w)) ⩽ 2nd(z, w) +

(
2n+1 − 2

)
log 2.

Proof. Let

ϕ(z) = µ−1

(
µ(|z|)
2

)
=

2
√
|z|

1 + |z|
Similar to proposition 1.5.41.5.4, we have

|f(z)| ⩽ µ−1

(
µ(|z|)
2n

)
= ϕ(n)(z),

which is the n-th iterate of the function ϕ.
Then

d(0, |f(z)|) ⩽ d
(
0, ϕ(n)(z)

)
⩽ 2d

(
0, ϕ(n−1)(z)

)
+ 2 log 2

⩽ · · ·
⩽ 2nd(0, z) +

(
2n+1 − 2

)
log 2

And the other side of inequality follows from 2n-quasiconformal map f−1.

Lemma 1.5.1. Given k and a point p on a hyperbolic geodesic γ, there is an L-quasiconformal
diffeomorphism f : H2 → H2 which fixes p and sends γ to itself, stretching hyperbolic distances
along γ by a factor k and stretching all other distances by a factor between 1 and k.
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Proof. WLOG, assume p = i and γ is the image axis, then take

f
(
reiθ

)
= rkeiθ.

Then
|fz| =

k + 1

2
|z|k−1, |fz̄| =

k − 1

2
|z|k−1

Df (z) =
k+1
2 |z|k−1 + k−1

2 |z|k−1

k+1
2 |z|k−1 − k−1

2 |z|k−1
= k

Thm 1.5.1. Suppose f : D → D and f is k-quasiconformal, then

1

k
d(z, w)−A ⩽ d(f(z), f(w)) ⩽ kd(z, w) +A,

where A = A(k) only depends on k.

Proof. WLOG, assume w = f(w) = 0 and let 2n−1 < k ⩽ 2n.
Then by lemma 1.5.11.5.1, there exists a 2n

k -quasiconformal g that fix 0 and maps the geodesic
connecting 0 and f(z) to itself.

So by proposition 1.4.11.4.1, g ◦ f is 2n-quasiconformal, i.e. by proposition 1.5.51.5.5,

2n

k
d(f(z), 0) = d(g ◦ f(z), 0) ⩽ 2nd(z, 0) +

(
2n+1 − 2

)
log 2.

Therefore
d(0, f(z)) ⩽ kd(0, z) + k

(
2− 21−n

)
log 2.

And the other side of inequality follows from k-quasiconformal map f−1.

Lemma 1.5.2. Consider topological annulus

Ω′
p = C\([−1, 0] ∪ [p,+∞)),

let Ω be a topological annulus and C1, C2 be the two components of its complement, if

{−1, 0} ⊂ C1, {p,∞} ⊂ C2,

then
m(Ω) ⩽ m(Ω′

p) =
1

2π
µ
(
2p+ 1− 2

√
p2 + p

)
.

Proof. Let f : D2 → C1 ∪ Ω be a conformal map with f(0) = 0 and f(a) = −1.
Then by Koebe quarter theorem, |f ′(0)| = 4p.
And by Koebe distortion theorem,

1 = |f(a)| ⩽ |a||f ′(0)|
(1− |a|)2

⩽ 4p|a|
(1− |a|)2

.

So |a| ⩾ |a0| where a0 belongs to the case Ω = Ω′
p.

by proposition 1.5.21.5.2, m(Ω) = m(f−1(Ω)) ⩽ m(Ωa) ⩽ m(Ωa0) = m(Ω′
p).

Moreover, we have

a0 = 2p+ 1− 2
√
p2 + p,m(Ω′

p) =
1

2π
µ
(
2p+ 1− 2

√
p2 + p

)
.
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Remark 1.5.2. Ωp is called the Teichmüller extremal region.
Let Ω−

r be the reflection of Ωr along {|z| = 1} and Ω = Ωr ∪ Ω−
r ∪ {|z| = 1}.

Then f(Ω) = Ω′
r−2−1 with f(z) = z

r − 1 and so

2µ(r) = µ
(
2r−2 − 1− 2

√
r−4 − r−2

)
.

2µ

(
2
√
a

a+ 1

)
= µ(a).

We can actually use this conclusion in corollary 1.5.11.5.1 without creating circular argument.

Lemma 1.5.3. Consider topological annulus

Ω′′
λ = C\

({
|z| = 1, |arg z − π| ⩽ arcsin

λ

2

}
∪ [0,+∞)

)
,

let Ω be a topological annulus and C1, C2 be the two components of its complement, if

diam(C1 ∩ {|z| ⩽ 1}) ⩾ λ, {0,∞} ⊂ C2,

then
m(Ω) ⩽ m(Ω′′

λ) =
1

2π
µ

(√
4 + 2λ−

√
4− 2λ

4

)
.

Proof. Consider the map f(z) =
√
z.

On the image plane, we get a figure which is symmetric w.r.t. the origin with two component
images of C1 and two of C2, denote them by C+

1 , C
−
1 , C

+
2 , C

−
2 .

Take Ω′ = C\(C+
1 ∪ C−

1 ).
Then m(Ω) ⩽ 1

2m (Ω′).
And since there exists z1, z2 such that |z1|, |z2| ⩽ 1, |z1 − z2| ⩾ λ.
Let w1, w2 ∈ C+

1 are the image and

g(z) =
z + w1

z − w1

w1 + w2

w1 − w2
.

Then

g(−w1) = 0, g(−w2) = 1, g(w1) = ∞, g(w2) = −u2 = −
(
w1 + w2

w1 − w2

)2

.

Notice that
|z1 + z2|2 = 2

(
|z1|2 + |z2|2

)
− |z1 − z2|2 ⩽ 4− λ2.

So we can obtain

|u| − 1

u
=

2(z1 + z2)

z2 − z1
⩽ 2

λ

√
4− λ2, |u| ⩽ 2 +

√
4− λ2

λ
,

Hence by lemma 1.5.21.5.2,

m(Ω) ⩽ 1

2
m
(
Ω′) ⩽ 1

2
m
(
Ω′
|u|2
)
=

1

2π
µ

(√
1

|u|2 + 1

)
⩽ 1

2π
µ

(√
4 + 2λ−

√
4− 2λ

4

)
.

And the equality holds when Ω = Ω′′
λ, i.e.m(Ω) ⩽ m (Ω′′

λ)

Lemma 1.5.4.
2 log

1 +
√
1− r2

r
⩽ µ(r) ⩽ log

4

r
.
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Proof. By mobius transformation

f(z) =
z − a

a− a2z
,

2a

a2 + 1
= r,

we map Ωr to Ω = {|z| ⩽ a}\[−1, 1].
And take conformal map

g(z) =
1

2

(
z +

1

z

)
.

Then it maps annulus {1 < |z| < ρ} to ellipse Eρ with axes ρ± ρ−1 and slit along [−1, 1].
When ρ+ ρ−1 ⩽ 2a, Eρ ⊂ Ω and so

log ρ

2π
= m(Eρ) ⩽ m(Ω) =

µ(r)

2π
.

When ρ− ρ−1 ⩾ 2a, Eρ ⊂ Ω and so

log ρ

2π
= m(Eρ) ⩾ m(Ω) =

µ(r)

2π
.

Notice that ρ = 2a− r, 4r−1 satisfies the condition of first and second case resp.
So

2 log
1 +

√
1− r2

r
⩽ µ(r) ⩽ log

4

r
.

Thm 1.5.2 (Mori). Suppose f : D → D, f(0) = 0 and f is k-quasiconformal, then

|f(z1)− f(z2)| ⩽ 16|z1 − z2|
1
k

for |z1|, |z2| ⩽ 1.

Proof. We first consider the case that f can be continuously extended to the closed disk.
And then we can extend f to a k-quasiconformal map on C by

f

(
1

z̄

)
=

1

f̄(z)
.

If z1 − z2 ⩾ 1, then it is trivial.
So we assume z1 − z2 < 1.
Construct an annulus A whose inner circle has the segment z1, z2 for diameter and whose

outer circle is a concentric circle of radius 1
2 .

Let w1 = f(z1), w2 = f(z2) and C1, C2 be the two components of complement of A.
If A ⊂ D2, then consider

g(z) =
z − w1

1− w̄1z
.

So g ◦ f(A) is a topological annulus and 0, g(f(z2)) ∈ ∂(g ◦ f(A)) and we can obtain

1

2π
log

1

|z2 − z1|
= m(A) ⩽ km(g ◦ f(A))

⩽ k

2π
µ

(∣∣∣∣ w2 − w1

1− w̄1w2

∣∣∣∣)
⩽ k

2π
log

8

|w2 − w1|
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If A\D2 6= ∅, then 0 /∈ A.
So f(A) is a topological annulus and {w1, w2} ⊂ f(C1) ∩ {|z| ⩽ 1}, {0,∞} ⊂ f(C2).
Therefore by lemma 1.5.31.5.3,

1

2π
log

1

z2 − z1
= m(A) ⩽ km(f(A))

⩽ k

2π
µ

(√
4 + 2|w1 − w2| −

√
4− 2|w1 − w2|

4

)

⩽ k

2π
log

4
√
8 + 2

√
16− 4|w1 − w2|

|w1 − w2|

<
k

2π
log

16

|w1 − w2|
.

Hence we obtain the desire formula.
For the general case, we consider Dr = {|z| < r} and gr(z) = r−1z.
Then gr ◦ f(rz) is K-quasiconformal and continuous on |z| = 1.
By the above case, we have

|gr ◦ f(rz2)− gr ◦ f(rz1)| < 16|z2 − z1|
1
k .

As r → 1, gr → Id, i.e. we obtain

|f(z2)− f(z1)| ⩽ 16|z2 − z1|
1
k

So f is Hölder continuous, i.e. it can be extended to boundary continuously.

Coro 1.5.2. Suppose f : D → D and f is k-quasiconformal, then f can be extended to a
homeomorphism of the closed disk.

Proof. By Mori theorem, f is Hölder continuous.
So it can be continuously extended to the closed disk.
And since continuous bijection from compact set to Hausdorff space is homeomorphism.
Hence f : D̄ → D̄ is homeomorphism.

Coro 1.5.3. Suppose fn : D → D, fn(0) = 0, if fn are k-quasiconformal, then {fn} has a
subsequence such that fin ⇒ f and f is k-quasiconformal.

Proof. By Mori theorem, {fn} are equicontinuous.
So by Ascoli-Arzela theorem, {fn} has a subsequence fin ⇒ f .
Similarly, there exists a subsequence f−1

jn
⇒ g.

WLOG, assume in = jn otherwise, we can take a subsequence in {in} ∩ {jn}.
So f−1 = g, i.e. f is homeomorphic.
For an arbitrary quadrilateral Q ⊂ D, take a sequence of Qn ⊂ Q such that fin(Qn) ⊂ f(Q).
Then m (fin(Qn)) ⩽ km(Qn).
And since fin ⇒ f , so we have

m(f(Q)) = lim
n→∞

m (fin(Qn)) ⩽ lim
n→∞

km(Qn) = km(Q)

Hence f is k-quasiconformal.

Prop 1.5.6. Suppose f : D̄ → D̄ is k-quasiconformal and fixes p, q, r ∈ S1, then d(0, f(0)) ⩽ C,
where C = C(k) only depends on k.
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Proof. Suppose fn : D̄ → D̄ is k-quasiconformal, fn fixes p, q, r and d(0, fn(0)) → ∞.
WLOG, we assume {fn(0)} converge to a point on ∂D and it is not p, q.
Let An ∈ Isom(D) such that An(fn(0)) = 0 and gn = An ◦ fn.
Then we obtain

|gn(p)− gn(q)| =

(
1− |fn(0)|2

)
|p− q|∣∣∣1− fn(0)p

∣∣∣∣∣∣1− fn(0)q
∣∣∣ =

(
1− |fn(0)|2

)
|p− q|

|p− fn(0)||q − fn(0)|
→ 0.

By Mori theorem, |p− q| ⩽ 16|gn(p)− gn(q)|
1
k , contradiction!

Thm 1.5.3. Given a compact set E ⊂ C and two point p 6= q ∈ E, there exists C = C(E), such
that if f : C → C, f(p) = p, f(q) = q and f is k-quasiconformal, then for z1, z2 ∈ E,

|f(z1)− f(z2)| ⩽ C|z1 − z2|
1
k

Proof. Take a simply connected region Ω ⊃ E.
Let g : D → Ω, h : f(Ω) → D be conformal maps such that g(0) = p, g(α) = q, h(p) =

0, h(q) = β with α, β ∈ R and denote ϕ = h ◦ f ◦ g.
Then by Mori theorem,

|ϕ(z1)− ϕ(z2)| ⩽ 16|z1 − z2|
1
k .

And since E is compact.
Let

∣∣g−1(z)
∣∣ ⩽ r0 < 1 for z ∈ E.

Then by Koebe distortion theorem,

|g(z1)− g(z2)| ⩾
|g′(z1)|

4

∣∣∣∣ z1 − z2
1− z1z̄2

∣∣∣∣
⩾ (1− |z1|)|g′(0)|

64
|z1 − z2|

⩾ (1− r0)(1− |α|)2

64|α|
|p− q||z1 − z2|

⩾ (1− r0)
3

64|α|
|p− q||z1 − z2|

On the other hand, for |z| ⩽ r0, by Mori theorem, we obtain

1− r0 = 1− |z| ⩽ 16(1− |ϕ(z)|)
1
k , |α| ⩽ 16|β|

1
k .

So |ϕ(z)| ⩽ ρ0 < 1, where ρ0 only depends on r0.
So similarly, we have

|z1 − z2| ⩽
4

(1− ρ0)6|β|
|p− q||h(z1)− h(z2)|.

Hence
|f(z1)− f(z2)| ⩽

4

(1− ρ0)6|β|
|p− q||h ◦ f(z1)− h ◦ f(z2)|

⩽ 26+4k

(1− ρ0)6|α|k
|p− q|

(
64|α|

(1− r0)3|p− q|
|z1 − z2|

) 1
k

⩽ C|z1 − z2|

where C only depends on E.
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1.6 quasiconformal maps on Riemann surface
Def 1.6.1. S1, S2 are Riemann surface, then f : S1 → S2 is k-quasiconformal if f̃ : D → D is
k-quasiconformal.

Lemma 1.6.1. Suppose f : S1 → S2 is a k-quasiconformal map and γ1 ⊂ S1 a closed geodesic
on S1, let γ2 ⊂ S2 be the closed geodesic which is homotopic to f(γ1), then l(γ2) ⩽ kl(γ1).

Proof. Consider f∗ : π1(S1, ∗1) → π1(S2, ∗2).
After identifying π1 with Γi < Aut(D), we obtain a lift f̃ : D → D such that

f̃ ◦A1 = A2 ◦ f̃ , f∗(A1) = A2.

Let γi be the axis of Ai.
We first assume f̃(p) ∈ γ2 where p ∈ γ1, then

nl(γ2) ⩽ d
(
f̃(p), An2

(
f̃(p)

))
= d

(
f̃(p), f̃(An1 (p))

)
⩽ kd(p,An1 (p)) + C = knl(γ1) + C.

So l(γ2) ⩽ kl(γ1) +
C
n , i.e. l(γ2) ⩽ kl(γ1) as n→ ∞.

For the general case, take a fixed point q ∈ γ2, then∣∣∣d(f̃(p), An2 (f̃(p)))− d (q, An2 (q))
∣∣∣ ⩽ 2d(f̃(p), q) = C1.

Prop 1.6.1. There exists no quasiconformal map f : D → C.

Proof. Let Ω = {|z| ⩽ r0 < 1} and f(Ω) ⊂ {|z| ⩽ R}.
Then by definition,

m(C\f(Ω)) ⩽ km({r0 < |z| < 1}) = 1

2π
log

1

r0
.

On the other hand, for arbitrary M ,

m(C\BR) ⩾ m({R ⩽ |z| ⩽M}) = 1

2π
log

M

R
.

Take M ⩾ R
r0

, contradiction!

1.7 Topological definition of quasiconformal maps
Def 1.7.1. f : S2 → S2 is a homeomorphism, define

Nf = {A ◦ f ◦B|A,B ∈ Aut(S2), A ◦ f ◦B fixes p, q, r ∈ S2},

Homeo(S2, p, q, r) = {g : S2 → S2|g is homeomorphism, g fixes p, q, r}.

Lemma 1.7.1. If f is quasiconformal, then Nf is sequentially precompact in Homeo(S2, p, q, r).

Proof. Consider the stereographic projection g : S2 → C̄ with g(p) = ∞.
Then for a sequence {An ◦ f ◦Bn} ⊂ Nf , g ◦A ◦ f ◦B ◦ g−1 is a k-quasiconformal map on C.
So
{
g ◦An ◦ f ◦Bn ◦ g−1

}
converges to a k-quasiconformal map f0 : C → C.

Take h = g−1 ◦ f0 ◦ g, h(p) = p.
Hence h is a homeomorphism in Homeo(S2, p, q, r).
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Exam 1.7.1. Take

f(z) =
(
e|z| − 1

)
ei arg(z), Bn(z) = nz,An(z) =

z

en − 1
.

Then An ◦ f ◦Bn fixes 0, 1,∞ but maps 2 to

e2n − 1

en − 1
→ ∞

Lemma 1.7.2. If f is not quasiconformal, then for any n > 0, there exists quadrilateral Qn
with m(Qn) = 1 such that nm(f(Qn)) < 1

Proof. Since f is not quasiconformal.
Take quadrilateral Q such that 2nm(f(Q)) < m(Q).
WLOG, we assume Q is a rectangle and m(Q) ⩾ 1, otherwise we swap the a-sides with

b-sides.
If m(Q) = 1, then there is nothing need to be proved, so we only consider m(Q) > 1.
Let k < m(Q) ⩽ k+1 where k ∈ Z+ and divide Q into k squares R1, . . . , Rk and a rectangle

Rk+1, which may also be a square, then

m(Q) > 2nm(f(Q)) ⩾ 2n
k+1∑
i=1

m(f(Ri)) > 2n
k∑
i=1

m(f(Ri)).

So there exists some i ⩽ k such that

m(f(Ri)) <
m(Q)

2nk
⩽ k + 1

2nk
⩽ 1

n
.

Hence take Qn = Ri, we have nm(f(Qn)) < 1 and m(Q) = m(Ri) = 1.

Thm 1.7.1 (Topological definition). A homeomorphism f : S2 → S2 is quasiconformal iff Nf

is sequentially precompact subset of Homeo(S2, p, q, r).

Proof. The ”only if“ part is proved in lemma 1.7.11.7.1, we now prove the ”if“ part.
WLOG, we assume p, q, r are 0, 1,∞ resp.
For z ∈ C, take x, y ∈ ∂Br(z) and f̂ = A ◦ f ◦B ∈ Nf such that

B(0) = z,B(1) = x,A(f(z)) = 0, A(f(x)) = 1, B(∞) = A(∞) = ∞.

Since A,B are affine map, we have

d(0, B−1(y)) = 1,
d(f(y), f(z))

d(f(x), f(z))
= d(0, A(f(y))).

Suppose f is not quasiconformal, then there exists zn, xn, yn such that∣∣B−1
n (yn)

∣∣ = 1,
∣∣∣f̂n (B−1

n (yn)
)∣∣∣ > n.

WLOG, assume f̂n converges to g ∈ Homeo(S2, 0, 1,∞) and B−1
n (yn) converges to y.

Then |g(y)| ⩾ lim
n→∞

n = ∞.
But g(∞) = ∞ and g is injective, contradiction!
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1.8 Analytical properties of quasiconformal maps
Def 1.8.1. Given a quasiconformal map f : U → f(U), we say f is absolutely continuous on
lines if in every rectangle R ⊂ U , f is absolutely continuous on almost every horizontal and
almost every vertical line.

Lemma 1.8.1. Let f : U → f(U) be quasiconformal, then f is absolutely continuous on lines.

Proof. Take disjoint intervals (a1, b1), . . . , (an, bn) in [α, β].
Let A(y) be the image area under f of the rectangle [α, β]× [0, y].
Then A is increasing, i.e. derivative A′(y) exists a.e.
WLOG, assume A′(y0) exists.
Consider Q = [α, β]× [y0, y0 + δ], Qi = [ai, bi]× [y0, y0 + δ] and Q′ = f(Q), Q′

i = f(Qi).
Let γ0 be the line connecting ai and bi, li = l(γ0) = |bi − ai|, l′i = l(f(γ0)).
We first show that for sufficiently small δ, the length of any arc γ connecting the b-side of

Q′
i is near by l′i.

Take a partition ai = t0 < t1 < · · · < tm = bi and ζi = f(tk, y0) such that
m∑
k=1

|ζk − ζk−1| ⩾ l′i −
ε

2
.

Take sufficiently small δ such that the variation of f on vertical segments {tk} × [y0, y0 + δ]
is less than ε

4n , then we have

l(γ) ⩾
m∑
k=1

|ζk − ζk−1| −
ε

2
⩾ l′i − ε

So take ε < 1
2 min{l′i}, we obtain

(l′i)
2

4A(Qi)
⩽ mi(Q

′
i) ⩽ k

li
δ
,

(
n∑
i=1

l′i

)2

⩽
n∑
i=1

(l′i)
2

li
·
n∑
i=1

li ⩽ 4K
A(y0 + δ)−A(y0)

δ

n∑
i=1

li.

And since
lim
δ→0

A(y0 + δ)−A(y0)

δ
= A′(y0) < +∞,

Hence as
∑
li → 0,

∑
l′i → 0, i.e. f is absolutely continuous on horizontal line.

Similarly, f is absolutely continuous on vertical line.

Thm 1.8.1. Let f : U → f(U) be quasiconformal, then f is differentiable a.e. on U and it is
differentiable in then sense of distribution.

Proof. By lemma 1.8.11.8.1, f is absolutely continuous on lines.
So f has partial derivatives fx, fy a.e.
By Egoroff theorem, the limits

fx(z) = lim
δ→0

f(z + δ)− f(z)

δ
, fy(z) = lim

δ→0

f(z + δi)− f(z)

δ
.

are taken uniformly except on U\E of arbitrary small measure.
Then it is sufficient to prove that f is differentiable a.e. on E.
Notice that almost every point x0+y0i ∈ E is point of density for E∩({x = x0}∪{y = y0}).
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So it is sufficient to prove that f is differentiable at such a point z0 = x0 + y0i.
And WLOG, we assume z0 = 0.
Then there exists δ > 0 such that for |x|, |y|, |δ1|, |δ2| < δ,

|fx(z)− fx(0)| < ε, |fy(z)− fy(0)| < ε,∣∣∣∣f(z + δ1)− f(z)

δ1
− fx(z)

∣∣∣∣ < ε,

∣∣∣∣f(z + δ2i)− f(z)

δ2
− fy(z)

∣∣∣∣ < ε.

So

f(z)− f(0)− xfx(0)− yfy(0) = (f(z)− f(x)− yfy(x)) + (f(x)− f(0)− xfx(0))

+ y (fy(x)− fy(0))

If x ∈ E or y ∈ E, we have

|f(z)− f(0)− xfx(0)− yfy(0)| ⩽ 3ε|z|.

Now we want to prove the case when x, y /∈ E.
Since m(E∩(−x,x))

2|x| → 1 as x→ 0.
Take δ sufficiently small such that for x < δ

m(E ∩ (−x, x)) > 2 + ε

1 + ε
|x|.

Then E ∩
(

x
1+ε , x

)
6= ∅.

Similarly, we apply this process to y.
So if |z| < δ

1+ε , there exists x1, x2, y1, y2 ∈ E such that
x

1 + ε
< x1 < x < x2 < (1 + ε)x,

y

1 + ε
< y1 < y < y2 < (1 + ε)y.

Consider rectangle (x1, x2)× (y1, y2).
By the maximal principle, there exists a point z∗ on the perimeter such that

|f(z)− f(0)− xfx(0)− yfy(0)| ⩽ |f(x∗ + iy∗)− f(0)− xfx(0)− yfy(0)|
⩽ 3ε|z∗|+ |x− x∗||fx(0)|+ |y − y∗||fy(0)|
⩽ 3ε(1 + ε)|z|+ ε|fx(0)||z|+ ε|fy(0)||z|

Hence f is differentiable a.e.
Moreover, for compact K ⊂ U , we haveˆ

K
Jfdxdy ⩽ A(f(K)).

And since f is k-quasiconformal.
Similar to proposition 1.4.21.4.2, we can prove that

|fz̄| ⩽ K|fz|, |fz|2 ⩽
J

1−K2
with K =

k − 1

k + 1
.

So fx, fy are locally square integrable.
Take a test function ϕ, which is C1 with compact support.
By the integration over horizontal lines and Fubini theorem,¨

fxϕdxdy = −
¨

fϕxdxdy,

¨
fyϕdxdy = −

¨
fϕydxdy.



Chapter 2

Boundary Correspondence

2.1 Quasi-isometry maps
Def 2.1.1. E is a convex subset of Hn, then one can define the nearest point retraction map
π : Hn → E: for p ∈ Hn, there exists a unique point q ∈ E such that d(p,E) = d(p, q) and we
set π(p) = q.

Lemma 2.1.1. ‖dπ(z)‖ ⩽ cosh(r)−1, where r = d(z,E).

Proof. Let r = d(z, E) and consider a smooth curve γ in the level set

Σr = {w ∈ Hn|d(w,E) = r}.

with γ(0) = z, γ′(0) = v ∈ TzΣr.
Then π ◦ γ is a curve in E with (π ◦ γ)′(0) = dπz(v).
Let α(t,−) be the unit-speed geodesic from π(γ(t)) to γ(t) and Consider the Jacobi field

J(s) = α

(
∂

∂t

) ∣∣∣∣
t=0

.

Then α(t,−) is perpendicular to ∂E and J(0) = dπz(v), J(r) = v.
And since Hn has constant curvature −1, so we obtain

J(s) = dπ(z)(v) cosh(s) + J ′(0) sinh(s).

On the other hand,

J ′(0) = ∇̂ ∂
∂s
α∗

(
∂

∂t

) ∣∣∣∣
s=t=0

= ∇̂ ∂
∂t
α∗

(
∂

∂s

) ∣∣∣∣
s=t=0

= ∇̂ ∂
∂t
N

∣∣∣∣
t=0

= ∇J(0)N

where N is the unit normal vector to E pointing outward.
Notice that E is convex.
So the second fundamental form

B(J(0), J(0)) =
〈
∇J(0)N, J(0)

〉
= 〈J ′(0), J(0)〉 ⩾ 0.

Therefore we have

|v|2 = |J(r)|2

= cosh2(r)|dπz(v)|2 + sinh2(r)
∣∣J ′(0)

∣∣2 + 2 cosh(r) sinh(r)〈dπz(v), J ′(0)〉
⩾ cosh2(r)|dπz(v)|2

And since dπz vanishes in the direction perpendicular to Σr.
Hence ‖dπ(z)‖ ⩽ cosh(r)−1.

19
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Def 2.1.2. A map γ : R → Hn is called (L,A)-quasigeodesic if

|x− y|
L

−A ⩽ d(γ(x), γ(y)) ⩽ L|x− y|+A.

Lemma 2.1.2. For L,A > 0, there exists A1, L1, D1 depending on (L,A) such that for every
(L,A)-quasigeodesic γ, there exists a (L,A1)-quasigeodesic γ1 such that

(1) lHn(γ1([a, b])) ⩽ L1|a− b|.

(2) dHn(γ(x), γ1(x)) ⩽ D1 for every x.

Proof. Let γ1
∣∣
[n,n+1]

be the geodesic from γ(n) to γ(n+ 1) with |γ′(t)| ≡ C.
Then for n ⩽ a < n+ 1,m ⩽ b < m+ 1,

lHn(γ1([a, b]))

= lHn(γ1([a, n+ 1])) +

m−1∑
i=n+1

lHn(γ1([i, i+ 1])) + lHn(γ1[m, b])

= (n+ 1− a)d(γ(n), γ(n+ 1)) +

m−1∑
i=n+1

d(γ(i), γ(i+ 1)) + (b−m)d(γ(m), γ(m+ 1))

⩽ (L+A)|b− a|

And for n ⩽ x < n+ 1,

d(γ(x), γ1(x)) ⩽ d(γ(x), γ(n)) + d(γ1(n), γ1(x)) ⩽ 2(L+A).

Thm 2.1.1 (Morse lemma). Suppose γ : I → Hn is an (L,A)-quasigeodesic where I is an
interval either finite or infinite, then γ(I) is within a bounded distance R from a geodesic in
Hn, where R only depends on L and A.

Proof.

γ(T1) γ(T2)

γ(a)

γ(b)

π(γ(a)) π(γ(b))
δ

γ

r0

by lemma 2.1.22.1.2 we can assume γ is (L,A)-quasigeodesic and l(γ([a, b])) ⩽ L|a− b|.
We first consider the case that I = [T1, T2] is finite.
Let δ be the geodesic arc between γ(T1) and γ(T2) and (a, b) ⊂ [T1, T2] be a maximal interval

such that γ((a, b)) lies outside the cylinder B(δ, r0) where

2r0L
2 + LA

cosh(r0)− L2
⩽ 1.

Then we have

cosh(r0)d(π(γ(a)), π(γ(b))) ⩽ l(γ(a, b)) ⩽ L|a− b|
⩽ L(Ld(γ(a), γ(b)) + A)

⩽ L2(2r0 + d(π(γ(a)), π(γ(b)))) + LA
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So
d(π(γ(a)), π(γ(b))) ⩽ 2r0L

2 + LA

cosh(r0)− L2
⩽ 1.

Therefore d(γ(a), γ(b)) ⩽ cosh(r0), i.e. |a− b| ⩽ L cosh(r0) +A.
Replace r0 by r0 + L(L cosh(r0) +A) +A, then γ([T1, T2]) ⊂ B(δ, r0).
For general case, take a sequence of finite interval I1 ⊂ I2 ⊂ · · · ⊂ I and let δi be the

corresponding geodesic arc.
Notice that δi are all L-Lipschitz.
By Ascoli-Arzela theorem and diagonal argument, δi converges to a geodesic δ as i→ ∞
Hence as i→ ∞, γ(I) ⊂ B(δ, r0).

Def 2.1.3. A map f : Hn → Hn is called (L,A)-quasi-isometry if

d(x, y)

L
−A ⩽ d(f(x), f(y)) ⩽ Ld(x, y) +A,

Thm 2.1.2. f : Hn → Hn is a quasi-isometry then f extend continuous to a quasiconformal
map ∂f : ∂Hn → ∂Hn.

We can define ∂f directly by Morse lemma, and to prove this theorem, we need some deeper
properties of quasi-isometry maps. For brevity, we have placed the proof in chapter AA.

2.2 M-condition
Def 2.2.1. Let h : R → R be a homeomorphism, we say that h satisfies the M -condition if

1

M
⩽ h(x+ t)− h(x)

h(x)− h(x− t)
⩽M.

Such h is also called quasisymmetric.

Lemma 2.2.1. Let f : H2 → H2 be k-quasiconformal such that f(∞) = ∞, then h(x) = f(x, 0)
is an increasing homeomorphism which satisfies the M -condition for same M =M(k).

Proof. For t ∈ R, By choosing affine map A,B, let g = B ◦ f ◦A such that

g(−1) = −1, g(0) = 0, g(1) =
h(x+ t)− h(x)

h(x)− h(x− t)
.

Suppose there exists fm : H2 → H2 such that

hm(xm + tm)− hm(xm)

hm(xm)− hm(xm − tm)
→ 0 or ∞

Then we can rescaled fn to get gn such that

gn(−1) = −1, gn(0) = 0, gn(1) → 0 or ∞.

And since gn fixed 0,−1,∞.
So gn converge to a k-quasiconformal gn → g.
But g(1) = lim

n→∞
gn(1) = 0 or ∞, contradiction!

Lemma 2.2.2. Let h : R → R be a homeomorphism satisfying M -condition with h(0) = 0,
h(1) = 1, then

1

M + 1
⩽
ˆ 1

0
h(x)dx ⩽ M

M + 1
.
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Proof. Let F (x) = suph0(x) for all quasi-isometry h0 with h0(0) = 0, h0(1) = 1.
Then for 0 < t < 1,

h
(
t
2

)
h(t)

⩽ F

(
1

2

)
So

F

(
t

2

)
⩽ F

(
1

2

)
F (t).

And similarly, we have
h
(
1−t
2 + t

)
− h(t)

1− h(t)
⩽ F

(
1

2

)
.

Therefore
F

(
1 + t

2

)
⩽ F

(
1

2

)
+

(
1− F

(
1

2

))
F (t).

Thus we obtain
F

(
t

2

)
+ F

(
1 + t

2

)
⩽ F

(
1

2

)
+ F (t).

Hence ˆ 1

0
h(t)dt ⩽

ˆ 1

0
F (t)dt =

1

2

ˆ 2

0
F

(
t

2

)
dt

=
1

2

ˆ 1

0

(
F

(
t

2

)
+ F

(
1 + t

2

))
dt

⩽ 1

2
F

(
1

2

)
+

1

2

ˆ 1

0
F (t)dt

⩽ F

(
1

2

)
⩽ M

M + 1

Lemma 2.2.3 (Gauge rule). Let f : H2 → H2 be k-quasiconformal with f(∞) = ∞, then for
any affine map A,B, take h(x) = f(x, 0), h1(x) = (B ◦ f ◦A)(x, 0), prove that

h1 = B ◦ h ◦A.

Proof. Let A = az + b,B = cz + d with a, c > 0 and b, d ∈ R, then

(B ◦ f ◦A)(x, 0) = cf(ax+ b, 0) + d = ch(ax+ b) + d = B ◦ h ◦A.

Thm 2.2.1. Let h : R → R be a homeomorphism satisfying M -condition, then there exists a
map ϕ = u+ iv which is k-quasiconformal for k = 2M(M + 1) and ϕ : H2 → H2 extending h.

Proof. Take

u(x, y) =
1

2y

ˆ y

−y
h(x+ t)dt, v(x, y) =

1

2y

ˆ y

0
(h(x+ t)− h(x− t))dt.

Then v(x, y) ⩾ 0 and v(x, y) → 0 as y → 0, i.e. ϕ is well-defined and ϕ(x, 0) = u(x, 0) =
h(x).

And since we have
ux =

1

2y
(h(x+ y)− h(x− y)),
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uy = − 1

2y

ˆ x+y

x−y
hdt+

1

2y
(h(x+ y) + h(x− y)),

vx =
1

2y
(h(x+ y)− 2h(x) + h(x− y)),

vy = − 1

2y2

(ˆ x+y

x
hdt−

ˆ x

x−y
hdt

)
+

1

2y
(h(x+ y)− h(x− y)).

By gauge rule, we can assume h(0) = 0, h(1) = 1 and we only need to compute dilatation
at z = i, then

ux =
1

2
(1− h(−1)), uy = −1

2

ˆ 1

−1
hdt+

1 + h(−1)

2
,

vx =
1 + h(−1)

2
, vy = −1

2

(ˆ 1

0
hdt−

ˆ 0

−1
hdt

)
+

1

2
(1− h(−1)).

Let
ξ = 1−

ˆ 1

0
hdt, β = −h(−1), ηβ = −h(−1) +

ˆ 0

−1
hdt.

So we obtain

ux =
1 + β

2
, vx =

1− β

2
, uy =

ξ − ηβ

2
, vy =

1

2
(ξ + ηβ).

d2 =

∣∣∣∣((1− ξ) + β(1− η)) + i((1 + ξ)− β(1 + η))

((1 + ξ) + β(1 + η)) + i((1− ξ)− β(1− η))

∣∣∣∣2
=

1 + ξ2 + β2(1 + η2)− 2β(ξ + η)

1 + ξ2 + β2(1 + η2) + 2β(ξ + η)

Since we have estimates

M−1 ⩽ β ⩽M,
1

M + 1
⩽ ξ, η ⩽ M

M + 1
.

Therefore
D =

1 + d

1− d
⩽ 2

1 + d2

1− d2
< 2M(M + 1).

Moreover, we must show that ϕ(z) → ∞ as z → ∞, this is because

u2 + v2 =
1

2y

((ˆ x+y

x
hdt

)2

+

(ˆ x

x−y
hdt

)2
)
.

Hence by monodromy theorem, ϕ is homeomorphic, i.e. ϕ is k-quasiconformal.

Prop 2.2.1. X and Y are Riemann surface diffeomorphic to Σg, then they are biholomorphic
iff they are isometric w.r.t. hyperbolic metrics.

Prop 2.2.2. X and Y are Riemann surface diffeomorphic to Σg but not biholomorphic, let
f : X → Y be a diffeomorphism and g : H2 → H2 is the lift of f , then g is not differentiable
anywhere with non-zero derivative on the boundary.

Proof. Let ΓX ,ΓY be the Fuchian groups.
Then for A ∈ ΓX , there exists B ∈ ΓY such that g ◦A = B ◦ g.
WLOG, assume g(0) = 0 and suppose g is differentiable at 0 with non-zero derivative.
Let An(z) = z

n , gn = A−1
n ◦ g ◦An.

Since g′(0) 6= 0.
Take arbitrary z0 ∈ H2 and a fundamental domain F of X.
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Then there exists γn ∈ ΓX such that γn ◦An(z0) ∈ F .
So by Ascoli-Arzela theorem, there exists {ni} such that γni ◦Ani converges to σ1 : H2 → H2.
Therefore A−1

ni
◦ γ−1

ni
◦ γ ◦ γni ◦Ani converges to some σ−1

1 γσ1 for every γ ∈ ΓX .
And consider δn ∈ ΓY such that g ◦ γn = δn ◦ g.
Then δnAn

(
ng
(
z0
n

))
∈ g(F ).

WLOG, we assume δni ◦Ani converges to σ2 : H2 → H2.
Let gn converges to h : H2 → H2 and a = g′(0), then

h ◦ σ−1
1 ◦ γ ◦ σ1 = lim

i→∞
gni ◦A−1

ni
◦ γ−1

ni
◦ γ ◦ γni ◦Ani

= lim
i→∞

A−1
n ◦ g ◦ γ−1

ni
◦ γ ◦ γni ◦Ani

= lim
i→∞

A−1
n ◦ δ−1

ni
◦ δ ◦ δni ◦ g ◦Ani

= σ−1
2 ◦ δ ◦ σ2 ◦ h

where g ◦ γ = δ ◦ g for γ ∈ ΓX , δ ∈ ΓY .
Notice that for x ∈ R,

h(x) = lim
n→∞

g
(
x
n

)
− g(0)
1
n

= ax

Hence we can get h : X → Y, x 7→ ax which is linear and biholomorphic, contradiction!

Coro 2.2.1. There are quasisymmetric map h : R → R which are not absolutely continuous.

Proof. Consider the biholomorphic map g;H2 → H2 in proposition 2.2.22.2.2.
Then ∂g is not absolutely continuous.

Using similar method, we can prove the Mostow rigidity theorem. Since the proof is so long
and is not quite related to the course, it can be found in chapter AA.

Thm 2.2.2 (Mostow rigidity). M,N are closed hyperbolic n-manifold with n ⩾ 3, then every
homotopy equivalent f :M → N must be homeomorphism to an isometry.

Lemma 2.2.4. Let X be a closed Riemann surface with genus g ⩾ 2, then there is a unique
closed geodesic in a free homotopy type w.r.t. parametrization.

Proof. Consider the covering map π : H2 → X, a free homotopy type in X corresponds to a
deck transformation F : H2 → H2.

For a closed geodesic γ in the given free homotopy type with γ(1) = γ(0).
Consider the lifting γ̃ : R → H2.
Then γ̃(t+ 1) = F (γ̃(t)), i.e. γ̃ is the axis of F .
Hence γ is unique w.r.t. parametrization.

Lemma 2.2.5. Let X be a closed Riemann surface with genus g ⩾ 2 and f be an automorphism
that homotopies to Id, then f = Id.

Proof. Consider a figure-eight closed geodesic γ that self-intersects at p.
Since f ' Id.
So f(γ) and γ are in the same free homotopy type and are both closed geodesic.
By lemma 2.2.42.2.4, f(γ) = γ, in particular, f(p) = p.
Denote the two parts of γ divided by p by γ1, γ2, which are geodesics.
We only need to prove that f(γi) = γi since f is an isometry.
Suppose f(γ1) = γ2, f(γ2) = γ1.
Then [γ2] · [γ1] = [f(γ)] = [γ] = [γ1] · [γ2].
By Preissmann theorem, [γ1] = [a]p and [γ2] = [a]q for some [a] ∈ π1(X) and p, q ∈ Z.
So [γ] = [a]p+q, in this case, γ must be (p+ q)-times iteration of [a], contradiction!
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Prop 2.2.3. Fix an closed Riemann surface X and let G be the group of all conformal auto-
morphism of X, then |G| < +∞.

Proof. Suppose |G| = ∞, let {fn} be a sequence of automorphism.
Then fn → f ∈ G.
Let gn = f−1

n ◦ f .
Then gn → Id.
So for sufficiently large n, gn is homotopic to Id, contradiction with lemma 2.2.52.2.5!

Def 2.2.2. The restriction f : S1 → f(S1) is called quasisymmetric map and f(S1) is called
quasicircle.



Chapter 3

Beltrami differential

3.1 Beltrami differential
Def 3.1.1. f : Ω → f(Ω) is a diffeomorphism, its Beltrami differential is defined as

µf (z) = Belt(f)(z) =

(
fz̄
fz

)
(z).

Prop 3.1.1.
Df (z) =

1 + |µf (z)|
1− |µf (z)|

.

Proof. Directly follows from proposition 1.1.21.1.2.

Prop 3.1.2.
µh◦f−1 ◦ f =

fz

fz

µh − µf
1− µ̄fµh

.

Proof.
(h ◦ f−1)z̄
(h ◦ f−1)z

(f(z)) =
hz(z)f

−1
z̄ (f(z)) + hz̄(z)f

−1
z (f(z))

hz(z)f
−1
z (f(z)) + hz̄(z)f

−1
z̄ (f(z))

=
−hz(z)µf (z) + hz̄(z)

hz(z)− hz̄(z)µ̄f
·

fz − fz̄µ̄f

fz(z)− fz̄(z)µf (z)

=
µh(z)− µf (z)

1− µ̄fµh

fz

fz

Coro 3.1.1. If µf = µh a.e., then h ◦ f−1 is conformal.

Proof. µh◦f−1 ◦ f = 0 a.e.
So h ◦ f−1 is conformal.

Def 3.1.2. A Riemannian metric ds2 on a differentiable surface is given by

ds2 = Edx2 + 2Fdxdy +Gdy2

in (x, y) local coordinate. In other words,

ds = λ|dz + µdz̄|

with
λ2 =

1

4

(
E +G+ 2

√
EG− F 2

)
, µ =

E −G+ 2iF

E +G+ 2
√
EG− F 2

26



CHAPTER 3. BELTRAMI DIFFERENTIAL 27

Remark 3.1.1.
|µ|2 = E +G− 2

√
EG− F 2

E +G+ 2
√
EG− F 2

< 1.

Prop 3.1.3. Let f : Ω → Ω1 such that µ = µf , then there exists σ(w)|dw| on Ω1, where
w = f(z), such that

f∗(σ(w)|dw|) = ds.

Proof.
f∗σ = σ(f(z))|df |

= (σ ◦ f)(z)|fzdz + fz̄dz̄|
= (σ ◦ f)(z)|fz|(z) · |dz + µdz̄| = ds

So we take
σ =

λ

|fz|
◦ f−1.

3.2 Quasiconformal groups
Def 3.2.1. Suppose G is a group of quasiconformal maps of S2, we say that G is a quasicon-
formal group if there exists k such that all f ∈ G is k-quasiconformal.

Exam 3.2.1. Group of Mobius transformations M is a quasiconformal group with k = 0.
Similarly, we can consider the conjugate group fMf−1 by some quasiconformal f , it is also a
quasiconformal group.

Prop 3.2.1.

µf◦g(z) =
µg(z) + µf (g(z))θ(z)

1 + µg(z)µf (g(z))θ(z)
, θ =

gz
gz
.

We denote Tg(µf (g)) = µf◦g(z).

Proof. Let h = f ◦ g.
By proposition 3.1.23.1.2,

µf ◦ g =
gz
gz

µh − µg
1− µ̄gµh

So we obtain

µh(z) =
µf (g(z)) + θ(z)µg(z)

θ(z) + µf (g(z))µg(z)
=

µg(z) + µf (g(z))θ(z)

1 + µg(z)µf (g(z))θ(z)
.

We now want to prove that actually every group of quasiconformal maps must be conjugated
to a group of Mobius transformations. And so we first show the following lemma.

Lemma 3.2.1. Given a compact set X ∈ D, there exists a barycenter b(X) ∈ D such that
A(b(X)) = b(A(X)) for any A ∈ Aut(D). More explicitly, b(X) can be given by the unique point
such that ˆ

X

z − b(X)

1− b(X)z

i
2dz ∧ dz̄

(1− |z|2)2
= 0.

To proof this lemma, we need some properties from analytic.
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Prop 3.2.2. The function

GX(z) = −
ˆ
X
log

(1− |z|2)(1− |w|2)
|z − w|2 + (1− |z|2)(1− |w|2)

i
2dw ∧ dw̄

(1− |w|2)2

has a unique minimum in D.

Proof.

(1− |z|2)(1− |w|2)
|z − w|2 + (1− |z|2)(1− |w|2)

= 1− |z − w|2

|1− z̄w|2
= 1− tanh2 d(z, w) = sech2 d(z, w).

GX(z) =

ˆ
X
log cosh2 d(z, w)

i
2dw ∧ dw̄

(1− |w|2)2

Notice that d(z, w) is convex function of z for fixed w since D is hyperbolic.
And d2

dt2
log cosh2 t = sech2 t > 0.

So GX is convex.
Since GX(z) tends to +∞ as |z| → 1.
Hence G has a unique minimum in D.

Proof of lemma 3.2.13.2.1. By proposition 3.2.23.2.2, we take the minimum b ∈ D of GX and let

Tb(z) =
z − b

1− b̄z
, G(z) = GX(Tb(z)).

Then we have
G(z) =

ˆ
A
log cosh2(d(Tb(z), w))

i
2dw ∧ dw̄

(1− |w|2)2

=

ˆ
A
log cosh2(d(z, Tb(w)))

i
2dw ∧ dw̄

(1− |w|2)2

So

∇G(z) =
ˆ
A

(
2z

1− |z|2
+

2z|Tb(w)|2 − 2Tb(w)

|z − w|2 + (1− |z|2)(1− |w|2)

)
i
2dw ∧ dw̄

(1− |w|2)2

In particular, ∇G(0) = 0, i.e.

−2

ˆ
X
Tb(w)

i
2dw ∧ dw̄

(1− |w|2)2
= 0

since z = 0 is the minimum of G.
Take b(X) = b, we now prove that it is conformally invariant.

ˆ
A(X)

TA(b(X))(ζ)
i
2dζ ∧ dζ̄

(1− |ζ|2)2
=

ˆ
X
TA(b(X))(A(w))

i
2dw ∧ dw̄

(1− |w|2)2

=

ˆ
X
eiθTb(X)(w)

i
2dw ∧ dw̄

(1− |w|2)2

= 0

where ζ = A(w) and θ ∈ [0, 2π).
Hence A(b(X)) is the unique minimum of GA(X)(z), i.e. A(b(X)) = b(A(X)).

Thm 3.2.1. Every quasiconformal group G is conjugated (by a quasiconformal map) to a
subgroup of Aut(S2).
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Proof. Consider the sets Mz = {µf (z)|f ∈ G} for z ∈ S2.
Then for g ∈ G, Tg(Mg(z)) = {Tg(µf (g(z)))|f ∈ G} = {µf◦g(z)|f ∈ G} =Mz.
Let µ(z) = P (Mz) and solve Beltrami equation

hz̄
hz

= µ.

Then we have
µh◦g(z) = Tg(µh(g(z))) = Tg(P (Mg(z)))

= P (Tg(Mg(z))) = P (Mz) = µh(z)

So h ◦ g ◦ h−1 is conformal for every g ∈ G.

In the proof we actually use the fact that the Beltrami equation can be solved, this will be
proved later.

3.3 Holomorphic motions
Def 3.3.1. Let X be a connected complex manifold and E be a subset of C̄, we say a map
f : E ×X → S2 is a holomorphic motion of E over X if

(1) For fixed λ ∈ X, f(−, λ) : E → S2 homeomorphic to its image.

(2) For fixed z ∈ E, f(z,−) : X → S2 is holomorphic.

(3) For any z ∈ E, f(z, λ0) = z for some λ0.

Thm 3.3.1 (Schottky). If h is analytic on D and not equal to 0 or 1, then

|h(z)| ⩽ Φ

(
|h(0)|, 1 + |z|

1− |z|

)
for |z| < 1 where Φ(x, y) is a universal strictly increasing continuous function for x ⩾ 0

with Φ(0, y) = 0.

Lemma 3.3.1 (λ-lemma). A holomorphic motion f(z, λ) of E = D over D can be extended
to a quasiconformal map from D̄ into a closed quasidisk in C in the z variable, and f(z,−) is
holomorphic for any z ∈ D̄.

Proof. Let z1, z2, z3 be three points in D and

h(λ) =
f(z1, λ)− f(z2, λ)

f(z3, λ)− f(z2, λ)
.

WLOG, we assume λ0 = 0.
Then by Schottky theorem,∣∣∣∣f(z1, λ)− f(z2, λ)

f(z3, λ)− f(z2, λ)

∣∣∣∣ ⩽ Φ

(∣∣∣∣z1 − z2
z3 − z2

∣∣∣∣, 1 + |λ|
1− |λ|

)
.

Fixing z2, z3, f(t, z) is bounded as z ∈ D for a fixed λ.
And as z1 → z2, f(z1, λ) tends to f(z2, λ) since Φ(0, λ) = 0.
So f(−, λ) is uniformly continuous, i.e. it can be continuously extended to D̄.
And by definition, f(−, λ) is quasisymetric on ∂D, i.e. f(−, λ) is quasiconformal on D̄.
On the other hand, f(z,−) is the uniform limit of some holomorphic maps for z ∈ ∂D.
Hence f(z,−) is holomorphic for any z ∈ D̄.
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Thm 3.3.2. Suppose f(z, λ) : S2 × D → S2 is a holomorphic motion, then f(−, λ) is 1+|λ|
1−|λ| -

quasiconformal.

Proof. We restrict f on Br × D and denote it as fr, where Br = {z||z| ⩽ R}.
By λ-lemma, fr(−, λ) is k-quasiconformal where k does not depend on r by lemma 2.2.12.2.1.
So as r → ∞, we obtain that f(−, λ) is k-quasiconformal.
Let µ(z, λ) be the Beltrami differential of f(−, λ).
Then µ(z,−) is holomorphic for any z ∈ S2.
So by Schwarz lemma, |µ(z, λ)| ⩽ |λ|.
Hence f(−, λ) is 1+|λ|

1−|λ| -quasiconformal.

Def 3.3.2. Cross ratio of z1, z2, z3, z4 ∈ S2 is

Cr(z1, z2, z3, z4) =
z4 − z1
z4 − z3

· z2 − z3
z2 − z1

.

Prop 3.3.1. Let f be a k-quasiconformal map, giving a compact set S ⊂ S2\{0, 1,∞}, then

{Cr(f(z1), f(z2), f(z3), f(z4))|Cr(z1, z2, z3, z4) ∈ S}

is compact.

Proof. Suppose the conclusion is wrong.
Then there exists (zn1 , z

n
2 , z

n
3 , z

n
4 ) such that Cr (zn1 , z

n
2 , z

n
3 , z

n
4 ) ∈ E but

Cr (f(zn1 ), f(z
n
2 ), f(z

n
3 ), f(z

n
4 )) → x ∈ {0, 1,∞}.

Let An be the Mobius transformation that maps zn1 , zn2 , zn3 to 0, 1,∞ resp.
Then Cr (zn1 , z

n
2 , z

n
3 , z

n
4 ) = An(z

n
4 ).

WLOG, we assume An(zn4 ) → z ∈ E by passing to a subsequence.
Similarly, consider Bn that maps f(zn1 ), f(zn2 ), f(zn3 ) to 0, 1,∞ resp.
Then Cr (f(zn1 ), f(z

n
2 ), f(z

n
3 ), f(z

n
4 )) = Bn(f(z

n
4 )).

Let gn = Bn ◦ f ◦A−1
n .

Then gn fixes 0, 1 and ∞.
By lemma 1.7.11.7.1, we assume gn → g uniformly by passing to subsequence.
So lim

n→∞
gn(An(z

n
4 )) = g(z) = x ∈ {0, 1,∞}, contradiction!

We now proof the converse statement.

Thm 3.3.3. Let f : C → C be a homeomorphism and take a fixed point z0 ∈ C\R, if Nf (z0) is
compact in Ĉ\{0, 1,∞}, then f is quasiconformal.

Proof. Suppose f is not quasiconformal, i.e. there exists zn, xn, yn with xn, yn ∈ ∂Brn(zn) such
that

|f(yn)− f(zn)|
|f(xn)− f(zn)|

→ ∞.

Take Mobius transformations

An(z) = zn + (xn − zn)z,Bn(z) =
z − f(zn)

f(xn)− f(zn)

Then An(0) = zn, An(1) = xn, Bn(f(zn)) = 0, Bn(f(xn)) = 1, An(∞) = Bn(∞) = ∞.
So gn = Bn ◦ f ◦An ∈ Nf , i.e. {gn(z0)} is compact in Ĉ\{0, 1,∞}.
Around zn, we consider f ◦An locally as an R-linear map Dn.



CHAPTER 3. BELTRAMI DIFFERENTIAL 31

WLOG, we choose xn, yn to be the short and long axis of ellipse Dn(z0) resp. , then

|gn(z0)| =
|f(An(z0))− f(zn)|
|f(xn)− f(zn)|

≈ |x0Dn(1) + y0Dn(i)|
|Dn(1)|

→ ∞,

since y0 6= 0 and |Dn(i)|
|Dn(1)| → ∞.

Contradiction!
Hence f is quasiconformal.

Remark 3.3.1. Actually, I don’t know how to write the proof restrictly. This is just a sketch
and I think it can work after some deeper discussions.

Exam 3.3.1. When z0 ∈ R\{0, 1}, f may not be quasiconformal.
Take a quasisymmetric h : R → C with zero derivative almost everywhere and set f =

x+ ih(y).
Then we can easily check that f is quasisymmetric on every line and circle, while four points

with real cross ratio must contained in the same line or circle.
So Nf (z0) ⊂ S2{0, 1,∞} is compact, but f is not quasiconformal, since it is obviously not

absolutely continuous on lines.

Thm 3.3.4 (Slodkowski). Every holomorphic motion f : E × D → S2 can be extended to
holomorphic motion f : S2 × D → S2.

3.4 Two integral operators
We now start to solve the Beltrami equation.

Def 3.4.1. Let h ∈ Lp(C) with p > 2, the Cauchy operator is

Ph(ζ) = − 1

π

ˆ
C
h(z)

(
1

z − ζ
− 1

z

)
dxdy.

Lemma 3.4.1. Ph is a continuous function with is Hölder with exponent 1− 2
p .

Proof. By Hölder inequality,

|Ph(ζ)| =
∣∣∣∣ ζπ
ˆ
C
h(z) · 1

z(z − ζ)
dxdy

∣∣∣∣
⩽ |ζ|

π
‖h‖p

∥∥∥∥ 1

z(z − ζ)

∥∥∥∥
q

And since ˆ
C
|z(z − ζ)|−qdxdy = |ζ|2−2q

ˆ
|z(z − 1)|−qdxdy

So
|Ph(ζ)| ⩽ 1

π

∥∥∥∥ 1

z(z − 1)

∥∥∥∥
q

‖h‖p|ζ|
1− 2

p .

Set h1(z) = h(z + ζ1), then

|Ph(ζ2)− Ph(ζ1)| = |Ph1(ζ2 − ζ1)|

⩽ Kp‖h‖p|ζ1 − ζ2|1−
2
p
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Def 3.4.2. For h ∈ C2
0 (C), we define

Th(ζ) = lim
ε→0

− 1

π

ˆ
|z−ζ|>ε

h(z)

(z − ζ)2
dxdy

Lemma 3.4.2. If h ∈ C2
0 , then Th is C1 and

(Ph)z = Th, (Ph)z̄ = h,

ˆ
|Th|2dxdy =

ˆ
|h|2dxdy.

Proof. Notice that
(Ph)ζ̄ = − 1

π

ˆ
hz̄
z − ζ

dxdy

=
1

2πi

ˆ
hz̄
z − ζ

dzdz̄

= lim
ε→0

1

2πi

ˆ
|z−ζ|>ε

hz̄
z − ζ

dzdz̄

= lim
ε→0

1

2πi

ˆ
|z−ζ|=ε

hdz

z − ζ
= h(ζ)

ˆ
|Th|2dxdy = − 1

2i

ˆ
(Ph)z(Ph)zdzdz̄

=
1

2i

ˆ
Ph
(
Ph
)
z̄z
dzdz̄

=
1

2i

ˆ
Phh̄z̄dzdz̄

= − 1

2i

ˆ
(Ph)z̄|h|2

=

ˆ
|h|2dxdy

Remark 3.4.1. This implies that Ph actually gives an solution of the ∂̄ problem.

Thm 3.4.1 (Calderon-Zygmund). Let h ∈ Lp(C) with p > 1, then ‖Th‖p ⩽ Cp‖h‖p where
cp → 1 as p→ 2.

Conj 3.4.1. ‖T‖p = p∗ − 1 where p∗ = max
{
p, p

p−1

}
.

Remark 3.4.2. The inequality ‖T‖p ⩾ p ∗ −1 is known.

3.5 Beltrami equations
Thm 3.5.1. Suppose µ has compact support and ‖µ‖∞ ⩽ k < 1, fix p > 2 such that kCp < 1,
then there exists a unique solution of fz̄ = µfz such that f(0) = 0 and fz − 1 ∈ Lp(C).

Proof. We first proof the uniqueness.
Since fz̄ = fzµ.
So fz̄ ∈ Lp and P (fz̄) is well-defined.
Take F = f − P (fz̄).
Then Fz̄ = 0 a.e., i.e. F is holomorphic.
Since F ′ = Fz = fz − T (fz̄).
Therefore F ′ − 1 ∈ Lp(C), i.e. F ′ − 1 = 0.
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Thus f(z) = z + P (fz̄).
Suppose f, g is the solution of fz̄ = µfz, then

fz − gz = T (fz̄ − gz̄) = T (µ(fz − gz))

So by Calderon-Zygmund,

‖fz − gz‖p ⩽ cp‖µ(fz − gz)‖ ⩽ kcp‖fz − gz‖,

contradiction!
Define h = Tµ+ TµTµ+ · · · .
Since linear operator h 7→ T (µh) has norm kCq < 1.
So h is well-defined.
Take f = P (µ(h+ 1)) + z.
Then fz = T (µ(h+ 1)) + 1 = h+ 1, fz̄ = µ(h+ 1).

Coro 3.5.1. Suppose µk → µ pointwisely a.e., ‖µk‖, ‖µ‖ < k and supp µk, supp µ ⊂ B(R),
then fn ⇒ f .

Proof.
‖(fn)z − fz‖p ⩽ ‖Tµ((fn)z − fz)‖p + ‖T (µ− µn)(fn)z‖p

⩽ kCp‖(fn)z − fz‖+ Cp‖(µn − µ)fz‖p
As n→ ∞, ‖µn − µ‖ tends to 0.
So ‖(fn)z − fz‖p → 0, i.e. fn ⇒ f .

Lemma 3.5.1. If µ is smooth with compact support, then f is a topological mapping.

Proof. Let fz = λ and so µλ = fz̄, then

λz̄ = (µλ)z = λzµ+ λµz.

(log λ)z̄ = µ(log λ)z + µz.

Take σ = log λ, then
σz̄ = µσz + µz.

Let q ∈ Lp(C) such that
q = T (µq) + Tµz.

If such q exists, then we can let

σ = P (µq + µz) + C.

To find q, we consider operator T : Lp → Lp, q 7→ T (µq) + Tµz.
By Schauder fixed point theorem, q exists.
So |fz| = |eσ| > 0, i.e. f is a topological mapping.

Thm 3.5.2. If µ with compact support and ‖µ‖∞ ⩽ k < 1, then the solution of Beltrami
equation is quasiconformal homeomorphism.

Thm 3.5.3. For any measurable function µ on C with ‖µ‖∞ ⩽ k < 1, there exists a unique
quasiconformal map fµ such that fµz̄ = µfµz a.e., and fµ(0) = 0, fµ(1) = 1, fµ(∞) = ∞.
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Proof. We first consider the special case that µ = 0 near 0.
Then take

µ̂(z) = µ

(
1

z

)
z2

z̄2
.

So µ̂ has compact support and
fµ(z) =

1

f µ̂
(
1
z

) .
For general case, take µ = µ1 + µ2 where µ1 has compact support and µ2 = 0 near 0.
Take

λ =

(
µ− µ2
1− µµ̄2

fµ2z

fµ2z

)
◦ (fµ2)−1 .

Then λ has compact support and

fµ = fλ ◦ fµ2 .

Thm 3.5.4. Suppose X is a Riemann surface, and let µ be a (−1, 1) form on X with ‖µ‖∞ < 1,
then there exists a new Riemann surface Xµ and a quasiconformal map fµ : X → Xµ such that

∂̄fµ = µ∂fµ.

Proof. Let X = H/Γ and lift µ to µ̃ on H satisfying that

(µ̃ ◦A) A
′

A′ = µ̃,

for any A ∈ Γ.
Extend µ̃ to C by taking µ̃(z̄) under the real-axis and take f = f µ̃, then

Belt(f ◦A) = (Belt(f) ◦A) A
′

A′

= (µ̃ ◦A) A
′

A′

= µ̄ = Belt(f)

So f ◦A = B ◦ f for some Mobius transformation B.
Hence Γµ = f ◦ Γ ◦ f−1 is a Fuchsian group and we can take Xµ = H/Γµ.

Remark 3.5.1. We can extend µ arbitrarily and use Riemann mapping theorem to let f maps
D to D.

Exam 3.5.1. Take f(x, y) = (2x, y) in 0 ⩽ x ⩽ 1 and f(x, y) =
(
1
2x+ 3

2 , y
)
.

Then we extend f to C by f(x+ 3n, y) = f(x, y) + 3n and so

Belt(f)(x, y) =

{
1
3 3n ⩽ x ⩽ 3n+ 1

−1
3 3n+ 1 ⩽ x ⩽ 3n+ 3

Let fn(z) = 1
nf(nz).

Then fn(z) → z as n→ ∞, but µn 6→ 0 in distribution sense.
Moreover, µu → −1

9 in weak* topology.
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3.6 Decomposition of quasiconformal maps
Thm 3.6.1. Let f be a k-quasiconformal map and 0 < t < 1, then f = f2 ◦ f1 where f1 is
Kt-quasiconformal and f2 is K1−t-quasiconformal.

Proof. Let µ1(z)
µ(z) ∈ C with d(0, µ1(z)) = td(0, µ(z)), then

1 + |µ1(z)|
1− |µ1(z)|

=

(
1 + |µ(z)|
1− |µ(z)|

)t
.

So f1 = fµ1 is Kt-quasiconformal.
Take f2 = f ◦ f−1

1 and µ2 = Belt(f2), then

|µ2(f1(z))| =
∣∣∣∣ µ− µ1
1− µ̄1µ

∣∣∣∣
Therefore we obtain

log

(
1 + |µ2(f1(z))|
1− |µ2(f1(z))|

)
= 2d(µ1(z), µ(z)) = (1− t) log

(
1 + |µ(z)|
1− |µ(z)|

)
.

Hence f2 is K1−t quasiconformal.

Coro 3.6.1. Let ε > 0 and f be a k-quasiconformal map, then f = f1 ◦ · · · ◦ fn where (1 + ε)-
quasiconformal maps f1, . . . , fn for sufficiently large n.

Proof. Take n such that (1 + ε)n > k and g1 = f .
By the above theorem, we construct gi = fi◦gi+1 where fi is K 1

n -quasiconformal inductively.

Conj 3.6.1. Let ε > 0 and f : Rn → Rn be a k-quasiconformal map, are there (1 + ε)-
quasiconformal maps f1, . . . , fk, such that f = f1 ◦ · · · ◦ fk.

Conj 3.6.2. Let ε > 0 and f : Rn → Rn be a L-biLipschitz map, are there f1, . . . , fr which are
(1 + ε)-biLipschitz such that f = f1 ◦ · · · ◦ fk.

3.7 Dependence on parameter
Def 3.7.1. Let ν be an essentially bounded measurable function in C, for small t > 0 with
‖tν‖∞ < 1, we denote

f tν(z) = z + tḟ [ν](z) + o(t), i.e. ḟ [ν](z) = lim
t→0

f tν(z)− z

t

Prop 3.7.1. Suppose ν is compact support and Let f tν be the unique solution such that f(0) = 0
and fz − 1 ∈ Lp, then

ḟ [ν](z) = − 1

π

ˆ
C
ν(w)

(
1

w − z
− 1

w

)
dudv

Proof.
f tν = z + P (tν + tνT (tν) + · · · ) .

So we obtain
ḟ [ν](z) = P (ν) = − 1

π

ˆ
C
ν(w)

(
1

w − z
− 1

w

)
dudv
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Thm 3.7.1. Let f tν be the unique solution fixing 0, 1 and ∞, which we call the normalized
quasiconformal map, then

ḟ [ν](z) = − 1

π

ˆ
C
ν(w)

z(z − 1)

w(w − 1)(w − z)
dudv

Coro 3.7.1. Let {µ(t)} be an family of Beltrami coefficients depending on a real or complex
parameter t such that µ(t) is differentiable at t = 0, that is,

µ(t)(z) = µ(z) + tν(z) + tε(t)(z)

for z ∈ C and ν, ε(t) ∈ L∞(C) such that ‖ε(t)‖∞ → 0 as t → 0. Then for normalized
quasiconformal maps fµ(t),

ḟ [ν](z) = − 1

π

ˆ
C
ν(w)

fµ(z)(fµ(z)− 1) ((fµ)z(w))
2

fµ(w)(fµ(w)− 1)(fµ(w)− fµ(z))
dudv



Chapter 4

Teichmuller space

4.1 Integrable holomorphic quadratic differential
Def 4.1.1. X is a Riemann surface, a holomorphic quadratic differential ϕ on X is a holomor-
phic (2, 0)-form.

Prop 4.1.1. Let ϕ = ϕ(z)dz2 be a holomorphic quadratic differential, then |ϕ| is a volume form
on X.

Proof. Under holomorphic change of coordiantes, ϕ(A(w))A′(w)2 = ϕ̃(w).

Def 4.1.2. Denote the integrable quadratic differentials by MQD1(X) and integrable holomor-
phic quadratic differentials by QD1(X).

We define B∞(X) = {µ|µ is (−1, 1) measurable form with ‖µ‖∞ < +∞}.

Prop 4.1.2. Take ϕ ∈ QD1(X), µ ∈ B∞(X), then ϕµ is a volume form.

Proof. Under holomorphic change of coordiantes,

ϕ̃(w) = (ϕµ)(A(w))
A′(w)

A′(w)
A′(w)2 = (ϕµ)(A(w))A′(w)A′(w)

Prop 4.1.3. Suppose λ : QD1(X) → C is a bounded linear function, then it can extend
to λ : MQD1(X) → C with the same norm and there exits µ ∈ B∞(X) such that for any
ϕ ∈ QD1(X), we have

λ(ϕ) =

ˆ
X
µϕ, ‖µ‖∞ = ‖λ‖.

Moreover, µ is unique if dimQD1(X) <∞.

Proof. By Hahn-Banach theorem, we can extend λ to λ : MQD1(X) → C with the same norm.
And by Riesz representation theorem, such µ exists.
For the uniqueness, suppose ‖λ‖ = 1 and dimQD1(X) <∞.
Then there exists ϕ0 ∈ QD1(X) such that |λ(ϕ0)| = ‖ϕ0‖1, so

‖ϕ0‖1 =
ˆ
x
µϕ0 ⩽ ‖µ‖∞‖ϕ0‖1.

Hence the only possibility is that µ = |ϕ0|
ϕ0

.

37
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Exam 4.1.1. Suppose X = {z|0 < Im z < 1} is the strip, λ(ϕ) =
´
X ϕ with ϕdz2 ∈ QD1(X).

Take ϕn = 1
n+z2

, then
ˆ
X
ϕn =

ˆ ∞

−∞

dx

n+ x2
,

ˆ
X
|ϕn| =

ˆ
X

1

n
∣∣∣1 + z2

n

∣∣∣ =
√
n

n

ˆ 1

0
dy

ˆ ∞

−∞

dx∣∣∣∣1 + (x+ y√
n

)2∣∣∣∣
So

lim
n→∞

|λ(ϕn)|
‖ϕn‖1

= 1.

Hence ‖λ‖ = 1.

Exam 4.1.2. Suppose X = H, λ(ϕ) =
´
X ϕ with ϕdz2 ∈ QD1(X).

Then by Cauchy theorem, λ(ϕ) = 0 since ϕ is integrable.

Lemma 4.1.1. Meromorphic (2, 0)-forms with first order poles on E = ∂D are dense in QD1(D)

Proof. Let L ⊂ QD1(D) be the closure of such meromorphic functions.
Then we want to show L = QD1(D), suppose not.
So there exists a nonzero bounded linear functional λ : QD1(D) → C such that λ(L) = 0.
By proposition 4.1.34.1.3, we take such unique µ ∈ B∞(D).
Let

Q(z) = − 1

π

ˆ
D

µ(w)

w − z
dudv.

Then Qz̄(z) = µ(z), Q(z) = 0 for |z| = 1 and Q is continuous on C.
Suppose ϕdz2 ∈ QD1(D) is holomorphic in some neighborhood of D, then

ˆ
D
µ(z)ϕ(z)dzdz̄ =

ˆ
D
Qz̄(z)ϕ(z)dzdz̄ =

ˆ
∂D
Q(z)ϕ(z)dz = 0.

Now for any ϕdz2 ∈ QD1(D), we let ϕr(z) = ϕ(rz) for r < 1, then
ˆ
µ(z)ϕr(z)dzdz̄ = 0

So
´
µϕ = 0 since ϕr

L1

−−→ ϕ as r → 1, contradiction!

Def 4.1.3. Suppose X = D/Γ is a Riemann surface, we define the Poincaré series operator as

θ : QD1(D) −−→ QD1(X)
ϕdz2 7−−→

∑
A∈Γ

(ϕ ◦A)(A′)2dz2

Prop 4.1.4. θ : QD1(D) → QD1(X) is well-defined and ‖θ‖ ⩽ 1.

Proof. For A ∈ Γ and w = A(z),

θ
(
ϕdz2

)
(w) =

∑
B∈Γ

ϕ(B(w)) · (B′(w))2dw2

=
∑
B∈Γ

ϕ(B ◦A(z)) ·
(
B′(A(z)) ·A′(z)

)
dz2

=
∑
B∈Γ

ϕ(B(z))(B′(z))2dz2
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Moreover, let F be a fundamental domain of X, then

∥∥θ (ϕdz2)∥∥
1
=

ˆ
F

∣∣∣∣∣∑
A∈Γ

(ϕ ◦A)(A′)2

∣∣∣∣∣dxdy
⩽
∑
A∈Γ

ˆ
F
|ϕ(A(z))|

∣∣A′(z)
∣∣2dxdy

=
∑
A∈Γ

ˆ
A(F )

|ϕ(z)|dxdy

=

ˆ
D
|ϕ(z)|dxdy = ‖ϕ‖1

Thm 4.1.1. Given ψ ∈ QD1(X), there exists ϕ ∈ QD1(D) such that θ(ϕ) = ψ and ‖ϕ‖ ⩽ 3‖ψ‖.

Remark 4.1.1. We will prove this in next section.

Thm 4.1.2. Let ν ∈ B∞(H/Γ), then

(1) ḟ [ν](z) = 0 for any z ∈ ∂H iff
´
X νϕ =

´
H/Γ νϕ = 0 for any ϕ ∈ QD1(X) ∼= QD1(H/Γ).

(2) Moreover, in this case there exists δ(t) ∈ Belt(H/Γ) such that

a) ‖δ(t)‖ ⩽ 12t2.
b) f tν(z) = f δ(t)(z) for z ∈ ∂H.

Proof. (1) By theorem 3.7.13.7.1

ḟ [ν](z) = − 1

π

ˆ
C
ν(w)

(
1

w − z
− z

w − 1
− 1

w

)

So
(
ḟ [ν]

)
z̄
= ν.

For meromorphic map ϕ with simple pole in ∂H,
ˆ
H
νϕdzdy =

1

2i

ˆ
H

(
ḟ [ν]

)
z̄
ϕdzdz̄

=
1

2i

ˆ
∂H
ḟ [ν]ϕdz = 0

By lemma 4.1.14.1.1,
´
H νϕ = 0 for any ϕ ∈ QD1(H).

And since ˆ
X
νθ
(
ϕdz2

)
=

ˆ
F
ν
∑
A∈Γ

(ϕ ◦A)(A′)2dz2

=
∑
A∈Γ

ˆ
F
ν(ϕ ◦A)(A′)2dz2

=
∑
A∈Γ

ˆ
A(F )

(ν ◦A−1)
A−1
z

Az
ϕdA(z)2

=
∑
A∈Γ

ˆ
A(F )

νϕ =

ˆ
H
νϕ.
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Hence
´
X νϕ = 0 for any ϕ ∈ QD1(X).

The converse is trivial by taking

ϕ(w) =

(
1

w − z
− z

w − 1
− 1

w

)
dz2.

(2) It is too technical to prove, so we will not give the proof.

4.2 Bergman projection
We denote the hyperbolic metric by ρ(z) = 2

1−|z|2 .

Def 4.2.1. Let A2(D) be the space of holomorphic functions φ on D such that

‖ϕ‖2 =
ˆ
D
ρ(z)−2|ϕ(z)|2dxdy <∞.

We define the Petersson scalar product on A2(D) by

〈ϕ, ψ〉D =

ˆ
D
ρ(z)−2ϕ(z)ψ(z)dxdy.

Then A2(D) becomes a separable Hilbert space with this scalar product.

We take
ϕn(z) =

√
2

π
(n+ 1)(n+ 2)(n+ 3)zn.

Then {ϕn}∞n=0 is a complete orthonormal basis for A2(D).

Def 4.2.2. The Bergman kernel is the reproducing kernel for A2(∆), that is,

K(z, w) =
∞∑
n=0

ϕn(z)ϕn(w) =
12

π(1− zw̄)4
.

Prop 4.2.1 (reproducing formula). For ϕ ∈ A2(D),

ϕ(z) = 〈ϕ,K(·, z)〉D.

Proof.

〈ϕ,K(·, z)〉D =
∞∑
n=0

〈ϕ, ϕn · ϕn(z)〉D =
∞∑
n=0

ϕn(z)〈ϕ, ϕn〉D = ϕ(z)

Thm 4.2.1. (1) K(z, w) = K(w, z)

(2) For A ∈ Aut(D), K(Az,Aw)A′(z)2A′(w)
2
= K(z, w)

(3)
´
D |K(z, w)|dxdy = 3ρ2(w)

(4) If
∣∣ρ−2(z)ϕ(z)

∣∣ ⩽ C for z ∈ D and holomorphic ϕ, then

ϕ(z) =

ˆ
D
ρ−2(w)ϕ(w)K(z, w)dudv
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Proof. (1) Trivial.

(2) Since 〈
(ϕ ◦A)(A′)2, (ψ ◦A)(A′)2

〉
D

=

ˆ
D
ρ(z)−4ϕ(A(z))ψ(A(z))A′(z)2A′(z)

2
dAD(z)

=

ˆ
D

(
ρ(z)−1

∣∣A′∣∣)4 ϕ(A(z))ψ(A(z))dAD(A(z))

=

ˆ
A(D)

ρ(z)−4ϕ(z)ψ(z)dAD(z) = 〈ϕ, ψ〉D

Here
dAD(z) =

4dxdy(
1− |z|2

)2
is the hyperbolic area.
So
{
(ϕn ◦A)(A′)2

}
is also a complete orthonormal basis for A2(D).

Hence the reproducing kernel is the same, i.e.

K(Az,Aw)A′(z)2A′(w)
2
= K(z, w)

(3) ˆ
D
|K(z, w)|dxdy =

12

π

ˆ 1

0

ˆ 2π

0

r

(1− 2sr cos θ + s2r2)2
dθdr

=
12

π

ˆ 1

0

2π(1 + s2r2)

(1− s2r2)3
dr

= 24

ˆ 1−s2

1

2− t

t3
· −dt

2s2

=
12

s2

ˆ 1

1−s2

2− t

t3
dt

=
12

s2

(
1

(1− s2)2
− 1

1− s2

)
=

12

(1− s2)2
= 3ρ2(w)

Here z = reiθ, w = seiφ, t = 1− r2s2

(4) Since
∣∣ρ−2(z)ϕ(z)

∣∣ ⩽ C.
So the integral is well-defined for all z.
For z = 0,

ϕ(0) = 6ϕ(0)

ˆ 1

0
(1− r2)2rdr

=
3

π

ˆ
D
(1− |w|2)2ϕ(w)dudv

=

ˆ
D
ρ(w)−2ϕ(w)K(0, w)dudv

Now for any z ∈ D, take A ∈ Aut(D) such that A(0) = z and ψ = (ϕ ◦A)(A′)2.
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Then we obtain that

ψ(0) =

ˆ
D
ρ(ζ)−2ψ(ζ)K(0, ζ)dξdη

=

ˆ
D
(ρ(A(ζ))|A(ζ)|)−2 ϕ(A(ζ))A′(ζ)2K(A(0), A(ζ))A′(0)2A′(ζ)

2|A(ζ)|−2dudv

= A′(0)2
ˆ
D
ρ(w)−2ϕ(w)K(z, w)dudv

Hence this conclude the desired formula.

Def 4.2.3 (Bergman projection).

P :MQD1(D) → QD1(D), P (ϕ)(z) =
ˆ
D
ρ−2(w)ϕ(w)K(z, w)dudv.

Proof of theorem 4.1.14.1.1. Let F be a fundamental domain of X and take

ψ(z) = P (χFϕ)(z) =

ˆ
H
ρ−2(w)(χF (w)ϕ(w))K(z, w)dudv.

Then θψ = ϕ and
ˆ
H
|ψ(z)|dxdy ⩽

ˆ
H

∣∣ρ−2χFϕ
∣∣(w)(ˆ

H
|K(z, w)|dxdy

)
dudv

⩽
ˆ
H

∣∣ρ−2χFϕ
∣∣(w) · 3ρ2(w)dudv

= 3

ˆ
F
|ϕ(w)|dudv = 3‖ϕ‖1

4.3 Teichmuller spaces
Def 4.3.1. Let S0 be a Riemann Surface, we let T (S0) = {(S, f)|f : S0 → S quasiconformal}/∼
and (S1, f1) ∼ (S2, f2) if f2 ◦ f−1

1 : S1 → S2 is homotopic to a conformal map.
Belt(S0) is the unit ball of (−1, 1)-form on S0 w.r.t. ‖·‖∞.

Remark 4.3.1. T (S0) = Belt(S0)/∼ where µ ∼ ν iff fν ◦ (fµ)−1 is homotopic to conformal map.

Def 4.3.2. fµ : C → C is the unique normalized quasiconformal map with Beltrami differential{
µ(z) z ∈ H
0 z ∈ R ∪H−

Prop 4.3.1. fµ = fν on R iff fµ = fν on R.

Proof. If fµ = fν on R, then fµ ◦ (fµ)−1, fγ ◦ (fγ)−1 are conformal maps which map H to Ω,
whose boundary is fµ(R), and fix 0, 1 and ∞.

Then fµ ◦ (fν)−1 = fγ ◦ (fγ)−1 on H.
And since fµ = fν on R.
So fµ = fν on R.



CHAPTER 4. TEICHMULLER SPACE 43

Conversely, we take

g(z) =

{(
(fν)−1 ◦ fµ

)
(z) z ∈ H

z z ∈ R ∪H−

And let A = fγ ◦ g ◦ (fµ)−1.
Then A is conformal on Ω = fµ(H) since A = fγ ◦ (fγ)−1 ◦ fµ ◦ (fµ)−1 on Ω.
And similarly, A is conformal on Ω∗ and A is quasiconformal on C.
So A is conformal on C and fix 0, 1 and ∞, i.e. A = Id.
Hence fµ = fν on R.

Def 4.3.3. We define the Teichmuller metric on Teichmuller space as

d((S1, f1), (S2, f2)) =
1

2
inf

g∼f2◦f−1
1

logKg

Lemma 4.3.1. Let f : S0 → S be quasiconformal, then the set of all quasiconformal maps
g : S0 → S which are homotopic to f contains an extremal map with the smallest maximal
dilatation.

Proof. The lemma is trivial if the universal covering is Ĉ or C and M is not compact.
The torus case is similar as below.
Now suppose H is the universal covering of M .
Then lift g to a map g̃ : H → H such that all maps g̃ agrees on boundary.
So the set of g̃ contains its limits, i.e. there exists a map g̃0 with smallest maximal dilatation.
Hence g0 is the required extremal map.

Prop 4.3.2. Teichmuller metric is a metric.

Proof. Take (S1, f1), (S2, f2), (S3, f3), then

d([S1, f1], [S2, f2]) =
1

2
inf

g∼f2◦f−1
1

logKg

⩽ 1

2
inf

g1∼f2◦f
−1
3

g2∼f3◦f
−1
1

logKg1Kg2

= d([S1, f1], [S3, f3]) + d([S2, f2], [S3, f3])

Suppose d([S1, f1], [S2, f2]) = 0.
Then there exists extremal map g ∼ f2 ◦ f−1

1 such that Kg = 1, i.e. g is conformal.
So [S1, f1] = [S2, f2].

Remark 4.3.2. In terms of Beltrami differentials,

dT ([µ0], [ν0]) =
1

2
inf

µ∈[µ0],ν∈[ν0]
log

1 +
∥∥∥ µ−ν
1−µ̄ν

∥∥∥
∞

1−
∥∥∥ µ−ν
1−µ̄ν

∥∥∥
∞

Def 4.3.4. A Beltrami differential µ ∈ [µ0] is called extremal if ‖µ‖∞ ⩽ ‖ν‖∞ for any ν ∈ [µ0].

Prop 4.3.3. Let [µ1] ∈ T (S0), if µ is an extremal Beltrami differential in the Teichmuller class
[µ1], then

µt =
(1 + |µ|)t − (1− |µ|)t

(1 + |µ|)t + (1− |µ|)t
· µ
|µ|

for 0 ⩽ t ⩽ 1 is extremal for [µt] ∈ T (S0). The arc t → [µt] is a geodesic from 0 to [µ1], and
dT ([µt], 0) = tdT ([µ], 0).
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Proof. Since µ represents a point in T (S0).
So µ = (µ ◦A)A′

A′ for every deck transformation A.
Therefore µt also satisfies this condition, i.e. [µt] ∈ T (S0) is well-defined.
For g ∈ [µt], let g0 be the conformal map which is homotopic to fµt ◦ g−1 and

h = fµ ◦ (fµt)−1 ◦ g0 ◦ g.

Then h is homotopic to fµ, i.e. h ∈ [µ1].
By theorem 3.6.13.6.1, K1 ⩽ Kh ⩽ K1−t

1 Kg, i.e. Kg ⩾ Kt
1.

Therefore µt is extremal for [µt].
And since dT ([µt], [µ1]) ⩽ 1

2 logKfµ◦(fµt )−1 = (1− t)dT ([µ], 0).
So dT (0, [µt]) + dT ([µt], [µ1]) = dT (0, [µ1]) for every 0 ⩽ t ⩽ 1.
Hence t→ [µt] is a geodesic.

Coro 4.3.1. (T (S0), dT ) is path connected.

Proof. For [µ] ∈ T (S0), the arc t→ [µt] is a path from 0 to [µ1].

Thm 4.3.1. (T (S0), dT ) is complete.

Proof. Take a Cauchy sequence in (T (S0), dT ) whose points are represented by Beltrami differ-
ential µn and fn ∈ [µn].

Fix a map fi ∈ [µi] such that for j ⩾ 1,

inf
gi+j∈[µi+j ]

logKgi+j◦f−1
i

<
1

2
.

Suppose fi = f1 by passing to a subsequence and take fn ∈ [µn] such that

logKfn◦f−1
1

<
1

2
.

Choose fk such that for j ⩾ 1,

inf
gk+j∈[µk+j ]

logKgk+j◦f−1
k

<
1

4
.

Suppose fk = f2 by passing to a subsequence and take fn ∈ [µn] such that

logKfn◦f−1
2

<
1

4
.

Repeating this procedure gives a sequence {fn} such that {[fn]} is a subsequence of the
Cauchy sequence and

logKfn+1◦f−1
n

< 2−n.

So

logKfn+j◦f−1
n

⩽
j∑
i=1

2−(n+i−1) < 2−n+1.

And the dilatation µn of fn satisfy that

‖µn+j − µn‖∞ ⩽ 2

∥∥∥∥ µn+j − µn
1− µnµn+j

∥∥∥∥
∞

= 2 tanh

(
1

2
logKfn+j◦f−1

n

)
< 2 tanh 2−n.

Therefore {µn} is a Cauchy sequence in B∞(S0), i.e. µn → µ as n → ∞ for some µ ∈
B∞(S0).
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Prop 4.3.4. Suppose g : S0 → X0 is quasiconformal, then T (S0) ∼= T (X0).

Proof. Consider ϕ : T (S0) → T (X0), [S, f ] 7→ [S, f ◦ g−1].
Then d([S1, f1], [S2, f2]) = d([S1, f1 ◦ g−1], [S2, f2 ◦ g−1]).

Def 4.3.5. Modg = {g : Σg → Σg|g is diffeomorphism}/ ∼ and g1 ∼ g2 if g1 homotopic to g2.

Prop 4.3.5. Isom(Tg) ∼= Modg.

Proof. By proposition 4.3.44.3.4, every isometry Tg → Tg corresponds to quasiconformal map Σg →
Σg and two maps f1, f2 correspond to the same isometry iff [f1] = [f2] ∈ Tg, i.e. f1 ' f2.

4.4 Douady-Earle extension
Thm 4.4.1 (Schoen conjecture). If f : S1 → S1 is quasi-symmetric, then there exists extension
h : D → D which is harmonic w.r.t. hyperbolic metric on D.

Thm 4.4.2. If f : S1 → S1 is homeomorphism, then there exists a homeomorphic extension
ϕf : D → D such that

(1) (Conformally natural) A ◦ ϕf ◦B = ϕA◦f◦B for A,B ∈ Aut(D)

(2) If φ is quasi-symmetric, then φ̃ is quasiconformal in D.

Moreover, it is uniquely determined with the condition that
ˆ
S1
f(ζ)|dζ| = 0 ⇔ ϕf (0) = 0

Remark 4.4.1. We take w = ϕf (z) as the unique w ∈ D such that

F (z, w) =
1

2π

ˆ
S1

(
f(ζ)− w

1− w̄f(ζ)

)(
1− |z|2

|z − ζ|2

)
|dζ| = 0.

It needs many technique of analysis to prove that the solution of F (z, w) = 0 is unique for
any z ∈ D and such ϕf satisfies the required statements, so we skip the detail.

Lemma 4.4.1. Let S0 = D/Γ, consider the map

σ : Belt(D) −−→ Belt(D)
µ 7−−→ µϕφµ

where φµ = fµ
∣∣
S1, then

(1) σ maps Belt(S0) to itself

(2) there exists a continuous map s : T (S0) → Belt(S0) such that s ◦ π = σ

(3) π ◦ σ = π.

Proof. (1) Let B ◦ fµ ◦A = fµ for some B ∈ Aut(D), A ∈ Γ.
Then B ◦ φµ ◦A.
And since ϕ is conformmally natural.
So B ◦ ϕφµ ◦A = ϕφµ , i.e. σ(µ) ∈ Belt(S0).
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(2) Take s([µ]) = σ(µ).
Suppose [µ1] = [µ2], i.e. fµ1 ' fµ2 .
Then φµ1 = φµ2

So ϕφµ1 = ϕφµ2 , i.e. σ(µ1) = σ(µ2).
Hence s is well-defined.

(3) Since ϕφµ

∣∣
S1 = φµ.

So ϕφµ ' fµ.
Hence π ◦ σ(µ) = [µ].

Thm 4.4.3. Let S0 = D/Γ, then T (S0) is contractible.

Proof. By the above lemma, since π ◦ s ◦ π = π ◦ σ = π.
So π ◦ s = Id.
Take H : T (S0)× [0, 1] → T (S0), ([µ], t) = [(1− t)s([µ])].
Then H(−, 0) = Id and H(−, 1) = 0.
Hence T (S0) is contractible.

4.5 Teichmuller space of torus
Def 4.5.1. Take Tτ (z) = z + τ and Gτ = 〈T1, Tτ 〉, then a torus is given by Sτ = C/Gτ .

Prop 4.5.1. Sτ = Sτ ′ iff τ ′ = A(τ) for some A ∈ PSL(2,Z).

Lemma 4.5.1. Let θ : Gτ → Gτ ′ be an isomorphism, then there exists a homeomorphism
f : Sτ → Sτ ′ inducing θ.

Proof. Let Tω1 = θ(T1), Tω2 = θ(Tτ ).
Then consider the affine map f fixing 0 and mapping 1, τ to ω1, ω2 resp.
Since ω2

ω1
= A(τ ′) for some A ∈ PSL(2,Z).

So f projects to the map we desired.

Lemma 4.5.2. Let τ, τ ′ ∈ H, Sτ and Sτ ′ are conformally equivalent iff τ ′ = A(τ) for some
A ∈ SL(2,Z).

Proof. Suppose Sτ and Sτ ′ are conformally equivalent and the conformal map lifts to f : C → C.
Then f(0) = 0, i.e. f(z) = αz.
So (α, ατ) is a base of Sτ ′ , i.e. τ ′ = A(τ) for some A ∈ SL(2,Z).
Conversely, by proposition 4.5.14.5.1, Sτ = Sτ ′ .

Thm 4.5.1. In each homotopy class of sense-preserving homeomorphisms between tori, the
extremal map can be lifted to an affine map.

Proof. Suppose f : Sτ → Sτ ′ and the lift f̃ : C → C satisfies that f(0) = 0 and

f̃(z +m+ nτ) = f̃(z) +mω1 + nω2,

we denote the set of such f̃ by F .
Then there exists a unique affine map

g(z) =
ω2 − ω1τ̄

τ − τ̄
z +

ω1τ − ω2

τ − τ̄
z̄
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in F .
Suppose f is K-quasiconformal, let fk(z) = f̃(kz)

k
Then fk converges to an affine map in F , i.e. fk → g.
So Kg ⩽ K.
Now suppose that K = Kg, assume g(x+ iy) = Kx+ iy WLOG.
Since f̃ , g ∈ F , there exists M such that∣∣∣f̃(z)− g(z)

∣∣∣ ⩽M.

So we obtain ˆ r

0

∣∣∣f̃x(x+ iy)
∣∣∣dx ⩾

∣∣∣∣ˆ r

0
f̃x(x+ iy)dx

∣∣∣∣ ⩾ Kr − 2L

Consider R = [0, r]× [0, r], then
ˆ
R

∣∣∣f̃x∣∣∣dxdy ⩾ Kr2 − 2Lr.

As r → ∞, the number of period parallelograms P meeting R is about r2(1+o(1))
A(P ) , and so

ˆ
P

∣∣∣f̃x∣∣∣dxdy ⩾ lim
r→∞

r2(K + o(1))

r2(1 + o(1))
A(P ) = KA(P ).

On the other hand, |fx|2 ⩽ KJ , therefore

(KA(P ))2 ⩽ A(P )

ˆ
P

∣∣∣f̃x∣∣∣2dxdy ⩽ KA(P )A(f̃(P )).

And since f̃(P ) is the fundamental domain of Sτ ′ , i.e. A(f̃(P )) = A(g(P )) = KA(P ).
Hence

∣∣∣f̃x∣∣∣2 = KJ almost everywhere, i.e. f̃ = g is affine.

Lemma 4.5.3. Let θ : Gτ → Gτ ′ be an isomorphism generated by K-quasiconformal map f ,
then

dH

(
τ,
f̃(τ)

f̃(1)

)
⩽ 1

2
logK

the equality holds iff f̃ is affine.

Proof. WLOG, we assume f(τ)
f(1) = τ ′.

Let g homotopic to f and g̃ = λ (z + µz̄) is affine, then

µ =
τ − τ ′

τ ′ − τ̄
.

So we obtain
logKg = log

1 + |µ|
1− |µ|

= tanh

(
|τ − τ ′|
|τ ′ − τ̄ |

)
= 2dH(τ, τ

′).

And by the above theorem, Kg ⩾ Kf .
Hence we complete the proof.

Thm 4.5.2. Teichmuller space of torus is isometric to H with hyperbolic metric.



CHAPTER 4. TEICHMULLER SPACE 48

Proof. Consider ψ : T (Sτ ) → H given by

ψ([f ]) =
f̃(τ)

f̃(1)
.

By three lemmas above, we can easily check that ψ is bijective.
Consider [f1], [f2] ∈ T (Sτ ), let f : f1(Sτ ) → f2(Sτ ) be the extremal homotopic to f2 ◦ f−1

1 .
Then by lemma 4.5.34.5.3,

dT ([f1], [f2]) =
1

2
logKf = dH

(
f̃1(τ)

f̃1(1)
,
f̃2(τ)

f̃2(1)

)
= dH(ψ([f1], [f2])).

4.6 Teichmuller theorem
Def 4.6.1. Let S be a Riemann surface and ν ∈ Belt(S), we say ν annihilates QD1(S) if

ˆ
S
γϕ = 0

for all ϕ ∈ QD1(S).

Def 4.6.2. Consider the linear functional

Λµ(ϕ) =

ˆ
M
µ(z)ϕ(z)dxdy.

We say µ and ν are infinitesimally equivalent, or µ ∼∗ ν if Λµ(ϕ) = Λν(ϕ) for ϕ ∈ QD1(S).
The infinitesimally equivalent class of µ is denoted by [µ]∗.
An element µ is said to be infinitesimally extremal if for all ν ∈ [µ]∗, ‖µ‖∞ ⩽ ‖ν‖∞.

Thm 4.6.1 (Hamilton–Krushkal). Suppose µ ∈ Belt(S) is extremal in [µ] ∈ T (S), then µ is
infinitesimally extremal.

Proof. Let ‖µ‖∞ = k, α ∈ [µ]∗ and ‖α‖∞ = k1.
Suppose k1 < k, let ν = µ− α
Then ν annihilates QD1(S).
By theorem 4.1.24.1.2, take [δ(t)] = [tν] ∈ T (S) such that ‖δ(t)‖∞ ⩽ 12t2, let νt = tν − δ(t).
So [νt] = [0] in T (S).
Moreover, take fλ = fµ ◦ (fνt)−1, then

|λ ◦ fνt | =
∣∣∣∣ µ− νt
1− µνt

∣∣∣∣
=

√
|µ|2 − 2Re (µνt) + |νt|2

1− 2Re (µνt) + |νtµ|2

=

√
|µ|2 − 2

(
1− |µ|2

)
Re(µν̄) +O(t2)

= |µ| − 1− |µ|2

|µ|
Re (µν̄) t+O(t2)

Consider E1 =
{
z ∈ S

∣∣∣|µ(z)| ⩽ k+k1
2

}
, E2 = S\E1.

On E1, |λ (fνt(z))| ⩽ k+k1
2 +O(t) < k − C1t for small t > 0.
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On E2, since
Re(µν̄) = tRe(|µ|2 − µᾱ) ⩾ t|µ|Re(|µ| − |α|).

So we deduce

1− |µ|2

|µ|
Re(µν̄) ⩾ (1− |µ|2)(|µ| − |α|) ⩾ 1

2
(1− k2)(k − k1)

Therefore |λ(z)| < k − C2t for small t > 0 and z ∈ E2.
Hence |λ(z)| < k − Ct for some constant C and z ∈ S, contradiction!

Thm 4.6.2 (Reich-Strebel inequality). Suppose fµ : S → S and [µ] = 0, then for ϕ ∈ QD1(S),

‖ϕ‖1 ⩽
ˆ
S
|ϕ|

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

dxdy

Remark 4.6.1. The proof uses the theory of trajectories of quadratic differentials, so we omit
the proof.

Exam 4.6.1. Consider λ = k |ϕ|
ϕ and ϕ0 = −ϕ, then

ˆ
S
|ϕ|

∣∣∣1− µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

dxdy =

ˆ
S
|ϕ|1− k

1 + k
dxdy.

So the Reich-Strebel inequality cannot hold, i.e. [λ] 6= 0.

We now proof the special case of Reich-Strebel inequality for square torus.

Prop 4.6.1 (Grötzsch). Let S be a square torus, fµ : S → S and [µ] = 0, then for ϕ ∈ QD1(S),

‖ϕ‖1 ⩽
ˆ
S
|ϕ|

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

dxdy

Proof. Take γy(t) = (t, y).
Then l(f(γy)) ⩾ l(γy) = 1, so

ˆ 1

0
1dy ⩽

ˆ 1

0

ˆ 1

0
|fz(x, y)||1 + µ(x, y)|dxdy

=

ˆ
S
|fz||1 + µ|dxdy

=

ˆ
S

|fz||1 + µ|√
|fz|2 − |fz̄|2

√
|fz|2 − |fz̄|2dxdy

⩽
ˆ
S

|1 + µ|2

1− |µ|2
dxdy ·

ˆ
S

(
|fz|2 − |fz̄|2

)
dxdy

=

ˆ
S

|1 + µ|2

1− |µ|2
dxdy

And since QD1(S) = Cdz2.
So we conclude the proof.
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Coro 4.6.1 (main inequality). Suppose f : S → f(S) and f̃ : f(S) → S have Beltrami
differentials µ and µ1 resp. and f̃ ◦ f is homotopic to the identity, then for any ϕ ∈ QD1(S)

‖ϕ‖1 ⩽
ˆ
S

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

∣∣∣1 + θµ1(f)
ϕ
|ϕ|

∣∣∣2
1− |µ1(f)|2

|ϕ|dxdy.

Here
θ = p

(
1 +

µϕ

|ϕ|

)(
1 +

µϕ

|ϕ|

)−1

, p =
fz
fz

Proof. The Beltrami differential λ of f̃ ◦ f is

λ =
µ+ µ1(f)p

1 + µ̄µ1(f)p

So by Reich-Strebel inequality,

‖ϕ‖1 ⩽
ˆ
S
|ϕ|

∣∣∣1 + λ ϕ
|ϕ|

∣∣∣2
1− |λ|2

dxdy

=

ˆ
S
|ϕ|

∣∣∣1 + µ̄µ1(f)p+ (µ+ µ1(f)p)
ϕ
|ϕ|

∣∣∣2
|1 + µ̄µ1(f)p|2 − |µ+ µ1(f)p|2

dxdy

=

ˆ
S
|ϕ|

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣2∣∣∣∣1 + µ̄+ ϕ
|ϕ|

1+µ ϕ
|ϕ|
µ1(f)p

∣∣∣∣2(
1− |µ|2

)(
1− |µ1(f)p|2

) dxdy

=

ˆ
S

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

∣∣∣1 + θµ1(f)
ϕ
|ϕ|

∣∣∣2
1− |µ1(f)|2

|ϕ|dxdy

Thm 4.6.3. Suppose f : S0 → S with Beltrami differential of Teichmuller type, i.e. µ = k ϕ̄
|ϕ|

for some ϕ ∈ QD1(S), and g : S0 → S is quasiconformal such that g−1 ◦ f homotopic to
the identity, then either there exists a set of positive measure on S0 for which |µg(z)| > k or
µg(f) = µ almost everywhere.

Proof. Let ν(z) = Belt(g−1)(f(z)) and WLOG, we assume ‖ϕ‖1 = 1.
If ‖µg‖∞ = ‖ν‖∞ ⩽ k, then

1 ⩽
ˆ
S

∣∣∣1− µ ϕ
|ϕ|

∣∣∣2
1− |µ|2

∣∣∣1− θν ϕ
|ϕ|

∣∣∣2
1− |ν|2

|ϕ|dxdy

=

ˆ
S

1− k

1 + k

∣∣∣1− fz
fz
ν ϕ
|ϕ|

∣∣∣2
1− |ν|2

|ϕ|dxdy

⩽ 1

K

ˆ
S

1 + |ν|2

1− |ν|2
|φ|dxdy

⩽ 1

K

1 + ‖ν‖∞
1− ‖ν‖∞

‖φ‖1 ⩽ 1

So each inequality must be equality, i.e.∣∣∣∣1 + µg(f)
ϕ

|ϕ|

∣∣∣∣2 = ∣∣∣∣1− fz
fz
ν
ϕ

|ϕ|

∣∣∣∣2 = 1 + |ν|2, |ν| ≡ k
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hold almost everywhere.
Hence µg(f) = µ almost everywhere.

Thm 4.6.4 (Teichmuller existence theorem). Let X Riemann surface with dimQD1(X) < +∞,
then every point in T (X) has a uniquely extremal representative, which is of Teichmuller type.

Proof. Take [µ] ∈ T (X) such that µ is extremal in [µ], consider the linear functional

λ(ϕ)(ϕ) =

ˆ
X
µϕ.

Then there exists ϕ0 ∈ QD1(X) such that ‖λ‖ = λ(ϕ0) and ‖ϕ0‖ = 1.
By Hamilton-Krushkal condition, µ is infinitesimal extremal, i.e.

‖µ‖∞ = ‖λ‖ =

ˆ
X
µϕ.

So µ = k φ0

|φ0| .
By theorem 4.6.34.6.3, µ is the unique extremal.

Prop 4.6.2. Let τ1, τ2 ∈ T (X), then there exists a geodesic between τ1, τ2 and moreover, if
dimQD1(X) < +∞, then this geodesic is unique.

Proof. By proposition 4.3.34.3.3, the geodesic exists.
And if dimQD1(X) < +∞, by the Teichmuller existence theorem, the geodesic is unique.

Remark 4.6.2. For µ = k ϕ̄
|ϕ| , the unique geodesic from 0 to µ is given by

t 7→
[
tanh(t)

ϕ̄

|ϕ|

]
.

So the tangent bundle of T (X) is given by Belt(X)/ ∼∗, which is the dual space of QD1(X).
Moreover, T (X) is has a Finsler norm

‖[µ]∗‖Fin = inf
ν∈[µ]∗

‖ν‖∞.

Def 4.6.3. Consider µ ∈ Belt(H/Γ), we can extend µ on C with µ(z) = µ(z̄), then fµ(z) =
fµ(z̄), i.e. we can induce fµ : X → X ]mu = H/Γµ.

On the other hand, if we extend µ on C such that µ(z) = 0 for Im z < 0, we can define
fµ : C → C.

4.7 Schwartzian derivative
Def 4.7.1. If f is a conformal map, or more generally, for holomorphic map with f ′(z) 6= 0,
we define

(Sf)(z) = 6 lim
w→z

∂2

∂z∂w
log

f(z)− f(w)

z − w
.

Remark 4.7.1. Notice that
ˆ z2

z1

ˆ w2

w1

∂2

∂z∂w
log

f(z)− f(w)

z − w
dwdz = log

Cr(f(z1), f(w2), f(z2), f(w1))

Cr(z1, w2, z2, w1)

So In some sence, S(f) measures the amounts by which f distorts the cross ratios.
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Prop 4.7.1.

(Sf)(z) =
f ′′′

f ′
(z)− 3

2

(
f ′′

f ′

)2

(z).

Proof.

(Sf)(z) = 6 lim
t→0

f ′(z)f ′(z + t)

(f(z)− f(z + t))2
− 1

t2

= 6 lim
t→0

f ′(z)
(
f ′(z) + f ′′(z)t+ 1

2f
′′′(z)t2 + o(t2)

)
t2
(
f ′(z) + 1

2f
′′(z)t+ 1

6f
′′′(z)t2 + o(t2)

)2 − 1

t2

= 6 lim
t→0

f ′(z)

t2
·

f ′(z) + f ′′(z)t+ 1
2f

′′′(z)t2 + o(t2)

f ′(z)2 + f ′(z)f ′′(z)t+
(
1
4f

′′(z)2 + 1
3f

′(z)f ′′′(z)
)
t2 + o(t2)

− 1

t2

= 6 lim
t→0

1

t2

(
1 +

f ′′

f ′
(z)t+

1

2

f ′′′

f ′
(z)t2 + o(t2)

)
·

(
1− f ′′

f ′
(z)t+

((
f ′′

f ′

)2

(z)− 1

4

(
f ′′

f ′

)2

(z)− 1

3

f ′′′

f ′
(z)

)
+ o(t)

)
− 1

t2

= 6 lim
t→0

1

t2

(
1 +

(
1

6

f ′′′

f ′
(z)− 1

4

(
f ′′

f ′

)2

(z)

)
t2 + o(t)

)
− 1

t2

=
f ′′′

f ′
(z)− 3

2

(
f ′′

f ′

)2

(z)

Prop 4.7.2.
S(f ◦ g) = ((Sf) ◦ g) · (g′)2 + Sg

and Sf ≡ 0 iff f is a Mobius transformation. In particular, for Mobius transformation A,

Sf◦A = (Sf ◦A) · (A′)2.

Proof.
S(f ◦ g)(z) = 6 lim

w→z

(f ◦ g)′(z)(f ◦ g)′(w)
(f(g(z))− f(g(w)))2

− 1

(z − w)2

= 6 lim
w→z

f ′(g(z))f ′(g(w))

(f(g(z))− f(g(w)))2
g′(z)g′(w)− 1

(z − w)2

= (Sf)(g(z)) · g′(z)2 + 6 lim
w→z

g′(z)g′(w)

(g(z)− g(w))2
− 1

z − w

= (Sf)(g(z)) · g′(z)2 + (Sg)(z)

Moreover, Sf ≡ 0 iff f preserved cross-ratio, i.e. f is a Mobius transformation.

Def 4.7.2. Define
B̃ : Belt(H/Γ) −−→ QD(H−/Γ)

µ 7−−→ S
(
fµ
∣∣
H−

)
Then the Bers embedding is given by

B : Belt(H/Γ)/ ∼ −−→ QD(H−/Γ)

[µ] 7−−→ B̃(µ)
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Proof. Take µ ∈ Belt(H/Γ).
Then fµ ◦ γ ◦ f−1

µ is a Mobius transformation for any γ ∈ Γ, so

S
(
fµ
∣∣
H−

)
= S

(
fµ ◦ γ ◦ f−1

µ ◦ fµ
∣∣
H−

)
= S

(
fµ ◦ g

∣∣
H−

)
=
(
S
(
fµ
∣∣
H−

)
◦ γ
)
· (γ′)2

Hence S
(
fµ
∣∣
H−

)
∈ QD(H−/Γ) is well-defined.

Moreover, by proposition 4.3.14.3.1, if µ homotopic to ν, then fµ
∣∣
H− = fν

∣∣
H− .

Prop 4.7.3 (Nehari). Let ρ be the hyperbolic metric on X = H/Γ, for every µ ∈ Belt(H/Γ),∥∥ρ−2S(fµ)
∥∥
∞ ⩽ 3

2
.

Proof. ρ−2S(fµ) is invariant under Mobius transformations.
WLOG, we can only estimate ρ(0)−2S(fµ)(0) and assume f ′(0) = 1.
Consider the function

1

f (z−1)
= z +

∞∑
n=0

bnz
−n.

By the Gronwall area theorem, we obtain that

|b1| =
∣∣a22 − a3

∣∣ ⩽ 1.

So |Sf (0)| = 6
∣∣a3 − a22

∣∣ ⩽ 6.
Hence we complete the proof.

Exam 4.7.1. Take f(z) = z2, then Sf = − 3
2z2

, so the bound can be attained.



Chapter 5

Additional topics

This chapter are some additional topics about teichmuller theory, most of the proposition
has no proof. You can try to find them if you are interested.

5.1 Bicanonical embedding
Def 5.1.1. Suppose S is a Riemann surface and a1, . . . , an ∈ S, a divisor is

D =

n∑
i=1

miai,

and its degree is given by

deg(D) =
n∑
i=1

mi.

Def 5.1.2. A holomorphic map f : S → CP1 is called meromorphism and we define

orda(f) =

{
k f has a zero of order k at a
−k f has a pole of order k at a

The principal divisor of f is given by

(f) =
∑
a∈S

orda(f)a

Prop 5.1.1. deg((f)) = 0.

Def 5.1.3. Let L(D) be the set of meromorphic functions on S such that (f) +D ⩾ 0 and we
denote l(D) = dimL(D).

Def 5.1.4. If ω is abelian differential, i.e. meromorphic 1-form, we say (ω) is canonical.
If ϕ ∈ QD(s), we say (ϕ) is bicanonical.

Prop 5.1.2. deg(ω) = −χ(S).

Def 5.1.5. I(D) is the space of Abelian differentials with (ω) ⩾ D and i(D) = dim I(D).

Thm 5.1.1 (Riemann-Roch).

l(D)− i(D) = deg(D) + 1− g.

Thm 5.1.2. S is a closed Riemann surface with genus g ⩾ 2, then dimQD(S) = 3g − 3.

54
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Proof. Let ω be an Abelian differential and D = 2(ω), then

QD(S) ∼= {meromorphic f : S → CP1|(f) +D ⩾ 0} = L(D)

So by Riemann-Roch,

dimQD(S) = l(D) = i(D) + deg(D) + 1− g = i(D) + 3g − 3.

And since for any Abelian differential α, deg(α) = deg(ω), i.e. we cannot have (α) ⩾ 2(ω).
Hence i(D) = 0, i.e. dimQD(S) = 3g − 3.

Prop 5.1.3 (canonical embedding). Let ω1, · · · , ωg be the basis of Ω(S), i.e. the set of all
abelian differentials, if S is non-hyperelliptic, then

f : S → CPg−1, f = [ω1 : · · · : ωg]

is an embedding.
Prop 5.1.4 (bicanonical embedding). Let ϕ1, . . . , ϕ3g−3 be the basis of quadratic differential
forms on S, if g > 2, then

f : S → CP3g−4, f = [ϕ1 : · · · : ϕ3g−3]

is an embedding.

5.2 Automorphism of Tg

In this section, we assume g > 2.
For a biholomorphism (isometry) I : Tg → Tg with τ ∈ Tg, there is an induced isometric

I∗ : T ∗
I(τ)Tg → T ∗

τ Tg

L : QD(Y ) → QD(X)

where X ∈ τ, Y ∈ I(τ).
Thm 5.2.1. Suppose (X,µ), (Y, ν) are two finite measure spaces, f1, . . . , fk ∈ Lp(µ) and
g1, . . . , gk ∈ Lp(ν) such thatˆ

X

∣∣∣1 +∑λjfj

∣∣∣pdµ =

ˆ
Y

∣∣∣1 +∑λjgj

∣∣∣pdν
for any λ = (λ1, . . . , λk) ∈ Ck, then

〈1, f1, . . . , fk〉 ↔ 〈1, g1, . . . , gk〉

is isometric w.r.t. Lp-norm.
Moreover, if 0 < p < ∞ and p is not even integer, then µ(F−1(E)) = ν(G−1(E)) for every

Borel set E ⊂ Ck with F = (f1, . . . , fk), G = (g1, . . . , gk).
Prop 5.2.1. If L : QD(X) → QD(Y ) is a complex linear isomorphism w.r.t. L1-norm, then
there exists biholomorphic f : Y → X such that L(ϕ) = f∗ϕ.
Proof. Let ϕ0, . . . , ϕk be the basis of QD1(X) and ψ0, . . . , ψk be the basis of QD1(Y ).

Then L(ϕi) = ψi.
Consider fi = ϕi

ϕ0
, gi =

ψi

ψ0
, so
ˆ
X

∣∣∣1 +∑λifi

∣∣∣dµ =

ˆ
Y

∣∣∣1 +∑λigi

∣∣∣dν
where dµ = |ϕ0|dxdy, dν = |ψ0|dxdy.
By the above theorem, this is possible only when there exists biholomorphic f : Y → X

such that f∗µ = ν.
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5.3 Quasi-Fuchsian group
Consider Fuchsian group Γ and H+/Γ = X,H−/Γ = X̄ in S2.
Take µ+ ∈ Belt(X), µ− ∈ Belt(X̄) and

µ =

{
µ+(z) z ∈ H+

µ−(z) z ∈ H−

Then we obtain a homeomorphism fµ : S2 → S2.

Prop 5.3.1. µ is equivariant under Γ, i.e. (µ ◦A)A′

A′ = µ on S2.

So there exists a group of Mobius transformation Γµ such that fµ conjugates Γ to Γµ.

Def 5.3.1. H3/Γ is called hyperbolic Fuchsian 3-manifold.
Γµ is called quasi-Fuchsian group and H3/Γµ is called hyperbolic quasi-Fuchsian 3-manifold.

Remark 5.3.1. We say Γµ is “quasi-Fuchsian” because fµ(R) is a quasicircle and Γµ preserve
this curve since Γµ = fµΓ(fµ)−1.

Notice that if µ+ ∼ ν+, µ− ∼ ν−, then µ ∼ ν and Γµ ∼= Γν . So we have a map

B : T (X)× T
(
X
)
−−→ {Quasi-Fuchsian 3-manifolds}

([µ+], [µ−]) 7−−→ H3/Γµ

Prop 5.3.2. Fuchsian and quasi-Fuchsian 3-manifolds are homeomorphic to Σg × (0, 1) for
some g.

Proof. Consider Fuchsian group Γ and denote H = D3 ∩ R2.
Then on every equi-distance surface of H, the quotient is homeomorphic to H2/Γ.
Hence H3/Γ ∼= (H2/Γ)× R = Σg × (0, 1).

Def 5.3.2. Suppose M is a hyperbolic 3−manifold, the convex core C(M) is the smallest closed
convex subset of M containing every closed geodesic on M .

Prop 5.3.3. Suppose M = H3/Γ, then C(M) is the quotient of the convex hull of the limit set
Λ(Γ) ⊂ S2 by Γ.

Proof. Since every closed geodesic on M can be lifted to an axis γ of Γ.
So the endpoints of γ lie in Λ(Γ), i.e. γ ⊂ Ch(Λ(Γ)).
Conversely, for ξ ∈ Λ(Γ), there exists a sequence of gn ∈ Γ whose fixed point approach ξ.
So the axis γn of gn converges to a geodesic γ start at ξ.
Therefore the quotient of γn converges to the quotient γ, i.e. it is contained in C(M).
Hence C(M) = Ch(Λ(Γ))/Γ.

Thm 5.3.1. If M is a hyperbolic 3-manifold which is homeomorphic to Σg × (0, 1) and C(M)
is compact in M , then M is quasi-Fuchsian.

Prop 5.3.4. p ∈ S2\Λ(Γ) iff there exists a neighborhood U of p such that{
A
∣∣
U
: A ∈ Γ

}
is a normal family.
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5.4 Complex dynamics

Def 5.4.1. Rational maps are of the form f : CP1 → CP1, z 7→ P (z)
Q(z) where P,Q are relatively

prime polynomial, its degree is given by deg f = max{degP, degQ}.
Let Ratd be the space of degree d rational maps.

Now take f ∈ Ratd, the iterations of f is a sequence {fn}n∈Z.

Def 5.4.2. The orbit of iteration is defined as

O+(z) = {fn(z)|n ∈ N},

O−(z) = {fn(z)|n ∈ Z−},

Ogrand(z) =
⋃
n⩾0

O−(fn(z)).

Def 5.4.3. Two maps are called Mobius equivalent if g = A ◦ f ◦A−1, A ∈ PSL(2,C).

Def 5.4.4. A point is called periodic if fp(z) = z for some p ⩾ 1 and its multiplier λ = (fp)′(z),
then there are three cases:

(1) when 0 < |λ| < 1, we say z is attracting

(2) when |λ| = 1, we say z is parabolic

(3) when |λ| > 1, we say z is repelling.

A point is called critical point if f ′(z) = 0 and a point is called exceptional if O−(z) is finite.

Def 5.4.5. Fatou set is Ff =
{
z ∈ Ĉ|{fn} is a normal family in some neighborhood of z

}
and

Julia set is Jf = Ĉ\Ff .

Thm 5.4.1. J(f) is non-empty closed subset of Ĉ, both J(f) and F (f) are completely invariant
under f .

Proof. Suppose J(f) = ∅, i.e. F (f) = Ĉ.
Then a subsequence {fnk} uniformly converges to some g : Ĉ → Ĉ.
But deg fnk → ∞, contradition!

Def 5.4.6. For an attracting point z0, we associate it with the basin of attraction

B(z0) = {z ∈ Ĉ|fpn(z) → z0 as n→ ∞}.

Lemma 5.4.1. B(z0) ⊂ F (f).

Lemma 5.4.2. Repelling periodic points must be contained in J(f).

Proof. Since fp(z0) = z0 and (fp)′(z0) > 1.
So (fpn)′(z0) → ∞.

Lemma 5.4.3. J(f) is accumelation set of periodic points.

Proof. Let w ∈ J(f), we may assume there exists v such that f(v) = w and f ′(v) 6= 0.
In a neighborhood U of w, consider

hk(z) =
fk(z)− z

f−1(z)− z
.

Then hk is not a normal family in U since w ∈ J(f).
So by Montel theorem, for some k, hk(z) = 0 or hk(z) = 1 for z ∈ U .
Hence fk(z) = z or fk(z) = f−1(z), i.e. fk+1(z) = z.
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Exam 5.4.1. Consider fc = z2 + c.

(1) If c = 0, then J(fc) = S1.

(2) If 0 < |c| < 1
4 , then J(fc) is a quasicircle.

Def 5.4.7. A connected component U of F (f) is called a Fatou component. It is periodic if
fp(U) = U and it is pre-periodic if fn(U) is periodic, otherwise it is called wandering.

Thm 5.4.2. A rational map of degree greater than one has no wandering domain.

Def 5.4.8. Suppose µ is a Beltrami differential on Ĉ and f : Ĉ → Ĉ is a rational map, we say
µ is equivariant if (µ ◦ f) f̄

′

f ′ = µ almost everywhere on Ĉ.

Prop 5.4.1. Suppose ϕ : Ĉ → Ĉ such that Belt(ϕ) = µ is equivariant, g = ϕ◦f ◦ϕ−1 is rational.

Proof. Belt(g ◦ ϕ) = Belt(ϕ ◦ f) = (µ ◦ f) f̄
′

f ′ = µ.
So Belt(g) = 0, i.e. g is conformal.

Sketch of proof of theorem 5.4.25.4.2. Suppose f : Ĉ → Ĉ has a wandering domain U , take µ on U .
Then can be defined on Ogrand(U) to be invariant under f and set µ = 0 outside Ogrand(U).
So we get µ on Ĉ which is invariant under f .
Let ft = ϕt ◦ f ◦ ϕ−1

t where Belt(ϕt) = tµ, V (z) = ∂
∂tϕt(z) and ḟ = ∂

∂tft.
By dimension count, there exists µ such that ḟ ≡ 0 and V 6≡ 0 on ∂U ⊂ J(f).
So [µ] 6= 0 in the tangent space of Teich(U).
And since ḟ(z) = (V ◦ f)(z)− f ′(z)V (z).
Therefore V ◦ f = f ′ · V .
Notice that J(f) is the closure of repelling periodic points.
So there exists z ∈ ∂U ⊂ J(f) such that fn(z) = z, V (z) 6= 0 and (fn)′(z) = λ with |λ| > 1.
Thus we obtain

n∏
j=1

V (f j(z)) = f ′(fn−1(z)) · · · f ′(f(z))f ′(z)
n−1∏
j=0

V (f j(z)) = (fn)′(z)
n∏
j=1

V (f j(z))

(λ− 1)
n∏
j=1

V (f j(z)) = 0

But for every j,

V (z) = V (fn(z)) = f ′(fn−1(z)) · · · f ′(f j(z))V (f j(z)) 6= 0,

contradiction!



Appendix A

Quasi-isometry and Mostow rigidity

A.1 Boundary extension of quasi-isometry
Lemma A.1.1. f : Hn → Hn is an (L,A)-quasi-isometry, γ is a geodesic ray and γ′ is the
geodesic ray within distance R from the quasigeodesic f(γ). Let π : Hn → γ, π′ : Hn → γ′ be
nearest-point restriction maps, then we have

d(f ◦ π(x), π′ ◦ f(x)) ⩽ C,

for every x ∈ Hn and some constant C.

This lemma is called the quasi-commute property, once we have done this proof, we can
complete the proof of theorem 2.1.22.1.2.

Thm A.1.1. f : Hn → Hn is a quasi-isometry then f extend continuous to a homeomorphism
∂f : ∂Hn → ∂Hn.

Proof. By Morse lemma, let γ be the geodesic ray from 0 to a ∈ ∂Hn, f ◦γ be within a bounded
distance R from δ and define ∂f(γ(+∞)) = δ(+∞).

Consider a sequence {xi} converging to a.
Then the boundary sphere Σi of Hi = π−1(xi) bound balls Bi ⊂ Sn−1 containing a.
So {Bi} forms a neighborhood basis of a.
And by the definition of quasi-isometry map, yi = f(xi) converges to ∂f(a).
Let H ′

i = (π′)−1(zi) where d (zi, π′(yi)) = C and zi, yi, ∂f(a) are in order.
Then by lemma A.1.1A.1.1, f(Bi) ⊂ B′

i.
So ∂f(Bi) forms a neighborhood basis of ∂f(a), i.e. f is continuous.
Similarly, we can take balls B′′

i ⊂ Sn−1 such that B′′
i ⊂ ∂f(Bi).

So f is open.
Moreover, suppose ∂f(a) = ∂f(b) and let γ1, γ2 be the geodesic ray from 0 to a, b resp.
Then by Morse lemma f ◦ γi are both within a bounded distance R from [f(0), ∂f(a)].
So for any x ∈ γ1, there exists y ∈ γ2 such that d(f(x), f(y)) ⩽ 2R.
Therefore d(x, y) ⩽ Ld(f(x), f(y))+LA ⩽ 2LR+LA is bounded, i.e. γ1, γ2 are asymptotic.
Thus a = b, i.e. f is injective.
Hence f is homeomorphic.

Proof of theorem 2.1.22.1.2. WLOG, assume 0,∞ ∈ ∂Hn are the fixed points of ∂f .
Take x, y such that |x| = |y| = r and p ∈ γ where γ is the geodesic line connecting 0 and ∞.
Then by lemma A.1.1A.1.1,

d(π(∂f(x)), π(∂f(y))) ⩽ d(f(π(x)), f(π(y))) + 2C ⩽ 2C

59
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Notice that as the figure below, d(π(∂f(x)), π(∂f(y))) = |ln |f(x)| − ln |f(y)||.

0 f(x)f(y)

π(f(x))

π(f(y))

So |f(x)−0|
|f(y)−0| ⩽ e2C , i.e. ∂f is e2C-quasiconformal.

Now we only need to prove lemma A.1.1A.1.1, we provide two different proofs. The second proof
is more straightforward than the first one but I spent a week to complete the first proof before
I suddenly conceived the second proof, whose most crucial step was inspired by the first proof.
(Maybe this is because I am not so familiar with the hyperbolic geometry) So I decide to retain
both.

For the first prove, we need some technique from Gromov. To simplify, we denote [x, y] as
the geodesic segment from x to y below.

Def A.1.1. For three points u, v, w ∈ Hn, the Gromov product of u, v at w is defined by

(u, v)w =
1

2
(d(u,w) + d(v, w)− d(u, v)).

Lemma A.1.2. Let γ be a geodesic in Hn and y ∈ γ, for a point x ∈ Hn, take z ∈ γ such that
d(x, z) = d(x, γ), then prove that [x, z] + [z, y] is

(√
2, 0
)
-quasi-isometry.

Proof. Let δ = [x, z] + [z, y] and π be the nearest point restriction map to [x, y].
Reparametrize δ by the length of image under π.
Since we have

cosh2 d(z, π(z)) =
cosh d(x, z) cosh d(y, z)

cosh d(x, π(z)) cosh d(y, π(z))

=
cosh d(x, y)

cosh d(x, π(z)) cosh d(y, π(z))

= 1 + tanh d(x, π(z)) tanh d(y, π(z)) ⩽ 2

So for any p ∈ δ, d(p, π(p)) ⩽ cosh−1
√
2.

Hence
|s− t| ⩽ d(δ(s), δ(t)) ⩽

√
2d(π(δ(s)), π(δ(t))) =

√
2|s− t|

Lemma A.1.3. Let γ : R → Hn be an (L,A)-quasigeodesic and p, q, r are 3 points in order on
γ, prove that there exists a constant K such that (p, r)q ⩽ K.

Proof. Let π be the nearest point restriction map to [p, r].
By Morse lemma, d(q, π(q)) ⩽ R for some R dependent only on L,A, so we have

(p, r)q =
1

2
(d(p, q) + d(r, q)− d(p, r))

=
1

2
(d(p, q) + d(r, q)− d(p, π(q))− d(r, π(q)))

⩽ d(q, s) ⩽ R
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proof of lemma A.1.1A.1.1.

x

y f−1(r)

γ

f−−→

f(x)

f(y)

pq

r
γ′

f(γ)

Let y = π(x), p = π′(f(x)), q = π′(f(y)) and r ∈ f ◦ γ such that d(r, p) ⩽ R.
By lemma A.1.2A.1.2, [f(x), p] + [p, q] and [x, y] + [y, f−1(r)] are quasi-isometry.
So by lemma A.1.3A.1.3, (f(x), q)p ⩽ K1, (f(x), r)f(y) ⩽ K2.
Hence by Morse lemma,

d(f(y), p) ⩽ d(f(y), q) + d(p, q) = d(f(y), q) + (q, f(x))p + (p, f(x))q

⩽ R+K1 +
1

2
(d(p, q) + d(f(x), q)− d(p, f(x)))

⩽ R+K1 +
1

2
(d(r, f(y)) + d(p, r) + d(f(y), q)

+ d(f(x), f(y)) + d(f(y), q)− d(r, f(x)) + d(p, r))

= R+K1 + d(f(y), q) + d(p, r) + (f(x), r)f (y)

⩽ K1 +K2 + 3R

Notice that in lemma A.1.2A.1.2, we use a counter-intuitive property of Hn:

Prop A.1.1. Consider a geodesic right triangle 4 in Dn, let x be the right angle vertex and l
be the hypotenuse, then d(x, l) ⩽ arccosh

√
2.

Proof. We have given a proof by some hyperbolic trigonometry in the proof of lemma A.1.2A.1.2, we
now give a proof with some kind of geometric intuition.

WLOG, we assume x is at the origin.
Then legs of 4 are on some radius of Dn, denote them by l1, l2.
Let y, z be the boundary points of l1, l2 resp.
So d(x, l) ⩽ d(x, [y, z]) = arccosh

√
2.

x

y

z

l

Alternative proof of lemma A.1.1A.1.1. Let a, b be the endpoints of γ and l1 = [a, x], l2 = [b, x].
Then by Morse lemma, l′1 = [f(a), f(x)], l′2 = [f(b), f(y)] are within distance R from the

quasigeodesic f(l1), f(l2) resp.
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Let y = π(x), p = π′(f(x)), q = π′(f(y)) and ri ∈ l′i such that d(f(y), li) = d(f(y), ri), so

d(f(y), p) ⩽ d(f(y), q) + d(p, q)

⩽ R+ d(q, π(r1)) + d(q, π(r2))

⩽ R+ d(f(y), r1) + d(f(y), r2)

⩽ R+ d(f(y), f(l1)) +R+ d(f(y), f(l2)) +R

⩽ 3R+ Ld(y, l1) +A+ Ld(y, l2) +A

⩽ 3R+ 2Larccosh
√
2 + 2A

a b

x

y

l1 l2

γ f−−→ f(a) f(b)

f(x)

f(y)

p q

r1
r2

l1 l2

γ′

Prop A.1.2. Suppose f : Hn → Hn is a (L,A)-quasi-isometry, then f is quasi-dense: there
exists a constant C such that for y ∈ Hn, there is some x ∈ Hn satisfying that

d(f(x), y) < C.

Proof. Take a geodesic line γ containing y which ends at a, b.
By theorem 2.1.22.1.2, p = ∂f−1(a) and q = ∂f−1(b) are well-defined.
Take the geodesic line γ′ ending at p, q.
Then f ◦ γ′ is within a bounded distance R from γ where R only depends on L,A.
Let π be the nearest point restriction map π for γ.
So π−1(y) ∩ f ◦ γ′ is nonempty, take p in it.
Hence p = f(x) for some x and

d(f(x), y) = d(p, y) = d(p, π(p)) ⩽ R.

Remark A.1.1. For general definition of quasi-isometry, we require the quasi-dense property.
But since we can prove this property for f : Hn → Hn, we did not required it when defining
quasi-isometry f : Hn → Hn.

Prop A.1.3. (L,A)-quasi-isometry map f : Hn → Hn has a quasi-inverse: a (L,A1)-quasi-
isometry map g : Hn → Hn such that

d(f ◦ g(y), y) ⩽ B, d(g ◦ f(x), x) ⩽ B.

Proof. Take g(y) ∈ Hn such that d(f ◦ g(y), y) ⩽ A, then

d(g(y1), g(y2)) ⩽ Ld(f ◦ g(y1), f ◦ g(y2)) + LA

L(d(f ◦ g(y1), y1) + d(f ◦ g(y2), y2) + d(y1, y2)) + LA

⩽ Ld(y1, y2) + 3LA
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Similarly, d(y1, y2) ⩽ Ld(g(y1), g(y2)) + 3A.
And since

d(g(f(x)), x) ⩽ Ld(f(g(f(x))), f(x)) + LA ⩽ 2LA.

So g is (L,A1)-quasi-isometry for some A1 and it is quasi-inverse of f .

Prop A.1.4. Suppose f, g : Hn → Hn are two (L,A)-quasi-isometry such that ∂f = ∂g, then
there exists C > 0 such that d(f(x), g(x)) ⩽ C for every x ∈ Hn.

Proof. Consider x ∈ Hn and a geodesic line γ ending at a, b ∈ ∂Hn.
Since ∂f(a) = ∂g(a), ∂f(b) = ∂g(b).
So both f ◦ γ, g ◦ γ are within a bounded distance R from the geodesic line γ′ ending at

∂f(a), ∂f(b), where R only depends on L,A.
Therefore d(f(x), γ′), d(g(x), γ′) ⩽ R.
Notice that ∂f is surjective.
In the other words, for every point p ∈ ∂Hn, there exists a geodesic line γp ending at p such

that γp intersects with both BR(f(x)) and BR(g(x))).
Suppose U = BR(f(x)) and V = BR(g(x)) are disjoint.
let δ be the geodesic segment from f(x) to g(x) and take a point q ∈ δ\(U ∪ V ).
Consider the nearest point restriction map π for δ and the hypersurface H = π−1(q).
Then H is totally geodesic and divides Hn into two components C1, C2 where yi ∈ Ci.
Moreover, U ⊂ C1 and V ⊂ C2 since δ is perpendicular to H, d(q, yi) > R.
Take p ∈ H ∩ ∂Hn.
Since both C1, C2 are convex.
So any geodesic line γp ending at p disjoints with one of U and V , contradiction!
Hence d(f(x), g(x)) ⩽ C.

A.2 Mostow rigidity theorem
Thm A.2.1 (Mostow rigidity). M,N are closed hyperbolic n-manifold with n ⩾ 3, then every
homotopy equivalent f :M → N must be homeomorphism to an isometry

Proof. Let g : N →M be the homotopy inverse of f .
By differential topology, f, g can be homotopy to some smooth maps, i.e. WLOG, we assume

f, g are smooth.
And we can lift f, g to f̃ , g̃ : Hn → Hn.
Then f̃ , g̃ are Lipschitz.
Moreover, there exists a smooth homotopy H :M × I →M such that g ◦ f H' IdM .
With some suitably g̃, we can lift H to H̃ such that g̃ ◦ f̃ H̃' IdHn .
So
∣∣∣dH̃∣∣∣ is bounded, i.e. there exists constant C such that

d
(
g̃ ◦ f̃(x), x

)
⩽ C.

Thus f̃ is quasi-isometry with inverse g̃.
By theorem 2.1.22.1.2, f̃ can be extended to quasiconformal ∂f̃ : ∂Hn → ∂Hn.
We claim that ∂f̃ is actually conformal.
Once we have proved this, we can extend ∂f̃ to a conformal map h : Hn → Hn, i.e. it is an

isometry under the hyperbolic metric.
Since for A ∈ ΓX , there exists B ∈ ΓY such that ∂f̃ ◦A = B ◦ ∂f̃ .
So h ◦A = B ◦ h on Hn, take

H0 : Hn × I → Hn, (x, t) 7→ (1− t)f̃(x) + th(x),



APPENDIX A. QUASI-ISOMETRY AND MOSTOW RIGIDITY 64

then f̃
H0' h and H0 ◦A = B ◦ H̃0.

Hence H0 :M × I → N is well-defined and f
H0' h.

We now prove the claim in the proof of Mostow rigidity, it is a direct consequence of the
theorem below.

Thm A.2.2. Suppose X,Y are closed hyperbolic n-manifolds with n ⩾ 3 and f : ∂Hn → ∂Hn

is a homeomorphism which is differentiable at x0 with nonzero derivative. If f ◦ γ ◦ f−1 ∈ ΓY
for any γ ∈ ΓY , then f is a Mobius transformation.

Proof. WLOG, assume x0 = 0 and f(0) = 0.
Similar to proposition 2.2.22.2.2, we let An(x) = x

n , take y ∈ Hn and a fundamental domain F
of X, then we have γn ◦An(y) ∈ F, γni ◦Ani → σ1, δn ◦ f = f ◦ γn and δni ◦Ani → σ2.

Let fn = A−1
n ◦ f ◦An converges to h : ∂Hn → ∂Hn and J = f ′(0).

Then σ−1
2 ◦ δ ◦ σ2 ◦ h = h ◦ σ−1

1 ◦ γ ◦ σ1 and h(x) = Jx for x ∈ ∂Hn.
Notice that

σ2 ◦ h ◦ σ−1
1 = lim

i→∞
σni ◦Ani ◦A−1

ni
◦ f ◦Ani ◦A−1

ni
◦ γ−1

ni

= lim
i→∞

σni ◦ f ◦ γ−1
ni

= f

So we only need to prove that h is a Mobius transformation.
By Liouville theorem, this is equivalent to prove that h is an Euclidean similarity, which

follows from the lemma below since ΓX is cocompact.

Lemma A.2.1. Suppose γ ∈ SO+(n, 1) such that γ(∞) 6= {0,∞} and A ∈ GL(n − 1) which
conjugates γ to AγA−1 ∈ SO+(n, 1), then A is an Euclidean similarity.

Proof. Suppose A is not an Euclidean similarity.
Since Aγ(∞) 6= 0, let P be a hyperplane in Rn−1 with 0 ∈ P,Aγ(∞) /∈ P .
So γA−1(P ) must be a sphere S ⊂ Rn−1 as γ is conformal.
But A(S) is an ellipsoid which is not a sphere.
Hence AγA−1 is not conformal, contradiction!
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